Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = photocatalytic cement-based materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4299 KiB  
Article
Investigation on the Factors Affecting the Exhaust Degradation Performance of Porous Pavement Mixtures with Nano-TiO2 Photocatalysts
by Wenke Yan, Congwei Bi, Chuan Lu, Jikai Fu, Mulian Zheng, Qiang Ding and Jiasheng Liu
Materials 2025, 18(5), 1139; https://doi.org/10.3390/ma18051139 - 3 Mar 2025
Viewed by 783
Abstract
The substantial voids of porous pavement materials permit light and exhaust pollutants to infiltrate to a considerable depth. Consequently, utilizing porous mixtures as carriers for photocatalytic materials enables greater exposure to an environment conducive to the exhaust degradation reaction. This study employed porous [...] Read more.
The substantial voids of porous pavement materials permit light and exhaust pollutants to infiltrate to a considerable depth. Consequently, utilizing porous mixtures as carriers for photocatalytic materials enables greater exposure to an environment conducive to the exhaust degradation reaction. This study employed porous asphalt mixtures and porous cement concrete as carriers for photocatalytic pavements. Various amounts of TiO2 were incorporated as photocatalysts to produce eco-friendly pavement materials with exhaust degradation capability. Based on a self-developed apparatus and methodology, its exhaust degradation performance was evaluated under different preparation conditions and pavement structures. The influences of void ratio, photocatalyst dosage, pavement type, and pavement thickness on the exhaust degradation function were examined. The degradation rates of NO and CO among the four monitored pollutants were observed to follow a three-stage pattern of “slow–fast–steady”, while the degradation rates of NO2 and HC followed a “fast–slow–steady” pattern. Increasing the void ratio and the photocatalyst dosage yielded similar effects on exhaust degradation efficacy, enhancing the degradation rate and reducing the time required to reach equilibrium. The increase in the void ratio of porous asphalt mixtures and porous cement concrete reduced the time required to reach equilibrium by an average of 4.4 and 2.3 min for the four pollutants monitored, respectively. Increasing the dosage of photocatalytic material by 2 kg/m3 increased NO degradation by an average of 1.5% and reduced the time required to reach equilibrium by an average of 0.8 min. The degradation rate of porous cement concrete in the first reaction stage was faster than that of porous asphalt mixtures, and the time required to reach equilibrium state increased by 2 min compared to that of porous asphalt mixture. And the impact of specimen thickness on exhaust degradation performance was minimal. Full article
Show Figures

Figure 1

18 pages, 6905 KiB  
Article
Comparative Evaluation of Photocatalytic Efficiency Measurement Techniques Through Rhodamine B Degradation in TiO2-Based Cementitious Materials
by Fabíula Pereira Lessa, Orlando Lima, Élida Margalho, Behzad Zahabizadeh, Vítor M. C. F. Cunha, Eduardo Pereira, Aires Camões, Manuel F. M. Costa, Iran Rocha Segundo and Joaquim Carneiro
Catalysts 2025, 15(3), 201; https://doi.org/10.3390/catal15030201 - 20 Feb 2025
Cited by 2 | Viewed by 812
Abstract
Self-cleaning cementitious materials, particularly with TiO2-based photocatalytic coatings, offer significant benefits by reducing surface deterioration and maintenance requirements, even in harsh urban environments. Despite the growing interest in self-cleaning cementitious materials, an international standard test method to calculate their efficiency has [...] Read more.
Self-cleaning cementitious materials, particularly with TiO2-based photocatalytic coatings, offer significant benefits by reducing surface deterioration and maintenance requirements, even in harsh urban environments. Despite the growing interest in self-cleaning cementitious materials, an international standard test method to calculate their efficiency has not yet been established for this specific type of substrate. The objective of this study was to evaluate and compare three different techniques for assessing the photocatalytic efficiency (PE) of cementitious materials coated with TiO2: (i) spectrophotometric colorimetry (SPC); (ii) digital image processing-based colorimetry (DIP); and (iii) UV-Vis spectrophotometry (UV-Vis). Rhodamine B (RhB) was used as a model pollutant, and the photocatalytic efficiency was monitored under UV-Vis light. The results showed that each method has distinct advantages and specific challenges. SPC proved to be a practical and efficient approach, similarly to DIP, which was also accessible, providing reliable and accurate measurements. UV-Vis stood out for its precision but required careful application on cement-based substrates due to their unique porosity and adsorption characteristics. These results underscore the complementary potential of these techniques and highlight the importance of developing standardized protocols that integrate their strengths to facilitate the wider adoption of self-cleaning materials. Full article
(This article belongs to the Special Issue TiO2 Photocatalysts: Design, Optimization and Application)
Show Figures

Graphical abstract

14 pages, 6457 KiB  
Article
Synthesis and Characterization of Iron-Doped TiO2 Nanotubes (Fe/TiNTs) with Photocatalytic Activity
by S. Mohd. Yonos Qattali, Jamal Nasir, Christian Pritzel, Torsten Kowald, Yilmaz Sakalli, S. M. Fuad Kabir Moni, Jörn Schmedt auf der Günne, Claudia Wickleder, Reinhard H. F. Trettin and Manuela S. Killian
Constr. Mater. 2024, 4(2), 315-328; https://doi.org/10.3390/constrmater4020017 - 29 Mar 2024
Cited by 5 | Viewed by 2564
Abstract
One of the most significant global challenges for humans is environmental pollution. The technology to control this problem is the utilization of semiconductors as photocatalysts. In the current study, iron-doped titania nanotubes (Fe/TiNTs) with increased photocatalytic effect were synthesized via a modified hydrothermal [...] Read more.
One of the most significant global challenges for humans is environmental pollution. The technology to control this problem is the utilization of semiconductors as photocatalysts. In the current study, iron-doped titania nanotubes (Fe/TiNTs) with increased photocatalytic effect were synthesized via a modified hydrothermal method. The products were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy (TEM), gas adsorption, electron spin resonance (ESR) and UV–Vis diffuse reflectance spectroscopy (DRS). TEM results indicated that Fe/TiNTs have a tubular and uniform structure with an average outer diameter of 23–48 nm and length of 10–15 µm. ESR and DRS revealed that Fe3+ ions were successfully introduced into the TiNT structure by replacing Ti4+ ions. An enhanced light absorption in the range of 400–600 nm additionally indicated successful doping. The band gap was narrowed as iron wt% was increased. The photocatalytic activity was evaluated by the degradation of methyl orange (MO) in the presence of Fe/TiNTs and TiTNs by monitoring the degradation of MO under UV light irradiation. An acceleration on the hydration of Portland cement was observed in the presence of 2.0 wt% Fe/TiNTs. Fe/TiNTs can be used as a nanomaterial in cement-based building materials to provide self-cleaning properties to the surface of concrete even in indoor environments. Full article
Show Figures

Figure 1

22 pages, 7672 KiB  
Article
Photocatalytic Applications of SnO2 and Ag2O-Decorated SnO2 Coatings on Cement Paste
by Danilo da Silva Vendramini, Victoria Gabriela Benatto, Alireza Mohebi Ashtiani and Felipe de Almeida La Porta
Catalysts 2023, 13(12), 1479; https://doi.org/10.3390/catal13121479 - 28 Nov 2023
Cited by 4 | Viewed by 2291
Abstract
Recently, the production of new photocatalytic materials has attracted considerable attention as a promising strategy to mitigate anthropogenic environmental degradation. In this study, cement paste composites (water/cement ratio = 0.5) were prepared using a coating based on nanoparticles of SnO2 (SnO2 [...] Read more.
Recently, the production of new photocatalytic materials has attracted considerable attention as a promising strategy to mitigate anthropogenic environmental degradation. In this study, cement paste composites (water/cement ratio = 0.5) were prepared using a coating based on nanoparticles of SnO2 (SnO2/cement paste) and SnO2 decorated with Ag2O (Ag2O-decorated SnO2/cement paste) for photocatalytic applications. These coatings were prepared in this study by using the hydrothermal method as the strategy. Thus, photocatalyst efficiency was evaluated through the degradation of methylene blue (MB) and methyl red (MR) as cationic and anionic dyes, respectively, and the simultaneous degradation of MB/MR (1:1 v/v) dyes. Moreover, the photocatalytic mechanism was investigated in the presence of scavengers. Notably, an increase in pH in the range of 2–6 resulted in selective degradation of the MB/MR dye mixtures. Overall, the photocatalytic performance of these materials provides a novel platform technology focused on advanced civil engineering applications, which consequently facilitates the mitigation of various environmental problems. Full article
(This article belongs to the Special Issue Theoretical and Experimental Investigation of Catalytic Materials)
Show Figures

Figure 1

13 pages, 5833 KiB  
Article
Synthesis and Evaluation of Properties of an Additive Based on Bismuth Titanates for Cement Systems
by Svetlana V. Samchenko, Irina V. Kozlova, Andrey V. Korshunov, Olga V. Zemskova and Marina O. Dudareva
Materials 2023, 16(18), 6262; https://doi.org/10.3390/ma16186262 - 18 Sep 2023
Cited by 7 | Viewed by 1490
Abstract
The development of modern building materials science involves the process of designing innovative materials that exhibit unique characteristics, such as energy efficiency, environmental friendliness, self-healing ability, and photocatalytic properties. This can be achieved by modifying cement with nano- and fine-dispersed additives that can [...] Read more.
The development of modern building materials science involves the process of designing innovative materials that exhibit unique characteristics, such as energy efficiency, environmental friendliness, self-healing ability, and photocatalytic properties. This can be achieved by modifying cement with nano- and fine-dispersed additives that can give the material new properties. Such additives include a number of compounds based on the TiO2-Bi2O3 system. These compounds have photocatalytic activity in the near-UV and visible range of the spectrum, which can serve to create photocatalytic concretes. Here, the purpose of this scientific study was to synthesize compounds based on the TiO2-Bi2O3 system using two methods in order to identify the most optimal variant for creating a composite material and determine its properties. Within the framework of this article, two methods of obtaining a photocatalytically active additive based on the TiO2-Bi2O3 system are considered: the solid-state and citrate-based methods. The photocatalytic, mechanical and structural properties of composites containing the synthesized additive are investigated. In this study, it was found that for the creation of photocatalytic concretes, it is advisable to use cement compositions with a bismuth titanate content of 3–10 wt.%. of the cement content, regardless of the method of obtaining the additive. However, the most optimal composition is one containing 5 wt.% of the synthesized additive. It is noted that compositions containing 5% by weight of bismuth titanate demonstrate photocatalytic activity and also show an increase in strength on the first day of hardening by 10% for the solid-state method and 16% for the citrate method. Full article
Show Figures

Figure 1

17 pages, 7900 KiB  
Article
Effect of Iron-Doped TiO2 Nanotubes on the Hydration of Tricalcium Silicate
by S. Mohd. Yonos Qattali, Christian Pritzel, Torsten Kowald, S. M. Fuad Kabir Moni, Manuela S. Killian and Reinhard Trettin
Constr. Mater. 2023, 3(2), 259-275; https://doi.org/10.3390/constrmater3020017 - 9 Jun 2023
Cited by 4 | Viewed by 2488
Abstract
Environmental pollution is one of the most serious and global problems for humans. Photocatalysis is a promising technology to control environmental pollution via the utilization of semiconductor materials as a photocatalyst. In this study, iron-doped TiO2 nanotubes (Fe/TiNTs) with an increased photocatalytic [...] Read more.
Environmental pollution is one of the most serious and global problems for humans. Photocatalysis is a promising technology to control environmental pollution via the utilization of semiconductor materials as a photocatalyst. In this study, iron-doped TiO2 nanotubes (Fe/TiNTs) with an increased photocatalytic effect at longer wavelengths compared to undoped TiNTs were used, and the effect on the early hydration and mechanical properties of the main clinker phase tricalcium silicate (C3S) was investigated for the first time. Prior to the incorporation of nanotubes into C3S, it was treated with a supersaturated Ca(OH)2 solution. The addition of 1 and 2 wt.% of Fe/TiNTs into the C3S system significantly accelerated the course of hydration. The degree of hydration for the hydration products after 8 h, 1 d and 7 d have improved. The enhancement of compressive strength after 7 d, 14 d and 28 d were observed compared to normal TiO2 nanotubes (TiNTs). Treating Fe/TiNTs with a supersaturated Ca(OH)2 solution revealed a stronger interaction between Ca2+-ions and nanotubes. Fe/TNTs were synthesized via a modified hydrothermal process. The study shows that Fe/TiNTs can be used as a nanomaterial in cement-based building materials due to their enhanced interaction with the system. Full article
Show Figures

Figure 1

17 pages, 5504 KiB  
Article
Assessing the Rheological, Mechanical, and Photocatalytic Properties of Niobium Oxide-Incorporated White Cement Pastes
by Laura Silvestro, Caroline Maroli, Brenda Koch, Artur Spat Ruviaro, Geannina Lima, Mariane Kempka, Camila Fabiano de Freitas Marin, Daniela Zambelli Mezalira and Philippe Jean Paul Gleize
Materials 2023, 16(11), 4090; https://doi.org/10.3390/ma16114090 - 31 May 2023
Viewed by 1499
Abstract
Niobium oxide (Nb2O5) is a semiconductor that exhibits photocatalytic properties, making it potentially valuable in addressing air pollution, self-cleaning, and self-disinfection in cement-based materials (CBMs). Therefore, this study aimed to evaluate the impact of different Nb2O5 [...] Read more.
Niobium oxide (Nb2O5) is a semiconductor that exhibits photocatalytic properties, making it potentially valuable in addressing air pollution, self-cleaning, and self-disinfection in cement-based materials (CBMs). Therefore, this study aimed to evaluate the impact of different Nb2O5 concentrations on various parameters, including rheological characteristics, hydration kinetics (measured using isothermal calorimetry), compressive strength, and photocatalytic activity, specifically in the degradation of Rhodamine B (RhB) in white Portland cement pastes. The incorporation of Nb2O5 increased the yield stress and viscosity of the pastes by up to 88.9% and 33.5%, respectively, primarily due to the larger specific surface area (SSA) provided by Nb2O5. However, this addition did not significantly affect the hydration kinetics or the compressive strength of the cement pastes after 3 and 28 days. Tests focusing on the degradation of RhB in the cement pastes revealed that the inclusion of 2.0 wt.% of Nb2O5 was insufficient to degrade the dye when exposed to 393 nm UV light. However, an interesting observation was made concerning RhB in the presence of CBMs, as it demonstrated a degradation mechanism that was not dependent on light. This phenomenon was attributed to the production of superoxide anion radicals resulting from the interaction between the alkaline medium and hydrogen peroxide. Full article
Show Figures

Figure 1

11 pages, 3551 KiB  
Article
Evaluation of the Performance and Durability of Self-Cleaning Treatments Based on TiO2 Nanoparticles Applied to Cement-Based Renders and Boards
by Alberto Fregni, Luca Venturi and Elisa Franzoni
Coatings 2023, 13(6), 990; https://doi.org/10.3390/coatings13060990 - 26 May 2023
Cited by 8 | Viewed by 2457
Abstract
Photocatalytic coatings based on TiO2 nanoparticles have been applied to building materials over the past few decades, following encouraging results obtained by many laboratory studies and a few onsite testing campaigns showing their self-cleaning, antimicrobial and depolluting performance. However, these results clearly [...] Read more.
Photocatalytic coatings based on TiO2 nanoparticles have been applied to building materials over the past few decades, following encouraging results obtained by many laboratory studies and a few onsite testing campaigns showing their self-cleaning, antimicrobial and depolluting performance. However, these results clearly point out the need for a deeper understanding of the effectiveness of TiO2-based treatments when applied over different substrates and their durability when exposed to an outdoor environment. The present paper investigates the behavior of a nanodispersion of titania nanoparticles applied to cement-based substrates. Cementitious materials are widely used in building façades, roofs, structures, roads and tunnels; hence, any improvement in their performance and/or the introduction of new and unique functionalities have potentially a very high impact on everyday life. A TiO2 nanodispersion was applied by brushing and spraying on three cement-based substrates (a render, a prefabricated board and a painted prefabricated board), investigating its photocatalytic activity. Then, the samples were subjected to two artificially weathering procedures, involving rain washout and UV light exposure, and the changes in terms of the photocatalytic activity and contact angle were measured. The results suggest that the nature of the substrate plays a key role in the performance of the coating and that weathering has a significant impact too. Full article
(This article belongs to the Special Issue Coatings for Building Applications)
Show Figures

Figure 1

14 pages, 3357 KiB  
Article
Photocatalytic and Antimicrobial Activity of TiO2 Films Deposited on Fiber-Cement Surfaces
by Robson H. Rosa, Ricardo S. Silva, Lucas L. Nascimento, Monica H. Okura, Antonio Otavio T. Patrocinio and João A. Rossignolo
Catalysts 2023, 13(5), 861; https://doi.org/10.3390/catal13050861 - 9 May 2023
Cited by 6 | Viewed by 3083
Abstract
In this study, TiO2 films were deposited via the doctor blade technique on fiber-cement surfaces. Two types of nanoparticles (TiO2-P25 from Degussa and TiO2-PC105 from Tronox) were used to produce films. Scanning electron microscopy (SEM) and atomic force [...] Read more.
In this study, TiO2 films were deposited via the doctor blade technique on fiber-cement surfaces. Two types of nanoparticles (TiO2-P25 from Degussa and TiO2-PC105 from Tronox) were used to produce films. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images revealed films with homogeneous and nanoparticulated morphology. The TiO2 PC105 film presented a lower roughness parameter (RMS) in relation to that of the TiO2 P25-based film. Both films exhibited high hydrophilicity when exposed to UV-A radiation (contact angle θ < 6°). The photocatalytic activity of the films was evaluated by standardized methylene blue dye degradation assays under UV-A irradiation (1.0 mW/cm2). The TiO2-PC105 film showed a photonic efficiency of ξ = 0.1%, while for the films obtained with TiO2-P25, ξ = 0.08%. The cement surface modified with the PC105 film was evaluated for antimicrobial activity through the use of multiple pathogens commonly found in hospitals. A considerably high efficiency was measured with visible light. Growth inhibition rates of 99.0% ± 0.2, 99.1% ± 0.2, 99.1% ± 0.2, 97.5% ± 0.5, 98.0% ± 0.5 and 98.0% ± 0.5 were found for Staphylococcus aureus, Klebsiella sp., Escherichia coli, Rhizobium sp., Fusarium sp. and Penicillium sp., respectively. The results show the self-cleaning ability and their potential use for protection, by preventing contamination of the fiber-cement surface and opening new possibilities for the use of this building material. Full article
(This article belongs to the Special Issue Catalysts and Photocatalysts Based on Mixed Metal Oxides)
Show Figures

Figure 1

16 pages, 4278 KiB  
Article
Photocatalytic Activity and Mechanical Properties of Cement Slurries Containing Titanium Dioxide
by Yasmine Jabali, Joseph Assaad and Georges Aouad
Buildings 2023, 13(4), 1046; https://doi.org/10.3390/buildings13041046 - 17 Apr 2023
Cited by 10 | Viewed by 1937
Abstract
The effect of titanium dioxide (TiO2) on the mechanical properties of cement slurries including their benefits on air purification and abatement of pollutants is not well documented. Cementitious-based slurries are typically applied in thin layers as decorative coatings for existing facades, [...] Read more.
The effect of titanium dioxide (TiO2) on the mechanical properties of cement slurries including their benefits on air purification and abatement of pollutants is not well documented. Cementitious-based slurries are typically applied in thin layers as decorative coatings for existing facades, protection against an ingress of aggressive ions, or rainproof covers to minimize water penetration. Different parameters including the TiO2 concentration, dispersion time during batching, and applied thickness on top of existing mortar blocks are investigated in this paper. Tested properties included the flow, colorimetry, compressive/flexural strengths, bond to existing substrates, water absorption, and photocatalytic activity evaluated using an ISO 22197-1:2007 reactor. The results showed that the mechanical properties remarkably improved with TiO2 additions, up to 8% of the cement mass. This was attributed to two concomitant phenomena including a micro-filler effect that enhances the packing density and nucleation sites to promote strength development. The removal of nitrogen oxides from the atmosphere reached 92% when the TiO2 was added at a rate of 5% of the cement mass. Such data can be of particular interest to consultants and environmental activists searching for innovative materials capable of maintaining better ambient air quality in urban and modern cities. Full article
(This article belongs to the Special Issue Advances in Building Materials and Methods)
Show Figures

Figure 1

12 pages, 2861 KiB  
Article
The Preparation of Photocatalytic Porous Magnesium Oxychloride Cement-Based Materials and Its De-NOx Performance
by Lide Zhu, Liran Yuan, Xingang Xu, Jing Chen and Lu Yang
Catalysts 2023, 13(2), 326; https://doi.org/10.3390/catal13020326 - 1 Feb 2023
Cited by 5 | Viewed by 1816
Abstract
Porous magnesium oxychloride cement (PMOC) has a high specific surface area formed by interlocking whiskers, which can be used as a promising photocatalyst substrate for the photocatalytic removal of atmospheric pollutants. In this paper, magnesium oxychloride cement (MOC) was used as matrix and [...] Read more.
Porous magnesium oxychloride cement (PMOC) has a high specific surface area formed by interlocking whiskers, which can be used as a promising photocatalyst substrate for the photocatalytic removal of atmospheric pollutants. In this paper, magnesium oxychloride cement (MOC) was used as matrix and TiO2 as catalyst to prepare MOC blocks. Plant-based protein was used as a foaming agent to form the layered porous structure suitable for supporting TiO2 particles, which effectively increased the surface area of light radiation and TiO2 adhesion area in photocatalytic porous magnesium oxychloride cement (PPMOC). It was found that the addition of the foaming agent can increase the adsorption capacity of MOC to TiO2. The vacuum-immersion loading method can effectively support TiO2 on the surface of PMOC. The photocatalytic performance of PPMOC can be improved by multiple loading, while higher porosity of PMOC would reduce the loading surface of matrix to TiO2 particles, which might decrease the photocatalytic efficiency. As can be observed in PPMOC specimens, when the porosity of PPMOC is less than 60%, increasing the porosity can improve the photocatalytic efficiency, while when the porosity is higher than 60%, increasing the porosity decreased the photocatalytic efficiency due to the reduction of the loading surface. The excellent nitrate selectivity of PPMOC also shows good application potential in the field of catalytic degradation of nitrogen oxides. Full article
Show Figures

Figure 1

13 pages, 6087 KiB  
Article
Preparation and Properties of g-C3N4-TiO2 Cement-Based Materials Supported by Recycled Concrete Powder
by Teng Yuan and Wu Yao
Catalysts 2023, 13(2), 312; https://doi.org/10.3390/catal13020312 - 31 Jan 2023
Cited by 9 | Viewed by 2050
Abstract
In this paper, recycled concrete powder (RCP) is used as the carrier of g-C3N4-TiO2 instead of natural minerals. The prepared g-C3N4-TiO2/RCP composites were characterized by X-ray diffractometer, scanning electron microscope, infrared spectrometer, [...] Read more.
In this paper, recycled concrete powder (RCP) is used as the carrier of g-C3N4-TiO2 instead of natural minerals. The prepared g-C3N4-TiO2/RCP composites were characterized by X-ray diffractometer, scanning electron microscope, infrared spectrometer, specific surface area analyzer, UV-visible spectrophotometer, and RhB solution degradation experiments. The results show that the rough, porous structure of RCP was beneficial to the stable load of g-C3N4-TiO2. Under the condition that the content of g-C3N4-TiO2 catalyst is constant, the agglomeration of g-C3N4-TiO2 can be reduced by using RCP as a carrier, thus improving its photocatalytic efficiency. Subsequently, g-C3N4-TiO2/RCP was loaded onto the surface of cement-based materials by coating bonding method to study its photocatalytic performance. It is found that the photocatalytic cement-based material has a similar degradation effect on the degradation of surface RhB as g-C3N4-TiO2/RCP in RhB solution. Our work may open up a new field for the recycling of RCP and provide new ideas for the development of photocatalytic cement-based materials. Full article
Show Figures

Figure 1

27 pages, 15036 KiB  
Article
The Influence of Selected Material Variables of Photocatalytic Cementitious Composites on the Self-Cleaning Properties and Air Purification Efficiency from NOx Pollutants
by Maciej Kalinowski, Karol Chilmon, Wioletta Jackiewicz-Rek and Błażej Rakowski
Sustainability 2023, 15(1), 853; https://doi.org/10.3390/su15010853 - 3 Jan 2023
Cited by 16 | Viewed by 2757
Abstract
This work aimed to investigate the influence of selected material variables on the self-cleaning and air purification efficiency in NOx pollutants of cement-based photocatalytic composites. Tests were performed on cement mortars, with seven independent variables considered: the mass ratio between cement and [...] Read more.
This work aimed to investigate the influence of selected material variables on the self-cleaning and air purification efficiency in NOx pollutants of cement-based photocatalytic composites. Tests were performed on cement mortars, with seven independent variables considered: the mass ratio between cement and quartz powder to sand, the water to cement ratio, the total mass amount of photocatalysts (two different types), the mass content of nanoparticulate silica, the percentage of quartz powder replacing part of cement, and the ratio between two sands of fine granulation. Photocatalytic cementitious materials had their self-cleaning properties tested via two methods (spectrophotometry—the degradation of rhodamine B under UVA irradiation, and the change in the contact angle—via a goniometer). Air purification properties were tested in the reaction chamber under UVA and visible light at low irradiance (0.2 W/m2 for UVA, 150 W/m2 for visible). It was found that TiO2 content and the mass ratio between cement and quartz powder to sand were the most influential variables within the selected ranges of variability, with the ratio between sands and quartz content being the least significant variable of the tested properties. Full article
(This article belongs to the Special Issue Air Pollution and Environmental Sustainability)
Show Figures

Figure 1

17 pages, 8627 KiB  
Article
Compatibility and Photocatalytic Capacity of the Novel Core@shell Nanospheres in Cementitious Composites
by Jiankun Xu, Zhengxian Yang, Shanghong Chen, Wencheng Wang and Yong Zhang
Catalysts 2022, 12(12), 1574; https://doi.org/10.3390/catal12121574 - 3 Dec 2022
Cited by 6 | Viewed by 1812
Abstract
In this paper, a novel core@shell nanosphere (TiO2@CoAl-LDH) based on layered double hydroxide (LDH) combined with a nano-TiO2 semiconductor was synthesized and introduced to cementitious materials via spraying technology and a smearing method. The compatibility with a cementitious matrix and [...] Read more.
In this paper, a novel core@shell nanosphere (TiO2@CoAl-LDH) based on layered double hydroxide (LDH) combined with a nano-TiO2 semiconductor was synthesized and introduced to cementitious materials via spraying technology and a smearing method. The compatibility with a cementitious matrix and the effects of TiO2@CoAl-LDH on cement hydration, surface microstructure, and the microscopic mechanical properties of mortar were investigated by AFM, microhardness testing, FESEM, and BET analysis. Meanwhile, the effects of TiO2@CoAl-LDH introduction methods on the photocatalytic performance and durability of the photocatalyst were systematically evaluated by methylene blue (MB) removal ratio and wear testing. The results show that TiO2@CoAl-LDH exhibits enhanced compatibility with cementitious matrices and a higher photocatalytic capacity than individual CoAl-LDH and nano-TiO2. The photocatalytic mortar prepared via spraying technology (CM-C) displays a higher photocatalytic capacity than that prepared via the smearing method (CM-S). Among them, the mortar with two layers of photocatalytic coatings (CM-C2) has the highest MB removal ratio, which reached 95.1% within 120 min of UV-visible light irradiation. While on the other hand, the wear test revealed that the smeared mortar has a higher photocatalytic capacity and better photocatalyst durability than the sprayed mortar. This work is expected to contribute to the development of multifunctional sustainable building materials. Full article
Show Figures

Figure 1

23 pages, 4977 KiB  
Review
A Review on Cement-Based Composites for Removal of Organic/Heavy Metal Contaminants from Water
by Vishvendra Pratap Singh, Rahul Vaish and El Sayed Yousef
Catalysts 2022, 12(11), 1398; https://doi.org/10.3390/catal12111398 - 9 Nov 2022
Cited by 9 | Viewed by 3800
Abstract
Building materials are traditionally known for their mechanical and structural properties. As environmental pollution has risen as a huge global issue, functional building materials with environmental remediation capabilities are the demand for the present time. In this context, cement and concrete with photocatalytic [...] Read more.
Building materials are traditionally known for their mechanical and structural properties. As environmental pollution has risen as a huge global issue, functional building materials with environmental remediation capabilities are the demand for the present time. In this context, cement and concrete with photocatalytic and adsorbent additives were explored for air and water remediation. The usage of functional building materials for self-cleaning and air cleaning is well documented and reviewed in earlier reports. This article gives an overview of the functional building material composites used for water remediation. Numerous different approaches, such as photocatalysis, adsorption, and antimicrobial disinfection, are discussed. Among all, photocatalysis for the degradation of organic compounds and antimicrobial effect has been the most studied method, with TiO2 being the first choice for a photocatalyst. Furthermore, some reports illustrate the impact of photocatalytic filler on hydration and mechanical properties, which is important in case these are used in construction. Adsorption was most preferred for heavy metal removal from the water. This article rationalizes the current status and future scope of cement-based functional composites for water cleaning and discusses their use in water cleaning facilities or regular construction. Full article
Show Figures

Figure 1

Back to TopTop