Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = photoactive peptides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 824 KiB  
Short Note
4-(2-(5-(2-(tert-Butoxycarbonyl)hydrazinecarbonyl)-2-methylthiophen-3-yl)cyclopent-1-enyl)-5-methylthiophene-2-carboxylic Acid
by Marija Matković
Molbank 2024, 2024(1), M1760; https://doi.org/10.3390/M1760 - 11 Jan 2024
Viewed by 2231
Abstract
Diarylethene (DAE) molecular photoswitches draw attention as building units in the preparation of diverse photoactive molecules. An interesting class of these molecules are photoactive peptides. A way to build DAE moiety into peptides/peptidomimetics is via DAE amino acids, an example of which has [...] Read more.
Diarylethene (DAE) molecular photoswitches draw attention as building units in the preparation of diverse photoactive molecules. An interesting class of these molecules are photoactive peptides. A way to build DAE moiety into peptides/peptidomimetics is via DAE amino acids, an example of which has been demonstrated in bioactive cyclic peptides, wherein the DAE Fmoc-amino acid was prepared and used. Herein, the preparation of DAE Boc-amino acid is presented using a modified method of synthesis. This contribution to the DAE amino acid collection could be useful in the further enhancement of diversity in designing different routes to photoactive peptides. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Graphical abstract

30 pages, 11934 KiB  
Review
Azobenzene as Antimicrobial Molecules
by Miriam Di Martino, Lucia Sessa, Martina Di Matteo, Barbara Panunzi, Stefano Piotto and Simona Concilio
Molecules 2022, 27(17), 5643; https://doi.org/10.3390/molecules27175643 - 1 Sep 2022
Cited by 41 | Viewed by 6933
Abstract
Azo molecules, characterized by the presence of a -N=N- double bond, are widely used in various fields due to their sensitivity to external stimuli, ch as light. The emergence of bacterial resistance has pushed research towards designing new antimicrobial molecules that are more [...] Read more.
Azo molecules, characterized by the presence of a -N=N- double bond, are widely used in various fields due to their sensitivity to external stimuli, ch as light. The emergence of bacterial resistance has pushed research towards designing new antimicrobial molecules that are more efficient than those currently in use. Many authors have attempted to exploit the antimicrobial activity of azobenzene and to utilize their photoisomerization for selective control of the bioactivities of antimicrobial molecules, which is necessary for antibacterial therapy. This review will provide a systematic and consequential approach to coupling azobenzene moiety with active antimicrobial molecules and drugs, including small and large organic molecules, such as peptides. A selection of significant cutting-edge articles collected in recent years has been discussed, based on the structural pattern and antimicrobial performance, focusing especially on the photoactivity of azobenzene and the design of smart materials as the most targeted and desirable application. Full article
(This article belongs to the Special Issue Recent Advances in Antimicrobial Materials)
Show Figures

Figure 1

35 pages, 1622 KiB  
Article
An Insight into Advanced Approaches for Photosensitizer Optimization in Endodontics—A Critical Review
by Patrícia Diogo, M. Amparo F. Faustino, M. Graça P. M. S. Neves, Paulo J. Palma, Isabel P. Baptista, Teresa Gonçalves and João Miguel Santos
J. Funct. Biomater. 2019, 10(4), 44; https://doi.org/10.3390/jfb10040044 - 30 Sep 2019
Cited by 38 | Viewed by 10056
Abstract
Apical periodontitis is a biofilm-mediated disease; therefore, an antimicrobial approach is essential to cure or prevent its development. In the quest for efficient strategies to achieve this objective, antimicrobial photodynamic therapy (aPDT) has emerged as an alternative to classical endodontic irrigation solutions and [...] Read more.
Apical periodontitis is a biofilm-mediated disease; therefore, an antimicrobial approach is essential to cure or prevent its development. In the quest for efficient strategies to achieve this objective, antimicrobial photodynamic therapy (aPDT) has emerged as an alternative to classical endodontic irrigation solutions and antibiotics. The aim of the present critical review is to summarize the available evidence on photosensitizers (PSs) which has been confirmed in numerous studies from diverse areas combined with several antimicrobial strategies, as well as emerging options in order to optimize their properties and effects that might be translational and useful in the near future in basic endodontic research. Published data notably support the need for continuing the search for an ideal endodontic photosensitizer, that is, one which acts as an excellent antimicrobial agent without causing toxicity to the human host cells or presenting the risk of tooth discoloration. The current literature on experimental studies mainly relies on assessment of mixed disinfection protocols, combining approaches which are already available with aPDT as an adjunct therapy. In this review, several approaches concerning aPDT efficiency are appraised, such as the use of bacteriophages, biopolymers, drug and light delivery systems, efflux pump inhibitors, negative pressure systems, and peptides. The authors also analyzed their combination with other approaches for aPDT improvement, such as sonodynamic therapy. All of the aforementioned techniques have already been tested, and we highlight the biological challenges of each formulation, predicting that the collected information may encourage the development of other effective photoactive materials, in addition to being useful in endodontic basic research. Moreover, special attention is dedicated to studies on detailed conditions, aPDT features with a focus on PS enhancer strategies, and the respective final antimicrobial outcomes. From all the mentioned approaches, the two which are most widely discussed and which show the most promising outcomes for endodontic purposes are drug delivery systems (with strong development in nanoparticles) and PS solubilizers. Full article
(This article belongs to the Special Issue Endodontic Biomaterials)
Show Figures

Figure 1

12 pages, 2394 KiB  
Review
Small Molecule-Photoactive Yellow Protein Labeling Technology in Live Cell Imaging
by Feng Gao, Tang Gao, Kechao Zhou and Wenbin Zeng
Molecules 2016, 21(9), 1163; https://doi.org/10.3390/molecules21091163 - 31 Aug 2016
Cited by 7 | Viewed by 8755
Abstract
Characterization of the chemical environment, movement, trafficking and interactions of proteins in live cells is essential to understanding their functions. Labeling protein with functional molecules is a widely used approach in protein research to elucidate the protein location and functions both in vitro [...] Read more.
Characterization of the chemical environment, movement, trafficking and interactions of proteins in live cells is essential to understanding their functions. Labeling protein with functional molecules is a widely used approach in protein research to elucidate the protein location and functions both in vitro and in live cells or in vivo. A peptide or a protein tag fused to the protein of interest and provides the opportunities for an attachment of small molecule probes or other fluorophore to image the dynamics of protein localization. Here we reviewed the recent development of no-wash small molecular probes for photoactive yellow protein (PYP-tag), by the means of utilizing a quenching mechanism based on the intramolecular interactions, or an environmental-sensitive fluorophore. Several fluorogenic probes have been developed, with fast labeling kinetics and cell permeability. This technology allows quick live-cell imaging of cell-surface and intracellular proteins without a wash-out procedure. Full article
(This article belongs to the Special Issue Molecular Imaging Probes)
Show Figures

Figure 1

22 pages, 1815 KiB  
Review
Chemical Sensors Based on Cyclodextrin Derivatives
by Tomoki Ogoshi and Akira Harada
Sensors 2008, 8(8), 4961-4982; https://doi.org/10.3390/s8084961 - 25 Aug 2008
Cited by 282 | Viewed by 24043
Abstract
This review focuses on chemical sensors based on cyclodextrin (CD) derivatives. This has been a field of classical interest, and is now of current interest for numerous scientists. First, typical chemical sensors using chromophore appended CDs are mentioned. Various “turn-off” and “turn-on” fluorescent [...] Read more.
This review focuses on chemical sensors based on cyclodextrin (CD) derivatives. This has been a field of classical interest, and is now of current interest for numerous scientists. First, typical chemical sensors using chromophore appended CDs are mentioned. Various “turn-off” and “turn-on” fluorescent chemical sensors, in which fluorescence intensity was decreased or increased by complexation with guest molecules, respectively, were synthesized. Dye modified CDs and photoactive metal ion-ligand complex appended CDs, metallocyclodextrins, were also applied for chemical sensors. Furthermore, recent novel approaches to chemical sensing systems using supramolecular structures such as CD dimers, trimers and cooperative binding systems of CDs with the other macrocycle [2]rotaxane and supramolecular polymers consisting of CD units are mentioned. New chemical sensors using hybrids of CDs with p-conjugated polymers, peptides, DNA, nanocarbons and nanoparticles are also described in this review. Full article
(This article belongs to the Special Issue Molecular Recognition and Sensors, Including Molecular Imprinting)
Show Figures

Back to TopTop