Influence of Manganese Addition on Structural, Dielectric, and Wastewater Bioconversion in LiTaO3 Ferroelectric Material
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. X-Ray Diffraction Analysis
3.2. Scanning Electron Microscopy
3.3. Raman Investigation of Li1−xMnx/2TaO3 (x = 0–0.25)
3.4. Dielectric Study
3.5. Optical Properties and MFCs Cathode Investigation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krätzig, E.; Schirmer, O.F. Photorefractive centers in electro-optic crystals. In Photorefractive Materials and Their Applications I; Springer: Berlin/Heidelberg, Germany, 1988; pp. 131–166. [Google Scholar] [CrossRef]
- Asbani, B.; Gagou, Y.; Trček, M.; Dellis, J.-L.; Amjoud, M.; Lahmar, A.; Mezzane, D.; Kutnjak, Z.; El Marssi, M. Dielectric permittivity enhancement and large electrocaloric effect in the lead free (Ba0.8Ca0.2)1−xLa2x/3TiO3 ferroelectric ceramics. J. Alloys Compd. 2018, 730, 501–508. [Google Scholar] [CrossRef]
- El Bachraoui, F.; Chchiyai, Z.; Matrouf, M.; Tamraoui, Y.; Bih, L.; Alami, J.; Ghamouss, F.; Manoun, B. Insights into the structural, dielectric, optical and electrochemical characteristics reveal the limiting parameters toward efficient OER catalysts in the perovskite solid solution Sr1-xLaxTi1-xFexO3 (0.2 ≤ x ≤ 0.8). J. Alloys Compd. 2024, 1008, 176636. [Google Scholar] [CrossRef]
- Gallegos-Melgar, A.; Espinosa-Arbelaez, D.G.; Flores-Ruiz, F.J.; Lahmar, A.; Dellis, J.-L.; Lemée, N.; Espinoza-Beltran, F.J.; Muñoz-Saldaña, J. Ferroelectric properties of manganese doped (Bi1/2Na1/2)TiO3 and (Bi1/2Na1/2)TiO3–BaTiO3 epitaxial thin films. Appl. Surf. Sci. 2015, 359, 923–930. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, Y.; Yang, D.; Zhang, H.; Zhu, M. Recent Progress on Barium Titanate-Based Ferroelectrics for Sensor Applications. Adv. Sens. Res. 2024, 3, 2300168. [Google Scholar] [CrossRef]
- Choi, J.J.; Billinge, S.J.L. Perovskites at the nanoscale: From fundamentals to applications. Nanoscale 2016, 8, 6206–6208. [Google Scholar] [CrossRef]
- Chen, P.; Li, T.-T.; Yang, Y.-B.; Li, G.-R.; Gao, X.-P. Coupling aqueous zinc batteries and perovskite solar cells for simultaneous energy harvest, conversion and storage. Nat. Commun. 2022, 13, 64. [Google Scholar] [CrossRef]
- Zhang, L.; Miao, J.; Li, J.; Li, Q. Halide Perovskite Materials for Energy Storage Applications. Adv. Funct. Mater. 2020, 30, 2003653. [Google Scholar] [CrossRef]
- Clabel H, J.L.; Awan, I.T.; Pinto, A.H.; Nogueira, I.C.; Bezzon, V.D.N.; Leite, E.R.; Balogh, D.T.; Mastelaro, V.R.; Ferreira, S.O.; Marega, E., Jr. Insights on the mechanism of solid state reaction between TiO2 and BaCO3 to produce BaTiO3 powders: The role of calcination, milling, and mixing solvent. Ceram. Int. 2020, 46, 2987–3001. [Google Scholar] [CrossRef]
- Pan, Q.; Pu, Y.; Wang, B.; Xie, H.; Zhang, L.; Zhang, J.; Hao, Y.; Yang, Y.; Qian, J. Substantial increase in resistance and suppression of resistance degradation in SrTiO3-based ceramics with colossal permittivity and low dielectric loss. Ceram. Int. 2025, 51, 187–195. [Google Scholar] [CrossRef]
- Liu, X.; Hou, Y.; Xu, Y.; Zheng, M.; Zhu, M. Realization of temperature insensitive high energy storage performance via introducing NaNbO3 into NBT-KBT system. J. Alloys Compd. 2020, 844, 156163. [Google Scholar] [CrossRef]
- Jyothi, R.; Sekhar, K.S.K.R.C.; Saini, D.S.; Mouli, K.C.; Krishna, Y.R.; Tirupathi, P. Temperature and field-dependent electrical property and energy density correlations studies in KNN-modified NBT–KBT solid solution ceramics. J. Mater. Sci. Mater. Electron. 2023, 34, 629. [Google Scholar] [CrossRef]
- Zidani, J.; Zannen, M.; Hadouchi, M.; Alzahrani, H.A.H.; Birks, E.; Khemakhem, H.; Majdoub, M.; El Marssi, M.; Lahmar, A. Structural, electrical and optical properties of lanthanide-doped Na0.4K0.1Bi0.5TiO3 ceramics. Phys. B Condens. Matter 2023, 653, 414680. [Google Scholar] [CrossRef]
- Benyoussef, M.; Zannen, M.; Belhadi, J.; Manoun, B.; Dellis, J.-L.; El Marssi, M.; Lahmar, A. Dielectric, ferroelectric, and energy storage properties in dysprosium doped sodium bismuth titanate ceramics. Ceram. Int. 2018, 44, 19451–19460. [Google Scholar] [CrossRef]
- Habouti, S.; Lahmar, A.; Dietze, M.; Solterbeck, C.-H.; Zaporojtchenko, V.; Es-Souni, M. Substrate heterostructure effects on interface composition, microstructure development and functional properties of PZT thin films. Acta Mater. 2009, 57, 2328–2338. [Google Scholar] [CrossRef]
- Katzke, H.; Dietze, M.; Lahmar, A.; Es-Souni, M.; Neumann, N.; Lee, S.G. Dielectric, ultraviolet/visible, and Raman spectroscopic investigations of the phase transition sequence in 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 crystals. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 83, 174115. [Google Scholar] [CrossRef]
- Haertling, G.H. Ferroelectric Ceramics: History and Technology. J. Am. Ceram. Soc. 1999, 82, 797–818. [Google Scholar] [CrossRef]
- Fakhri, M.A.; Bader, B.A.; Khalid, F.G.; Numan, N.H.; Abdulwahhab, A.W.; Hashim, U.; Salim, E.T.; Munshid, M.A.; Salim, Z.T. Optical and morphological studies of LiNbO3 nano and micro photonic structural. AIP Conf. Proc. 2018, 2045, 020017. [Google Scholar] [CrossRef]
- Mondain, F.; Brunel, F.; Hua, X.; Gouzien, É.; Zavatta, A.; Lunghi, T.; Doutre, F.; De Micheli, M.P.; Tanzilli, S.; D’Auria, V. Photorefractive effect in LiNbO3-based integrated-optical circuits for continuous variable experiments. Opt. Express 2020, 28, 23176–23188. [Google Scholar] [CrossRef]
- Lyu, T.; Dorenbos, P.; Li, C.; Wei, Z. Wide Range X-Ray to Infrared Photon Detection and Energy Storage in LiTaO3:Bi3+,Dy3+ Perovskite. Laser Photon Rev. 2022, 16, 2200055. [Google Scholar] [CrossRef]
- Kharti, H.; Touach, N.; Lotfi, E.M.; El Mahi, M.; Mouhir, L.; Fekhaoui, M.; Benzaouak, A. Bioenergy generation and wastewater treatment with nickel pyrophosphate as a novel cathode catalyst in single-chamber microbial fuel cells. Renew. Energy 2024, 231, 121011. [Google Scholar] [CrossRef]
- Elhenawy, S.; Khraisheh, M.; AlMomani, F.; Al-Ghouti, M.; Hassan, M.K. From Waste to Watts: Updates on Key Applications of Microbial Fuel Cells in Wastewater Treatment and Energy Production. Sustainability 2022, 14, 955. [Google Scholar] [CrossRef]
- Gopal, V.; Palanisamy, G.; Lee, J.; Abu-Yousef, I.A.; Majdalawieh, A.F.; Mahasneh, A.; Prabu, K.M.; Kanan, S. Fabrication of SrTiO3 anchored rGO/g-C3N4 photocatalyst for the removal of mixed dye from wastewater: Dual photocatalytic mechanism. Sci. Rep. 2024, 14, 16259. [Google Scholar] [CrossRef] [PubMed]
- Huamán, J.L.C.; Rivera, V.A.G. (Eds.) Perovskite Ceramics; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Clabel H, J.L.; Chacaliaza-Ricaldi, J.; Marega, E., Jr. Potential Application of Perovskite Structure for Water Treatment: Effects of Band Gap, Band Edges, and Lifetime of Charge Carrier for Photocatalysis. Front. Nanotechnol. 2022, 4, 827925. [Google Scholar] [CrossRef]
- Sharma, M.; Jalalah, M.; Alsareii, S.A.; Harraz, F.A.; Xue, W.; Thakur, N.; Salama, E.-S.; Li, X. Microalgal cycling in the cathode of microbial fuel cells (MFCs) induced oxygen reduction reaction (ORR) and electricity: A biocatalytic process for clean energy. Chem. Eng. J. 2024, 479, 147431. [Google Scholar] [CrossRef]
- Benzaouak, A.; Touach, N.-E.; Ortiz-Martínez, V.; Salar-García, M.; Hernández-Fernández, F.; Ríos, A.d.L.; El Mahi, M.; Lotfi, E.M. Ferroelectric solid solution Li1−xTa1−xWxO3 as potential photocatalysts in microbial fuel cells: Effect of the W content. Chin. J. Chem. Eng. 2018, 26, 1985–1991. [Google Scholar] [CrossRef]
- Touach, N.; Benzaouak, A.; Toyir, J.; El Hamidi, A.; El Mahi, M.; Lotfi, E.M.; Kacimi, M.; Liotta, L.F. Bioenergy Generation and Wastewater Purification with Li0.95Ta0.76Nb0.19Mg0.15O3 as New Air-Photocathode for MFCs. Catalysts 2022, 12, 1424. [Google Scholar] [CrossRef]
- Hitar, M.E.H.; Benzaouak, A.; Touach, N.-E.; Kharti, H.; Assani, A.; El Mahi, M.; Lotfi, E.M. Sustainable electricity generation using LiTaO3-Modified Mn2+ ferroelectric photocathode in microbial fuel Cells: Structural insights and enhanced waste bioconversion. Chem. Phys. Lett. 2024, 837, 141055. [Google Scholar] [CrossRef]
- Le Bail, A. Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffr. 2005, 20, 316–326. [Google Scholar] [CrossRef]
- Hsu, R.; Maslen, E.N.; Boulay, D.D.; Ishizawa, N. Synchrotron X-ray Studies of LiNbO3 and LiTaO3. Acta Crystallogr. B 1997, 53, 420–428. [Google Scholar] [CrossRef]
- Shannon, R.D.; Prewitt, C.T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 1969, 25, 925–946. [Google Scholar] [CrossRef]
- Assani, A.; Zriouil, M.; Elouadi, B. Investigation of new LiTaO3-related solid solutions in the ternary system Li2O-Ta2O5-(MnO)2: Crystal chemistry and ferroelectric properties. Ann. Chim. Sci. Matér. 1998, 23, 229–232. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, Y. Effects of MnO2 addition on the microstructure and dielectric properties of LiTaO3 ceramics. Vacuum 2020, 173, 109130. [Google Scholar] [CrossRef]
- Yang, X.; Lan, G.; Li, B.; Wang, H. Raman Spectra and Directional Dispersion in LiNbO3 and LiTaO3. Phys. Status Solidi (b) 1987, 142, 287–300. [Google Scholar] [CrossRef]
- Repelin, Y.; Husson, E.; Bennani, F.; Proust, C. Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations. J. Phys. Chem. Solids 1999, 60, 819–825. [Google Scholar] [CrossRef]
- Raptis, C. Assignment and Temperature Dependence of the Raman Modes of LiTaO3 Studied over the Ferroelectric and Paraelectric Phases. Phys. Rev. B 1988, 38, 10007–10019. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, Y.; He, S. Sinterability and Dielectric Properties of LiTaO3-Based Ceramics with Addition of CoO. Materials 2020, 13, 1506. [Google Scholar] [CrossRef] [PubMed]
- Benzaouak, A.; Touach, N.; Ortiz-Martínez, V.M.; Salar-García, M.J.; Hernández-Fernández, F.J.; Ríos, A.P.d.L.; El Mahi, M.; Lotfi, E.M. Ferroelectric LiTaO3 as novel photo-electrocatalyst in microbial fuel cells. Environ. Prog. Sustain. Energy 2017, 36, 1568–1574. [Google Scholar] [CrossRef]
- Touach, N.; Ortiz-Martínez, V.; Salar-García, M.; Benzaouak, A.; Hernández-Fernández, F.; de Ríos, A.P.; El Mahi, M.; Lotfi, E. On the use of ferroelectric material LiNbO3 as novel photocatalyst in wastewater-fed microbial fuel cells. Particuology 2017, 34, 147–155. [Google Scholar] [CrossRef]
Composition (x) | 0.0 | 0.05 | 0.10 | 0.15 | 0.25 |
---|---|---|---|---|---|
T (K) | 298 | ||||
Crystal system, space group | Trigonal, R3c | ||||
Lattice parameters (Å) | a = 5.1500 (4), c = 13.7560 (12) | a = 5.1625 (4), c = 13.7599 (12) | a = 5.1639 (4), c = 13.7617 (11) | a = 5.1710 (3), c = 13.7658 (10) | a = 5.1828 (5), c = 13.7584 (15) |
V (Å3) | 315.97 (4) | 317.59 (4) | 317.80 (4) | 318.77 (4) | 320.06 (5) |
Reliability factors and goodness of fit χ2 | Rp = 8.842, Rwp = 12.411, Rexp = 9.491, χ2 = 1.709 | Rp = 8.923, Rwp = 12.846, Rexp = 10.077, χ2 = 1.625 | Rp = 9.332, Rwp = 12.460, Rexp = 9.323, χ2 = 1.786 | Rp = 9.115, Rwp = 11.873, Rexp = 9.280, χ2 = 1.637 | Rp = 9.466, Rwp = 13.032, Rexp = 9.668, χ2 = 1.817 |
x Value | x = 0.00 | x = 0.05 | x = 0.10 | x = 0.15 | x = 0.25 |
---|---|---|---|---|---|
Eg (eV) | 3.8 | 3.6 | 3.5 | 3.38 | 3.45 |
Material | Eg (eV) | Pmax (mW/m2) (light) | Pmax (mW/m2) (dark) | COD Removal (%) | OCV (mV) (Light) | Rint (Ω) (Light) | References |
---|---|---|---|---|---|---|---|
LiTaO3 | 4.81 | 55 | 17 | 66 | 349 | 657 | [39] |
LiNbO3 | 4.08 | 131 | 40 | 84 | 400 | 277 | [40] |
Li0.95Ta0.57Nb0.38Cu0.15O3 | - | 205.35 | - | 80 | 376 | 187.79 | [28] |
Li0.95Ta0.76Nb0.19Mg0.15O3 | 4.03 | 228 | 109 | 95.74 | 470 | 411 | [28] |
Li0.9Ta0.9W0.1O3 | 3.85 | 107.2 | 72 | 79 | 316 | 877.5 | [27] |
Li1−xMnx/2TaO3 (x = 0.10) | 3.48 | 370 | 160 | 90.89 | 377 | 83.4 | [This work] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hitar, M.E.H.; Tajounte, L.; Benyoussef, M.; Benzaouak, A.; Touach, N.; Hadouchi, M.; Lahmar, A.; Mahi, M.E.; Lotfi, E.M. Influence of Manganese Addition on Structural, Dielectric, and Wastewater Bioconversion in LiTaO3 Ferroelectric Material. Crystals 2025, 15, 253. https://doi.org/10.3390/cryst15030253
Hitar MEH, Tajounte L, Benyoussef M, Benzaouak A, Touach N, Hadouchi M, Lahmar A, Mahi ME, Lotfi EM. Influence of Manganese Addition on Structural, Dielectric, and Wastewater Bioconversion in LiTaO3 Ferroelectric Material. Crystals. 2025; 15(3):253. https://doi.org/10.3390/cryst15030253
Chicago/Turabian StyleHitar, Mohamed El Habib, Latifa Tajounte, Manal Benyoussef, Abdellah Benzaouak, Noureddine Touach, Mohammed Hadouchi, Abdelilah Lahmar, Mohammed El Mahi, and El Mostapha Lotfi. 2025. "Influence of Manganese Addition on Structural, Dielectric, and Wastewater Bioconversion in LiTaO3 Ferroelectric Material" Crystals 15, no. 3: 253. https://doi.org/10.3390/cryst15030253
APA StyleHitar, M. E. H., Tajounte, L., Benyoussef, M., Benzaouak, A., Touach, N., Hadouchi, M., Lahmar, A., Mahi, M. E., & Lotfi, E. M. (2025). Influence of Manganese Addition on Structural, Dielectric, and Wastewater Bioconversion in LiTaO3 Ferroelectric Material. Crystals, 15(3), 253. https://doi.org/10.3390/cryst15030253