Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = photocatalytic detoxification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9669 KiB  
Review
Photocatalytic Degradation of Mycotoxins by Heterogeneous Photocatalysts
by Yawei Huang, Muyue Li and Jing Liu
Catalysts 2025, 15(2), 112; https://doi.org/10.3390/catal15020112 - 23 Jan 2025
Cited by 1 | Viewed by 1174
Abstract
Mycotoxins are highly toxic secondary metabolites that can pose a serious threat to food safety, human health, and the environment. As a promising detoxification method, photocatalysis has shown great potential for mycotoxin degradation due to its high efficiency, low cost, and green advantages. [...] Read more.
Mycotoxins are highly toxic secondary metabolites that can pose a serious threat to food safety, human health, and the environment. As a promising detoxification method, photocatalysis has shown great potential for mycotoxin degradation due to its high efficiency, low cost, and green advantages. Heterogeneous photocatalysis using a semiconductor as a mediator is now regarded as an effective approach for mycotoxin degradation. The aim of this study was to review the recent developments, mainly in the photocatalytic degradation of mycotoxin (e.g., AFB1, FB1, DON, and ZEN). The principle, feasibility, and main semiconducting catalysts of mycotoxin photodegradation are introduced and discussed, including metal oxides (transition, noble, and rare earth metals), carbons (graphene, carbon nitride, and biochar) and other composites (MOFs and LDHs). This review will contribute to the development of semiconductor photocatalysts and photocatalytic degradation for mycotoxins decontamination. Full article
Show Figures

Figure 1

22 pages, 4136 KiB  
Article
Insights for Precursors Influence on the Solar-Assisted Photocatalysis of Greenly Synthesizing Zinc Oxide NPs towards Fast and Durable Wastewater Detoxification
by Amr A. Essawy, Modather F. Hussein, Tamer H. A. Hasanin, Emam F. El Agammy, Hissah S. Alsaykhan, Rakan F. Alanazyi and Abd El-Naby I. Essawy
Ceramics 2024, 7(3), 1100-1121; https://doi.org/10.3390/ceramics7030072 - 19 Aug 2024
Cited by 1 | Viewed by 1504
Abstract
Herein, this study has examined the influence of Zn2+ sources during a biogenic-mediated pathway to synthesize ZnO nanoparticles with highly desirable solar-responsive catalytic properties. Salts of nitrate, acetate and chloride have been utilized. The ZnO powders underwent characterization using diverse analytical tools, [...] Read more.
Herein, this study has examined the influence of Zn2+ sources during a biogenic-mediated pathway to synthesize ZnO nanoparticles with highly desirable solar-responsive catalytic properties. Salts of nitrate, acetate and chloride have been utilized. The ZnO powders underwent characterization using diverse analytical tools, including XRD, FTIR, Raman, BET, SEM, TEM with EDS/elemental mapping and UV-vis absorption/emission spectroscopic analyses. Accordingly, precursors have proved to affect crystallinity, morphology, surface characteristics, optical properties and the photocatalytic degradation of methylene blue (MB) model pollutant. It was observed that ZnO derived from zinc acetate precursor (Z-AC NPs) exhibits very fast photocatalytic degradation of MB at pH 11 with superior kinetic estimates of 0.314 min−1 and t1/2 = 2.2 min over many of recent reports. In contrast, the chloride precursor is not recommended along with the employed biogenic route. The intriguing findings could be directly correlated to the decreased crystal size, augmented surface area, the hexagonal morphology of the crystals, high potency in absorbing visible photons, high efficacy in separating photogenerated charge carriers and producing high amounts of OH radicals. Further testing of Z-AC NPs in photocatalytic remediation of water samples from Dumat Aljandal Lake in Aljouf, Saudi Arabia, contaminated with MB and pyronine Y (PY) dyestuffs, showed high dye photodegradation. Therefore, this work could lead to an extremely fast avenue for decontaminating wastewater from hazmat dyestuff. Full article
Show Figures

Figure 1

17 pages, 3261 KiB  
Article
Laser Ablation for the Synthesis of Cu/Cu2O/CuO and Its Development as Photocatalytic Material for Escherichia coli Detoxification
by Marcy Quintero, Marcela Manrique-Moreno, Henry Riascos, Ricardo A. Torres-Palma, Sandra Castro-Narvaez and Yenny P. Ávila-Torres
Int. J. Mol. Sci. 2024, 25(13), 6817; https://doi.org/10.3390/ijms25136817 - 21 Jun 2024
Cited by 1 | Viewed by 1548
Abstract
Advanced Oxidation Processes (AOPs) offer promising methods for disinfection by generating radical species like hydroxyl radicals, superoxide anion radicals, and hydroxy peroxyl, which can induce oxidative stress and deactivate bacterial cells. Photocatalysis, a subset of AOPs, activates a semiconductor using specific electromagnetic wavelengths. [...] Read more.
Advanced Oxidation Processes (AOPs) offer promising methods for disinfection by generating radical species like hydroxyl radicals, superoxide anion radicals, and hydroxy peroxyl, which can induce oxidative stress and deactivate bacterial cells. Photocatalysis, a subset of AOPs, activates a semiconductor using specific electromagnetic wavelengths. A novel material, Cu/Cu2O/CuO nanoparticles (NPs), was synthesized via a laser ablation protocol (using a 1064 nm wavelength laser with water as a solvent, with energy ranges of 25, 50, and 80 mJ for 10 min). The target was sintered from 100 °C to 800 °C at rates of 1.6, 1.1, and 1 °C/min. The composite phases of Cu, CuO, and Cu2O showed enhanced photocatalytic activity under visible-light excitation at 368 nm. The size of Cu/Cu2O/CuO NPs facilitates penetration into microorganisms, thereby improving the disinfection effect. This study contributes to synthesizing mixed copper oxides and exploring their activation as photocatalysts for cleaner surfaces. The electronic and electrochemical properties have potential applications in other fields, such as capacitor materials. The laser ablation method allowed for modification of the band gap absorption and enhancement of the catalytic properties in Cu/Cu2O/CuO NPs compared to precursors. The disinfection of E. coli with Cu/Cu2O/CuO systems serves as a case study demonstrating the methodology’s versatility for various applications, including disinfection against different microorganisms, both Gram-positive and Gram-negative. Full article
Show Figures

Figure 1

31 pages, 16978 KiB  
Article
Synthesis and Characterization of Composite WO3 Fibers/g-C3N4 Photocatalysts for the Removal of the Insecticide Clothianidin in Aquatic Media
by Christos Lykos, Feidias Bairamis, Christina Efthymiou and Ioannis Konstantinou
Nanomaterials 2024, 14(12), 1045; https://doi.org/10.3390/nano14121045 - 18 Jun 2024
Cited by 8 | Viewed by 1985
Abstract
Photocatalysis is a prominent alternative wastewater treatment technique that has the potential to completely degrade pesticides as well as other persistent organic pollutants, leading to detoxification of wastewater and thus paving the way for its efficient reuse. In addition to the more conventional [...] Read more.
Photocatalysis is a prominent alternative wastewater treatment technique that has the potential to completely degrade pesticides as well as other persistent organic pollutants, leading to detoxification of wastewater and thus paving the way for its efficient reuse. In addition to the more conventional photocatalysts (e.g., TiO2, ZnO, etc.) that utilize only UV light for activation, the interest of the scientific community has recently focused on the development and application of visible light-activated photocatalysts like g-C3N4. However, some disadvantages of g-C3N4, such as the high recombination rate of photogenerated charges, limit its utility. In this light, the present study focuses on the synthesis of WO3 fibers/g-C3N4 Z-scheme heterojunctions to improve the efficiency of g-C3N4 towards the photocatalytic removal of the widely used insecticide clothianidin. The effect of two different g-C3N4 precursors (urea and thiourea) and of WO3 fiber content on the properties of the synthesized composite materials was also investigated. All aforementioned materials were characterized by a number of techniques (XRD, SEM-EDS, ATR-FTIR, Raman spectroscopy, DRS, etc.). According to the results, mixing 6.5% W/W WO3 fibers with either urea or thiourea derived g-C3N4 significantly increased the photocatalytic activity of the resulting composites compared to the precursor materials. In order to further elucidate the effect of the most efficient composite photocatalyst in the degradation of clothianidin, the generated transformation products were tentatively identified through UHPLC tandem high-resolution mass spectroscopy. Finally, the detoxification effect of the most efficient process was also assessed by combining the results of an in-vitro methodology and the predictions of two in-silico tools. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

15 pages, 4670 KiB  
Article
Heterogeneous Photocatalytic Oxidation and Detoxification of Simulated Agricultural Wastewater Contaminated with Boscalid Fungicide Using g-C3N4 Catalyst
by Maria Antonopoulou, Anna Tzamaria, Kleopatra Miserli, Christos Lykos and Ioannis Konstantinou
Catalysts 2024, 14(2), 112; https://doi.org/10.3390/catal14020112 - 31 Jan 2024
Cited by 2 | Viewed by 1643
Abstract
In the present study, the photocatalytic oxidation and detoxification of aqueous matrices contaminated with boscalid using g-C3N4 catalyst and UV-A light was investigated. The UV-A/g-C3N4 process was found to achieve higher than 83% removal of boscalid in [...] Read more.
In the present study, the photocatalytic oxidation and detoxification of aqueous matrices contaminated with boscalid using g-C3N4 catalyst and UV-A light was investigated. The UV-A/g-C3N4 process was found to achieve higher than 83% removal of boscalid in both matrices, with h+ and O2 being the main species. UHPLC-HRMS analysis allowed the identification of five TPs, while the main degradation pathways involved hydroxylation, cyclization, and dechlorination. Scenedesmus rubescens microalgae species was exposed to boscalid solutions and lake water spiked with the fungicide before the photocatalytic treatment and inhibition in the growth rate was observed. An increase in the toxicity was also observed during the first stages of the treatment. The results from the in silico study correlate with the observed evolution of ecotoxicity during the application of the process, as some of the identified TPs were found to be toxic or very toxic for aquatic organisms. However, prolonged application of the process can lead to detoxification. It was also observed that the g-C3N4 catalyst can retain its photochemical stability and activity after at least three cycles. However, a slight decrease in the activity was observed when repeated another two times. This study demonstrated that the suggested photocatalytic process can both decrease the harmful effects of boscalid as well as effectively lower its concentration in water. Full article
(This article belongs to the Special Issue Recent Advances in g-C3N4-Based Photocatalysts)
Show Figures

Figure 1

34 pages, 7151 KiB  
Article
Cyanide Removal by ZnTiO3/TiO2/H2O2/UVB System: A Theoretical-Experimental Approach
by Ximena Jaramillo-Fierro, John Ramón and Eduardo Valarezo
Int. J. Mol. Sci. 2023, 24(22), 16446; https://doi.org/10.3390/ijms242216446 - 17 Nov 2023
Cited by 7 | Viewed by 1887
Abstract
Cyanide is a highly toxic substance present in wastewater from various industries. This study investigates the removal of cyanide species (CS) from aqueous solutions using the ZnTiO3/TiO2/H2O2/UVB system. ZnTiO3/TiO2 nanoparticles synthesized by [...] Read more.
Cyanide is a highly toxic substance present in wastewater from various industries. This study investigates the removal of cyanide species (CS) from aqueous solutions using the ZnTiO3/TiO2/H2O2/UVB system. ZnTiO3/TiO2 nanoparticles synthesized by the sol-gel method were characterized by powder X-ray diffractometry (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The adsorption capacity of nanoparticles was tested by varying the pH of the solution, adsorbent concentration, and contact time. The adsorption of CS on ZnTiO3 and TiO2 surfaces was verified by Density Functional Theory (DFT) calculations. Photocatalytic experiments were achieved under UVB irradiation (λ = 310 nm). The response surface methodology (RSM) was used to optimize the CS removal efficiency. The detoxification effect was evaluated by acute toxicity tests with brine shrimp. The theoretical results show that the adsorption of CS is energetically more favorable on the ZnTiO3 surface than on the TiO2 surface. The experimental results show that the system consisting of ZnTiO3/TiO2 (200 mg L−1), H2O2 (0.1%), and UVB light removes 99% of CS from aqueous solutions after 60 min and reduces the mortality of nauplii in 90% after 90 min. This system was reused in five consecutive cycles with a total loss of efficiency of 30%. Full article
Show Figures

Figure 1

19 pages, 6622 KiB  
Article
Photocatalytic Azo Dye Degradation Using Graphite Carbon Nitride Photocatalyst and UV-A Irradiation
by Salma A. Al-Zahrani, Mallikarjunagouda B. Patil, Shridhar N. Mathad, Arun Y. Patil, Ahmed Al Otaibi, Najat Masood, Dorsaf Mansour, Anish Khan, Vikas Gupta, Niraj S. Topare, Amita Somya and Manikandan Ayyar
Crystals 2023, 13(4), 577; https://doi.org/10.3390/cryst13040577 - 28 Mar 2023
Cited by 16 | Viewed by 3200
Abstract
The photocatalytic degradation of Acid Red 26 was examined utilizing a graphitic carbon nitride (g-C3N4) catalyst and a UV-A light in this study. We investigated how successfully the photocatalytic approach removed Acid Red 26 from synthetic and actual municipal [...] Read more.
The photocatalytic degradation of Acid Red 26 was examined utilizing a graphitic carbon nitride (g-C3N4) catalyst and a UV-A light in this study. We investigated how successfully the photocatalytic approach removed Acid Red 26 from synthetic and actual municipal wastewater. Both aqueous matrices allowed for extremely high clearance rates. Wastewater degraded at a slower rate than the other matrices, this might be ascribed to the wastewater’s complicated chemical composition. Using a liquid chromatography-mass spectrometry (LC-MS), the IPs in both synthetic and actual municipal effluent were determined. The photocatalytic degradation mechanisms of Acid Red 26 are hypothesised to comprise oxidation, dealkylation, and methoxy group cleavage based on the observed intermediate products (IPs). Using proven scavengers, we were also able to investigate the role of reactive species in the degradation process and illustrate the significance of h+ and O2 in the reaction. Chlorococcum sp. and Dunaliella tertiolecta microalgae were also utilised to assess the development of ecotoxicity. We observed low toxicity throughout the process when clean water was used as the matrix, with no production of hazardous IPs. In the case of actual municipal wastewater, there was an early rise in toxicity, which scientists believe was caused by the matrix’s chemical make-up. To lower the toxicity, a heterogeneous photocatalysis was used, and at the end of the treatment, nearly full detoxification was obtained. Full article
(This article belongs to the Special Issue Recent Developments of Inorganic Crystalline Materials)
Show Figures

Figure 1

18 pages, 3805 KiB  
Article
Ni2P-Modified P-Doped Graphitic Carbon Nitride Hetero-Nanostructures for Efficient Photocatalytic Aqueous Cr(VI) Reduction
by Evangelos K. Andreou, Eirini D. Koutsouroubi, Ioannis Vamvasakis and Gerasimos S. Armatas
Catalysts 2023, 13(2), 437; https://doi.org/10.3390/catal13020437 - 17 Feb 2023
Cited by 5 | Viewed by 3086
Abstract
Targeting heterostructures with modulated electronic structures and efficient charge carrier separation and mobility is an effective strategy to improve photocatalytic performance. In this study, we report the synthesis of 2D/3D hybrid heterostructures comprising P-doped graphitic carbon nitride (g-C3N4) nanosheets [...] Read more.
Targeting heterostructures with modulated electronic structures and efficient charge carrier separation and mobility is an effective strategy to improve photocatalytic performance. In this study, we report the synthesis of 2D/3D hybrid heterostructures comprising P-doped graphitic carbon nitride (g-C3N4) nanosheets (ca. 50–60 nm in lateral size) and small-sized Ni2P nanoparticles (ca. 10–12 nm in diameter) and demonstrate their prominent activity in the photocatalytic reduction of Cr(VI). Utilizing a combination of spectroscopic and electrochemical characterization techniques, we unveil the reasons behind the distinct photochemical performance of these materials. We show that Ni2P modification and P doping of the g-C3N4 effectively improve the charge-carrier transportation and spatial separation through the interface of Ni2P/P-doped g-C3N4 junctions. As a result, the catalyst containing 15 wt.% Ni2P exhibits superior photocatalytic activity in the detoxification of Cr(VI)-contaminated effluents under UV-visible light illumination, presenting an apparent quantum yield (QY) of 12.5% at 410 nm, notably without the use of sacrificial additives. This study marks a forward step in understanding and fabricating cost-effective photocatalysts for photochemical applications. Full article
(This article belongs to the Special Issue Feature Papers in Environmental Catalysis)
Show Figures

Graphical abstract

15 pages, 2614 KiB  
Article
AOP-Based Transformation of Abacavir in Different Environments: Evolution Profile of Descyclopropyl-Abacavir and In Silico Toxicity Assessment of the Main Transformation Products
by Eleni Evgenidou, Konstantina Vasilopoulou, Lelouda-Athanasia Koronaiou, George Kyzas, Dimitrios Bikiaris and Dimitra Lambropoulou
Molecules 2023, 28(4), 1866; https://doi.org/10.3390/molecules28041866 - 16 Feb 2023
Cited by 7 | Viewed by 2863
Abstract
This study explores the photocatalytic transformation of the antiviral drug abacavir employing different advanced oxidation processes (AOPs) such as UV/TiO2, UV/MOF/H2O2, UV/MOF/S2O82−, UV/Fe2+/H2O2, and UV/Fe2+ [...] Read more.
This study explores the photocatalytic transformation of the antiviral drug abacavir employing different advanced oxidation processes (AOPs) such as UV/TiO2, UV/MOF/H2O2, UV/MOF/S2O82−, UV/Fe2+/H2O2, and UV/Fe2+/S2O82−. All processes appear to be effective in eliminating abacavir within a few minutes, while the evolution profile of the basic transformation product, descyclopropyl-abacavir (TP-247) was also monitored. Moreover, the implementation of the most efficient technologies towards the removal of abacavir in different matrices such as wastewater effluent and leachate was also assessed, revealing that the organic matter present or the inorganic constituents can retard the whole process. Four major transformation products were detected, and their time-evolution profiles were recorded in all studied matrices, revealing that different transformation pathways dominate in each matrix. Finally, the prediction of the toxicity of the major TPs employing ECOSAR software was conducted and showed that only hydroxylation can play a detoxification role in the treated solution. Full article
Show Figures

Figure 1

13 pages, 2129 KiB  
Article
Photocatalytic Degradation of Pharmaceutical Amisulpride Using g-C3N4 Catalyst and UV-A Irradiation
by Maria Antonopoulou, Maria Papadaki, Ilaeira Rapti and Ioannis Konstantinou
Catalysts 2023, 13(2), 226; https://doi.org/10.3390/catal13020226 - 18 Jan 2023
Cited by 18 | Viewed by 2905
Abstract
In the present study, the photocatalytic degradation of amisulpride using g-C3N4 catalyst under UV-A irradiation was investigated. The photocatalytic process was evaluated in terms of its effectiveness to remove amisulpride from ultrapure and real municipal wastewater. High removal percentages were [...] Read more.
In the present study, the photocatalytic degradation of amisulpride using g-C3N4 catalyst under UV-A irradiation was investigated. The photocatalytic process was evaluated in terms of its effectiveness to remove amisulpride from ultrapure and real municipal wastewater. High removal percentages were achieved in both aqueous matrices. However, a slower degradation rate was observed using wastewater as matrix that could be attributed to its complex chemical composition. The transformation products (TPs) were identified with liquid chromatography–mass spectrometry (LC–MS) in both ultrapure and real municipal wastewater. Based on the identified TPs, the photocatalytic degradation pathways of amisulpride are proposed which include mainly oxidation, dealkylation, and cleavage of the methoxy group. Moreover, the contribution of reactive species to the degradation mechanism was studied using well-documented scavengers, and the significant role of h+ and O2•− in the reaction mechanism was proved. The evolution of ecotoxicity was also estimated using microalgae Chlorococcum sp. and Dunaliella tertiolecta. Low toxicity was observed during the overall process without the formation of toxic TPs when ultrapure water was used as matrix. In the case of real municipal wastewater, an increased toxicity was observed at the beginning of the process which is attributed to the composition of the matrix. The application of heterogeneous photocatalysis reduced the toxicity, and almost complete detoxification was achieved at the end of the process. Our results are in accordance with literature data that reported that heterogeneous photocatalysis is effective for the removal of amisulpride from aqueous matrices. Full article
(This article belongs to the Special Issue Catalytic Processes for Water and Wastewater Treatment)
Show Figures

Graphical abstract

26 pages, 6456 KiB  
Review
Spinel-Ferrite-Decorated Graphene-Based Nanocomposites for Enhanced Photocatalytic Detoxification of Organic Dyes in Aqueous Medium: A Review
by Subhasish Mishra, Rashmi Acharya and Kulamani Parida
Water 2023, 15(1), 81; https://doi.org/10.3390/w15010081 - 26 Dec 2022
Cited by 73 | Viewed by 3945
Abstract
The contamination of organic dye molecules in aquatic environments caused by the effluents released from vast industrial establishments has been a matter of serious concern in recent years, owing to their strong non-biodegradable nature and acute toxicity. Semiconductor-mediated visible-light-driven photocatalytic-dye detoxification is considered [...] Read more.
The contamination of organic dye molecules in aquatic environments caused by the effluents released from vast industrial establishments has been a matter of serious concern in recent years, owing to their strong non-biodegradable nature and acute toxicity. Semiconductor-mediated visible-light-driven photocatalytic-dye detoxification is considered as a sustainable technique because it abundantly utilizes the available solar energy and releases environmentally friendly chemicals such as H2O as byproducts. Adequate textural and microstructural properties, an extended visible-light response, pronounced isolation and transfer of photoinduced charge carriers, and facile magnetic-separation characteristics make spinel-ferrite-decorated graphene or its analogues’ (GO/rGO) nanocomposites (MFGNs) a versatile photocatalytic system for the efficacious detoxification of dyes. Therefore, this review article emphasizes their exceptional photodegradation performance in terms of systematic studies of the above-mentioned features, after a brief description of the synthesis protocols. The mechanism of the photodetoxification of dyes over MFGNs is precisely demonstrated in three different sections based on their redox abilities. The kinetics of the MFGN-driven photodecomposition of dyes are then highlighted. We discuss the role of different parameters such as pH, temperature, catalyst dose, and dye concentration in augmented photocatalytic-dye-degradation reactions. Finally, the emerging challenges that act as hurdles in achieving superior photocatalytic-dye-detoxification performance are addressed, along with the conclusion. We then propose some possible future research directions in order to overcome these challenges, for impressively accomplishing the photodegradation of organic dyes. Full article
Show Figures

Figure 1

14 pages, 5115 KiB  
Article
Hydrothermal Synthesis of Cadmium Sulfide Photocatalyst for Detoxification of Azo Dyes and Ofloxacin Antibiotic in Wastewater
by Teeradech Senasu, Nattakarn Ruengchai, Sarawoot Khamdon, Narubeth Lorwanishpaisarn and Suwat Nanan
Molecules 2022, 27(22), 7944; https://doi.org/10.3390/molecules27227944 - 16 Nov 2022
Cited by 14 | Viewed by 2645
Abstract
The complete detoxification of harmful dyes and antibiotics from aqueous solution is essential for environmental remediation. The present work focuses on a facile hydrothermal synthesis of a cadmium sulfide (CdS) photocatalyst using thioacetamide as a sulfur source. The synthesized CdS showed a hexagonal [...] Read more.
The complete detoxification of harmful dyes and antibiotics from aqueous solution is essential for environmental remediation. The present work focuses on a facile hydrothermal synthesis of a cadmium sulfide (CdS) photocatalyst using thioacetamide as a sulfur source. The synthesized CdS showed a hexagonal phase with an energy gap of 2.27 eV, suggesting the promising visible-light-responsive semiconducting photocatalyst. The photoactivity of the prepared CdS was investigated by evaluating the degradation of the Reactive red 141 (RR141) dye, Congo red (CR) dye, and ofloxacin (OFL) antibiotic. After only 180 min of solar light illumination, a high performance of 98%, 97%, and 87% toward degradation of RR141, CR, and OFL was obtained. The photodegradation of the pollutants agrees well with the first-order kinetic model. The rate constant of 0.055 min−1, 0.040 min−1, and 0.026 min−1, respectively, was reported toward degradation of RR141, CR, and OFL. Photogenerated holes and hydroxyl radicals play a vital role in removing toxic organic contaminants. The chemical stability of the prepared CdS was also confirmed. The synthesized CdS photocatalyst still maintains high photocatalytic performance even after five consecutive cycles of use, indicating its excellent cycling ability. The present research shows a facile route to fabricate a CdS photocatalyst to completely detoxify harmful organic pollutants, including dyes and antibiotics, in the environment. Full article
(This article belongs to the Special Issue Visible Light Photocatalysis)
Show Figures

Figure 1

20 pages, 2638 KiB  
Article
Combined Analytical Study on Chemical Transformations and Detoxification of Model Phenolic Pollutants during Various Advanced Oxidation Treatment Processes
by Aleksander Kravos, Andreja Žgajnar Gotvajn, Urška Lavrenčič Štangar, Borislav N. Malinović and Helena Prosen
Molecules 2022, 27(6), 1935; https://doi.org/10.3390/molecules27061935 - 16 Mar 2022
Cited by 8 | Viewed by 2989
Abstract
Advanced oxidation processes (AOPs) have been introduced to deal with different types of water pollution. They cause effective chemical destruction of pollutants, yet leading to a mixture of transformation by-products, rather than complete mineralization. Therefore, the aim of our study was to understand [...] Read more.
Advanced oxidation processes (AOPs) have been introduced to deal with different types of water pollution. They cause effective chemical destruction of pollutants, yet leading to a mixture of transformation by-products, rather than complete mineralization. Therefore, the aim of our study was to understand complex degradation processes induced by different AOPs from chemical and ecotoxicological point of view. Phenol, 2,4-dichlorophenol, and pentachlorophenol were used as model pollutants since they are still common industrial chemicals and thus encountered in the aquatic environment. A comprehensive study of efficiency of several AOPs was undertaken by using instrumental analyses along with ecotoxicological assessment. Four approaches were compared: ozonation, photocatalytic oxidation with immobilized nitrogen-doped TiO2 thin films, the sequence of both, as well as electrooxidation on boron-doped diamond (BDD) and mixed metal oxide (MMO) anodes. The monitored parameters were: removal of target phenols, dechlorination, transformation products, and ecotoxicological impact. Therefore, HPLC–DAD, GC–MS, UHPLC–MS/MS, ion chromatography, and 48 h inhibition tests on Daphnia magna were applied. In addition, pH and total organic carbon (TOC) were measured. Results show that ozonation provides by far the most suitable pattern of degradation accompanied by rapid detoxification. In contrast, photocatalysis was found to be slow and mild, marked by the accumulation of aromatic products. Preozonation reinforces the photocatalytic process. Regarding the electrooxidations, BDD is more effective than MMO, while the degradation pattern and transformation products formed depend on supporting electrolyte. Full article
(This article belongs to the Special Issue Environmental Analytical Chemistry)
Show Figures

Figure 1

17 pages, 3754 KiB  
Article
Desalination and Detoxification of Textile Wastewater by Novel Photocatalytic Electrolysis Membrane Reactor for Ecosafe Hydroponic Farming
by Muhammed Iberia Aydin, Damla Ozaktac, Burak Yuzer, Mustafa Doğu, Hatice Inan, Hatice Eser Okten, Serdar Coskun and Huseyin Selcuk
Membranes 2022, 12(1), 10; https://doi.org/10.3390/membranes12010010 - 23 Dec 2021
Cited by 12 | Viewed by 3491
Abstract
In this study, a novel photoelectrocatalytic membrane (PECM) reactor was tested as an option for the desalination, disinfection, and detoxification of biologically treated textile wastewater (BTTWW), with the aim to reuse it in hydroponic farming. The anionic ion exchange (IEX) process was used [...] Read more.
In this study, a novel photoelectrocatalytic membrane (PECM) reactor was tested as an option for the desalination, disinfection, and detoxification of biologically treated textile wastewater (BTTWW), with the aim to reuse it in hydroponic farming. The anionic ion exchange (IEX) process was used before PECM treatment to remove toxic residual dyes. The toxicity evaluation for every effluent was carried out using the Vibrio fischeri, Microtox® test protocol. The disinfection effect of the PECM reactor was studied against E. coli. After PECM treatment, the 78.7% toxicity level of the BTTWW was reduced to 14.6%. However, photocatalytic desalination during treatment was found to be slow (2.5 mg L−1 min−1 at 1 V potential). The reactor demonstrated approximately 52% COD and 63% TOC removal efficiency. The effects of wastewater reuse on hydroponic production were comparatively investigated by following the growth of the lettuce plant. A detrimental effect was observed on the lettuce plant by the reuse of BTTWW, while no negative impact was reported using the PECM treated textile wastewater. In addition, all macro/micronutrient elements in the PECM treated textile wastewater were recovered by hydroponic farming, and the PECM treatment may be an eco-safe wastewater reuse method for crop irrigation. Full article
Show Figures

Graphical abstract

15 pages, 1755 KiB  
Article
Photocatalytic Detoxification of Some Insecticides in Aqueous Media Using TiO2 Nanocatalyst
by Ahmed Massoud, Aly Derbalah, Ibrahim El-Mehasseb, Moustafa Saad Allah, Mohamed S. Ahmed, Ashraf Albrakati and Ehab Kotb Elmahallawy
Int. J. Environ. Res. Public Health 2021, 18(17), 9278; https://doi.org/10.3390/ijerph18179278 - 2 Sep 2021
Cited by 13 | Viewed by 2635
Abstract
The present study was performed to fabricate a titanium dioxide (TiO2) nanocatalyst with proper characteristics for the removal of some insecticides (dimethoate and methomyl) from aqueous media. A TiO2 catalyst of regular (TiO2—commercial—/H2O2/UV) or [...] Read more.
The present study was performed to fabricate a titanium dioxide (TiO2) nanocatalyst with proper characteristics for the removal of some insecticides (dimethoate and methomyl) from aqueous media. A TiO2 catalyst of regular (TiO2—commercial—/H2O2/UV) or nano (TiO2—synthesized—/H2O2/UV) size was employed as an advanced oxidation process by combining it with H2O2 under light. Moreover, the total detoxification of insecticides after treatment with the most effective system (TiO2(s)/H2O2/UV) was also investigated through exploring the biochemical alterations and histopathological changes in the liver and kidneys of the treated rats. Interestingly, the present study reported that degradation rates of the examined insecticides were faster using the TiO2 catalyst of nano size. Complete degradation of the tested insecticides (100%) was achieved under the TiO2(s)/H2O2/UV system after 320 min of irradiation. The half-life values of the tested insecticides under H2O2/TiO2(c)/UV were 43.86 and 36.28 for dimethoate and methomyl, respectively, whereas under the H2O2/TiO2(c)/UV system, the half-life values were 27.72 and 19.52 min for dimethoate and methomyl, respectively. On the other hand, no significant changes were observed in the biochemical and histopathological parameters of rats administrated with water treated with TiO2(s)/H2O2/UV compared to the control, indicating low toxicity of the TiO2 nanocatalyst-. Altogether, the advanced oxidation processes using TiO2 nanocatalyst can be considered as a promising and effective remediation technology for the complete detoxification of methomyl and dimethoate in water. However, further future research is needed to identify the possible breakdown products and to verify the safety of the used nanomaterials. Full article
(This article belongs to the Special Issue Pesticide Risk Assessment: Human and Environmental)
Show Figures

Figure 1

Back to TopTop