Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (438)

Search Parameters:
Keywords = photo simulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9887 KB  
Article
Bridging the Seismic Vulnerability Data Gap Through UAV and 360° Imagery: The Case of Nejapa, El Salvador
by Yolanda Torres, Jorge M. Gaspar-Escribano, Joaquín Martín, Sandra Martínez-Cuevas and Alejandra Staller
Appl. Sci. 2025, 15(21), 11350; https://doi.org/10.3390/app152111350 - 23 Oct 2025
Viewed by 61
Abstract
In Latin America, high seismic activity drives countries to develop disaster risk reduction policies based on seismic risk studies. This work demonstrates the feasibility of creating a seismic exposure and vulnerability database using remotely sensed data. In Nejapa, El Salvador, a drone flight [...] Read more.
In Latin America, high seismic activity drives countries to develop disaster risk reduction policies based on seismic risk studies. This work demonstrates the feasibility of creating a seismic exposure and vulnerability database using remotely sensed data. In Nejapa, El Salvador, a drone flight and 360° photo capture were conducted to generate a 3D model of the city. Buildings were identified, characterised, and assigned a vulnerability model. This database was used to estimate seismic risk for a simulated Mw 6.7 earthquake on the Guaycume fault near the city. Results show that 71% of buildings would suffer complete damage and 68% of the population would be homeless, with losses exceeding USD 15 million. Findings were shared with relevant institutions in El Salvador through a dashboard. The country is currently collecting the same type of data used in the present study to update its cadastre and census. This is an opportunity to replicate this pilot experience in many other cities across the country and to provide open data access, positioning El Salvador at the forefront of civil protection in the Latin American region. Full article
Show Figures

Figure 1

18 pages, 654 KB  
Article
Trustworthy Face Recognition as a Service: A Multi-Layered Approach for Mitigating Spoofing and Ensuring System Integrity
by Mostafa Kira, Zeyad Alajamy, Ahmed Soliman, Yusuf Mesbah and Manuel Mazzara
Future Internet 2025, 17(10), 450; https://doi.org/10.3390/fi17100450 - 30 Sep 2025
Viewed by 473
Abstract
Facial recognition systems are increasingly used for authentication across domains such as finance, e-commerce, and public services, but their growing adoption raises significant concerns about spoofing attacks enabled by printed photos, replayed videos, or AI-generated deepfakes. To address this gap, we introduce a [...] Read more.
Facial recognition systems are increasingly used for authentication across domains such as finance, e-commerce, and public services, but their growing adoption raises significant concerns about spoofing attacks enabled by printed photos, replayed videos, or AI-generated deepfakes. To address this gap, we introduce a multi-layered Face Recognition-as-a-Service (FRaaS) platform that integrates passive liveness detection with active challenge–response mechanisms, thereby defending against both low-effort and sophisticated presentation attacks. The platform is designed as a scalable cloud-based solution, complemented by an open-source SDK for seamless third-party integration, and guided by ethical AI principles of fairness, transparency, and privacy. A comprehensive evaluation validates the system’s logic and implementation: (i) Frontend audits using Lighthouse consistently scored above 96% in performance, accessibility, and best practices; (ii) SDK testing achieved over 91% code coverage with reliable OAuth flow and error resilience; (iii) Passive liveness layer employed the DeepPixBiS model, which achieves an Average Classification Error Rate (ACER) of 0.4 on the OULU–NPU benchmark, outperforming prior state-of-the-art methods; and (iv) Load simulations confirmed high throughput (276 req/s), low latency (95th percentile at 1.51 ms), and zero error rates. Together, these results demonstrate that the proposed platform is robust, scalable, and trustworthy for security-critical applications. Full article
Show Figures

Figure 1

21 pages, 1987 KB  
Review
Data-Driven Perovskite Design via High-Throughput Simulation and Machine Learning
by Yidi Wang, Dan Sun, Bei Zhao, Tianyu Zhu, Chengcheng Liu, Zixuan Xu, Tianhang Zhou and Chunming Xu
Processes 2025, 13(10), 3049; https://doi.org/10.3390/pr13103049 - 24 Sep 2025
Viewed by 784
Abstract
Perovskites (ABX3) exhibit remarkable potential in optoelectronic conversion, catalysis, and diverse energy-related fields. However, the tunability of A, B, and X-site compositions renders conventional screening methods labor-intensive and inefficient. This review systematically synthesizes the roles of physical simulations and machine learning [...] Read more.
Perovskites (ABX3) exhibit remarkable potential in optoelectronic conversion, catalysis, and diverse energy-related fields. However, the tunability of A, B, and X-site compositions renders conventional screening methods labor-intensive and inefficient. This review systematically synthesizes the roles of physical simulations and machine learning (ML) in accelerating perovskite discovery. By harnessing existing experimental datasets and high-throughput computational results, ML models elucidate structure-property relationships and predict performance metrics for solar cells, (photo)electrocatalysts, oxygen carriers, and energy-storage materials, with experimental validation confirming their predictive reliability. While data scarcity and heterogeneity inherently limit ML-based prediction of material property, integrating high-throughput computational methods as external mechanistic constraints—supplementing standardized, large-scale training data and imposing loss penalties—can improve accuracy and efficiency in bandgap prediction and defect engineering. Moreover, although embedding high-throughput simulations into ML architectures remains nascent, physics-embedded approaches (e.g., symmetry-aware networks) show increasing promise for enhancing physical consistency. This dual-driven paradigm, integrating data and physics, provides a versatile framework for perovskite design, achieving both high predictive accuracy and interpretability—key milestones toward a rational design strategy for functional materials discovery. Full article
Show Figures

Figure 1

18 pages, 2289 KB  
Article
GaN/InN HEMT-Based UV Photodetector on SiC with Hexagonal Boron Nitride Passivation
by Mustafa Kilin and Firat Yasar
Photonics 2025, 12(10), 950; https://doi.org/10.3390/photonics12100950 - 24 Sep 2025
Cited by 1 | Viewed by 450
Abstract
This work presents a novel Gallium Nitride (GaN) high-electron-mobility transistor (HEMT)-based ultraviolet (UV) photodetector architecture that integrates advanced material and structural design strategies to enhance detection performance and stability under room-temperature operation. This study is conducted as a fully numerical simulation using the [...] Read more.
This work presents a novel Gallium Nitride (GaN) high-electron-mobility transistor (HEMT)-based ultraviolet (UV) photodetector architecture that integrates advanced material and structural design strategies to enhance detection performance and stability under room-temperature operation. This study is conducted as a fully numerical simulation using the Silvaco Atlas platform, providing detailed electrothermal and optoelectronic analysis of the proposed device. The device is constructed on a high-thermal-conductivity silicon carbide (SiC) substrate and incorporates an n-GaN buffer, an indium nitride (InN) channel layer for improved electron mobility and two-dimensional electron gas (2DEG) confinement, and a dual-passivation scheme combining silicon nitride (SiN) and hexagonal boron nitride (h-BN). A p-GaN layer is embedded between the passivation interfaces to deplete the 2DEG in dark conditions. In the device architecture, the metal contacts consist of a 2 nm Nickel (Ni) adhesion layer followed by Gold (Au), employed as source and drain electrodes, while a recessed gate embedded within the substrate ensures improved electric field control and effective noise suppression. Numerical simulations demonstrate that the integration of a hexagonal boron nitride (h-BN) interlayer within the dual passivation stack effectively suppresses the gate leakage current from the typical literature values of the order of 108 A to approximately 1010 A, highlighting its critical role in enhancing interfacial insulation. In addition, consistent with previous reports, the use of a SiC substrate offers significantly improved thermal management over sapphire, enabling more stable operation under UV illumination. The device demonstrates strong photoresponse under 360 nm ultraviolet (UV) illumination, a high photo-to-dark current ratio (PDCR) found at approximately 106, and tunable performance via structural optimization of p-GaN width between 0.40 μm and 1.60 μm, doping concentration from 5×1016 cm3 to 5×1018 cm3, and embedding depth between 0.060 μm and 0.068 μm. The results underscore the proposed structure’s notable effectiveness in passivation quality, suppression of gate leakage, and thermal management, collectively establishing it as a robust and reliable platform for next-generation UV photodetectors operating under harsh environmental conditions. Full article
Show Figures

Figure 1

25 pages, 27717 KB  
Article
MCS-Sim: A Photo-Realistic Simulator for Multi-Camera UAV Visual Perception Research
by Qiming Qi, Guoyan Wang, Yonglei Pan, Hongqi Fan and Biao Li
Drones 2025, 9(9), 656; https://doi.org/10.3390/drones9090656 - 18 Sep 2025
Viewed by 924
Abstract
Multi-camera systems (MCSs) are pivotal in aviation surveillance and autonomous navigation due to their wide coverage and high-resolution sensing. However, challenges such as complex setup, time-consuming data acquisition, and costly testing hinder research progress. To address these, we introduce MCS-Sim, a photo-realistic [...] Read more.
Multi-camera systems (MCSs) are pivotal in aviation surveillance and autonomous navigation due to their wide coverage and high-resolution sensing. However, challenges such as complex setup, time-consuming data acquisition, and costly testing hinder research progress. To address these, we introduce MCS-Sim, a photo-realistic MCSsimulator for UAV visual perception research. MCS-Sim integrates vision sensor configurations, vehicle dynamics, and dynamic scenes, enabling rapid virtual prototyping and multi-task dataset generation. It supports dense flow estimation, 3D reconstruction, visual simultaneous localization and mapping, object detection, and tracking. With a hardware-in-loop interface, MCS-Sim facilitates closed-loop simulation for system validation. Experiments demonstrate its effectiveness in synthetic dataset generation, visual perception algorithm testing, and closed-loop simulation. Here we show that MCS-Sim significantly advances multi-camera UAV visual perception research, offering a versatile platform for future innovations. Full article
Show Figures

Figure 1

15 pages, 4071 KB  
Article
Electrostatic MEMS Phase Shifter for SiN Photonic Integrated Circuits
by Seyedfakhreddin Nabavi, Michaël Ménard and Frederic Nabki
J. Sens. Actuator Netw. 2025, 14(5), 88; https://doi.org/10.3390/jsan14050088 - 29 Aug 2025
Viewed by 3708
Abstract
Optical phase modulation is essential for a wide range of silicon photonic integrated circuits used in communication applications. In this study, an optical phase shifter utilizing photo-elastic effects is proposed, where mechanical stress is induced by electrostatic micro-electro-mechanical systems (MEMS) with actuators arranged [...] Read more.
Optical phase modulation is essential for a wide range of silicon photonic integrated circuits used in communication applications. In this study, an optical phase shifter utilizing photo-elastic effects is proposed, where mechanical stress is induced by electrostatic micro-electro-mechanical systems (MEMS) with actuators arranged in a comb drive configuration. The design incorporates suspended serpentine silicon nitride (SiN) optical waveguides. Through extensive numerical simulations, it is shown that the change in the effective refractive index (neff) of the optical waveguide is a function of the voltage applied to the electrostatic actuators and that such neff tuning can be achieved for a broad range of wavelengths. Implemented within one arm of an unbalanced Mach–Zehnder interferometer (MZI), the phase shifter achieves a phase change of π when the stressed optical path measures 4.7 mm, and the actuators are supplied with 80 V DC and consume almost no power. This results in a half-wave voltage-length product (VπL) of 37.6 V·cm. Comparative analysis with contemporary optical phase shifters highlights the proposed design’s superior power efficiency, compact footprint, and simplified fabrication process, making it a highly efficient component for reconfigurable MEMS-based silicon nitride photonic integrated circuits. Full article
Show Figures

Figure 1

39 pages, 6883 KB  
Article
SYNTHUA-DT: A Methodological Framework for Synthetic Dataset Generation and Automatic Annotation from Digital Twins in Urban Accessibility Applications
by Santiago Felipe Luna Romero, Mauren Abreu de Souza and Luis Serpa Andrade
Technologies 2025, 13(8), 359; https://doi.org/10.3390/technologies13080359 - 14 Aug 2025
Viewed by 714
Abstract
Urban scene understanding for inclusive smart cities remains challenged by the scarcity of training data capturing people with mobility impairments. We propose SYNTHUA-DT, a novel methodological framework that integrates unmanned aerial vehicle (UAV) photogrammetry, 3D digital twin modeling, and high-fidelity simulation in Unreal [...] Read more.
Urban scene understanding for inclusive smart cities remains challenged by the scarcity of training data capturing people with mobility impairments. We propose SYNTHUA-DT, a novel methodological framework that integrates unmanned aerial vehicle (UAV) photogrammetry, 3D digital twin modeling, and high-fidelity simulation in Unreal Engine to generate annotated synthetic datasets for urban accessibility applications. This framework produces photo-realistic images with automatic pixel-perfect segmentation labels, dramatically reducing the need for manual annotation. Focusing on the detection of individuals using mobility aids (e.g., wheelchairs) in complex urban environments, SYNTHUA-DT is designed as a generalized, replicable pipeline adaptable to different cities and scenarios. The novelty lies in combining real-city digital twins with procedurally placed virtual agents, enabling diverse viewpoints and scenarios that are impractical to capture in real life. The computational efficiency and scale of this synthetic data generation offer significant advantages over conventional datasets (such as Cityscapes or KITTI), which are limited in accessibility-related content and costly to annotate. A case study using a digital twin of Curitiba, Brazil, validates the framework’s real-world applicability: 22,412 labeled images were synthesized to train and evaluate vision models for mobility aids user detection. The results demonstrate improved recognition performance and robustness, highlighting SYNTHUA-DT’s potential to advance urban accessibility by providing abundant, bias-mitigating training data. This work paves the way for inclusive computer vision systems in smart cities through a rigorously engineered synthetic data pipeline. Full article
Show Figures

Figure 1

24 pages, 8010 KB  
Article
Mono-(Ni, Au) and Bimetallic (Ni-Au) Nanoparticles-Loaded ZnAlO Mixed Oxides as Sunlight-Driven Photocatalysts for Environmental Remediation
by Monica Pavel, Liubovi Cretu, Catalin Negrila, Daniela C. Culita, Anca Vasile, Razvan State, Ioan Balint and Florica Papa
Molecules 2025, 30(15), 3249; https://doi.org/10.3390/molecules30153249 - 2 Aug 2025
Viewed by 659
Abstract
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was [...] Read more.
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was obtained via the thermal decomposition of its corresponding layered double hydroxide (LDH) precursors. X-ray diffraction (XRD) patterns confirmed the successful fabrication of the nanocomposites, including the synthesis of the metallic NPs, the formation of LDH-like structure, and the subsequent transformation to ZnO phase upon LDH calcination. The obtained nanostructures confirmed the nanoplate-like morphology inherited from the original LDH precursors, which tended to aggregate after the addition of gold NPs. According to the UV-Vis spectroscopy, loading NPs onto the ZnAlO support enhanced the light absorption and reduced the band gap energy. ATR-DRIFT spectroscopy, H2-TPR measurements, and XPS analysis provided information about the functional groups, surface composition, and reducibility of the materials. The catalytic performance of the developed nanostructures was evaluated by the photodegradation of bisphenol A (BPA), under simulated solar irradiation. The conversion of BPA over the bimetallic Ni-Au@ZnAlO reached up to 95% after 180 min of irradiation, exceeding the monometallic Ni@ZnAlO and Au@ZnAlO catalysts. Its enhanced activity was correlated with good dispersion of the bimetals, narrower band gap, and efficient charge carrier separation of the photo-induced e/h+ pairs. Full article
Show Figures

Graphical abstract

17 pages, 7820 KB  
Article
Visible Light Activation of Anatase TiO2 Achieved by beta-Carotene Sensitization on Earth’s Surface
by Xiao Ge, Hongrui Ding, Tong Liu, Yifei Du and Anhuai Lu
Catalysts 2025, 15(8), 739; https://doi.org/10.3390/catal15080739 - 1 Aug 2025
Viewed by 652
Abstract
Photocatalytic redox processes significantly contribute to shaping Earth’s surface environment. Semiconductor minerals exhibiting favorable photocatalytic properties are ubiquitous on rock and soil surfaces. However, the sunlight-responsive characteristics and functions of TiO2, an excellent photocatalytic material, within natural systems remain incompletely understood, [...] Read more.
Photocatalytic redox processes significantly contribute to shaping Earth’s surface environment. Semiconductor minerals exhibiting favorable photocatalytic properties are ubiquitous on rock and soil surfaces. However, the sunlight-responsive characteristics and functions of TiO2, an excellent photocatalytic material, within natural systems remain incompletely understood, largely due to its wide bandgap limiting solar radiation absorption. This study analyzed surface coating samples, determining their elemental composition, distribution, and mineralogy. The analysis revealed enrichment of anatase TiO2 and β-carotene. Informed by these observations, laboratory simulations were designed to investigate the synergistic effect of β-carotene on the sunlight-responsive behavior of anatase. Results demonstrate that β-carotene-sensitized anatase exhibited a 64.4% to 66.1% increase in photocurrent compared to pure anatase. β-carotene sensitization significantly enhanced anatase’s electrochemical activity, promoting rapid electron transfer. Furthermore, it improved interfacial properties and acted as a photosensitizer, boosting photo-response characteristics. The sensitized anatase displayed a distinct absorption peak within the 425–550 nm range, with visible light absorption increasing by approximately 17.75%. This study elucidates the synergistic mechanism enhancing the sunlight response between anatase and β-carotene in natural systems and its broader environmental implications, providing new insights for research on photocatalytic redox processes within Earth’s critical zone. Full article
(This article belongs to the Special Issue Advancements in Photocatalysis for Environmental Applications)
Show Figures

Graphical abstract

14 pages, 2022 KB  
Article
Photo-Biocatalytic One-Pot Cascade Reaction for the Asymmetric Synthesis of Hydroxysulfone Compounds
by Xuebin Qiao, Qianqian Pei, Yihang Dai, Lei Wang and Zhi Wang
Catalysts 2025, 15(8), 733; https://doi.org/10.3390/catal15080733 - 1 Aug 2025
Viewed by 748
Abstract
Asymmetric synthesis of chiral hydroxysulfones, key pharmaceutical intermediates, is challenging. We report an efficient synthesis from readily available materials via a one-pot photo-biocatalytic cascade reaction in aqueous conditions, utilizing visible light as an energy source. This sustainable process achieves up to 84% yields [...] Read more.
Asymmetric synthesis of chiral hydroxysulfones, key pharmaceutical intermediates, is challenging. We report an efficient synthesis from readily available materials via a one-pot photo-biocatalytic cascade reaction in aqueous conditions, utilizing visible light as an energy source. This sustainable process achieves up to 84% yields and 99% ee. Engineered ketoreductase produces R-configured products with high conversion and enantioselectivity across diverse substrates. Molecular dynamics (MD) simulations explored enzyme–substrate interactions and their influence on reaction activity and stereoselectivity. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

18 pages, 4624 KB  
Article
Andrographis paniculata Extract Supports Skin Homeostasis by Enhancing Epidermal Stem Cell Function and Reinforcing Their Extracellular Niche
by Roberta Lotti, Laetitia Cattuzzato, Xuefeng Huang, David Garandeau, Elisabetta Palazzo, Marika Quadri, Cécile Delluc, Eddy Magdeleine, Xiaojing Li, Mathilde Frechet and Alessandra Marconi
Cells 2025, 14(15), 1176; https://doi.org/10.3390/cells14151176 - 30 Jul 2025
Viewed by 1434
Abstract
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human [...] Read more.
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human skin. Using human skin explants and cell culture models, we demonstrated that APE treatment enhances DEJ composition by increasing Collagen IV and Laminin production while decreasing MMP-9 expression, without altering epidermal structure or differentiation. In the same model, APE preserved stemness potential by upregulating markers related to niche components (collagen XVII and β1-integrin), proliferation (Ki-67 and KRT15), and stem cell capacity (Survivin and LRIG1). In vitro studies revealed that APE selectively stimulated KSC proliferation without affecting transit amplifying cells and promoted Collagen IV and Laminin secretion, particularly in KSCs. Furthermore, in a co-culture model simulating a compromised DEJ (UVB-induced), APE increased Laminin production in KSCs, suggesting a protective effect against photo-damage. These findings indicate that APE enhances DEJ composition and preserves stem cell potential, highlighting its promise as a candidate for skin anti-aging strategies targeting stem cell maintenance and extracellular matrix stability to promote skin regeneration and repair. Full article
Show Figures

Graphical abstract

21 pages, 2152 KB  
Article
Effect of 2000-Hour Ultraviolet Irradiation on Surface Degradation of Glass and Basalt Fiber-Reinforced Laminates
by Irina G. Lukachevskaia, Aisen Kychkin, Anatoly K. Kychkin, Elena D. Vasileva and Aital E. Markov
Polymers 2025, 17(14), 1980; https://doi.org/10.3390/polym17141980 - 18 Jul 2025
Cited by 2 | Viewed by 1042
Abstract
This study focuses on the influence of prolonged ultraviolet (UV) irradiation on the mechanical properties and surface microstructure of glass fiber-reinforced plastics (GFRPs) and basalt fiber-reinforced plastics (BFRPs), which are widely used in construction and transport infrastructure. The relevance of the research lies [...] Read more.
This study focuses on the influence of prolonged ultraviolet (UV) irradiation on the mechanical properties and surface microstructure of glass fiber-reinforced plastics (GFRPs) and basalt fiber-reinforced plastics (BFRPs), which are widely used in construction and transport infrastructure. The relevance of the research lies in the need to improve the reliability of composite materials under extended exposure to harsh climatic conditions. Experimental tests were conducted in a laboratory UV chamber over 2000 h, simulating accelerated weathering. Mechanical properties were evaluated using three-point bending, while surface conditions were assessed via profilometry and microscopy. It was shown that GFRPs exhibit a significant reduction in flexural strength—down to 59–64% of their original value—accompanied by increased surface roughness and microdefect depth. The degradation mechanism of GFRPs is attributed to the photochemical breakdown of the polymer matrix, involving free radical generation, bond scission, and oxidative processes. To verify these mechanisms, FTIR spectroscopy was employed, which enabled the identification of structural changes in the polymer phase and the detection of mass loss associated with matrix decomposition. In contrast, BFRP retained up to 95% of their initial strength, demonstrating high resistance to UV-induced aging. This is attributed to the shielding effect of basalt fibers and their ability to retain moisture in microcavities, which slows the progress of photo-destructive processes. Comparison with results from natural exposure tests under extreme climatic conditions (Yakutsk) confirmed the reliability of the accelerated aging model used in the laboratory. Full article
Show Figures

Figure 1

15 pages, 2303 KB  
Article
Octacalcium Phosphate/Calcium Citrate/Methacrylated Gelatin Composites: Optimization of Photo-Crosslinking Conditions and Osteogenic Potential Evaluation
by Yuejun Wang, Taishi Yokoi, Masaya Shimabukuro and Masakazu Kawashita
Int. J. Mol. Sci. 2025, 26(14), 6889; https://doi.org/10.3390/ijms26146889 - 17 Jul 2025
Viewed by 654
Abstract
Bone grafting is essential for the regeneration of bone defects where natural healing is inadequate. Octacalcium phosphate (OCP)/calcium citrate (CC)/pig gelatin (pig Gel) composites promote hydroxyapatite (HAp) formation in simulated body fluid (SBF); however, the rapid degradation of pig Gel leads to their [...] Read more.
Bone grafting is essential for the regeneration of bone defects where natural healing is inadequate. Octacalcium phosphate (OCP)/calcium citrate (CC)/pig gelatin (pig Gel) composites promote hydroxyapatite (HAp) formation in simulated body fluid (SBF); however, the rapid degradation of pig Gel leads to their degradation in SBF within 7 d. To address this, we developed a 35% OCP/35% CC/30% methacrylated gelatin (GelMA) composite by leveraging the tuneable photo-crosslinking ability of GelMA to enhance the initial structural stability in SBF. However, the optimal synthetic photo-crosslinking conditions and the apatite-forming abilities of the OCP/CC/GelMA composite require investigation. In this study, we employed photo-crosslinking to synthesize homogeneous OCP/CC/GelMA composites with initial structural stability in SBF and evaluated their HAp-forming ability in SBF as an indicator of osteogenic potential, in comparison with the OCP/CC/pig Gel composites. Both GelMA- and pig Gel-based composites were prepared and immersed in SBF for 7 d to assess HAp formation. Although the OCP/CC/GelMA composite showed reduced HAp nucleation compared to the OCP/CC/pig Gel composites, it exhibited enhanced initial structural stability in SBF while retaining its HAp-forming ability. These findings highlight the OCP/CC/GelMA composite as a stable and promising scaffold for bone regeneration, laying the groundwork for further research. Full article
Show Figures

Figure 1

20 pages, 2909 KB  
Article
Solar Photo-Fenton: An Effective Method for MCPA Degradation
by Alicia Martin-Montero, Argyro Maria Zapanti, Gema Pliego, Jose A. Casas and Alicia L. Garcia-Costa
Processes 2025, 13(7), 2257; https://doi.org/10.3390/pr13072257 - 15 Jul 2025
Viewed by 680
Abstract
The extensive use of herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA), coupled with its limited biodegradability, has led to its ubiquitous presence in aquatic environments. This work investigates the removal of MCPA (100 mg/L) in the aqueous phase via solar photo-Fenton. The process was carried out [...] Read more.
The extensive use of herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA), coupled with its limited biodegradability, has led to its ubiquitous presence in aquatic environments. This work investigates the removal of MCPA (100 mg/L) in the aqueous phase via solar photo-Fenton. The process was carried out in a 700 mL reactor using a Xe lamp that simulates solar radiation (λ: 250–700 nm). A parametric study was conducted to assess the influence of dissolved O2 on the reaction medium, Fe2+ dosage, H2O2 concentration and pH0. The results indicate that dissolved O2 boosts pollutant mineralization, even working at sub-stoichiometric H2O2 concentrations. Under optimal reaction conditions ([Fe2+]: 7.5 mg/L, [H2O2]0: 322 mg/L (stoichiometric dose), pH0: 3.5), the MCPA reached almost complete mineralization (XTOC: 98.40%) in 180 min. Phytotoxicity and ecotoxicity assessments of treated effluents revealed that even working at sub-stoichiometric H2O2 dosages, toxicity decreases with the solar photo-Fenton treatment. Finally, the solar photo-Fenton process was evaluated in relevant matrices (river water and WWTP secondary effluent) and a realistic pollutant concentration (100 µg/L). In all cases, the pollutant degradation was ≥70% in 60 min, demonstrating the potential of this technology as a tertiary treatment. Full article
(This article belongs to the Special Issue Recent Advances in Wastewater Treatment and Water Reuse)
Show Figures

Graphical abstract

25 pages, 5828 KB  
Article
Study on Performance and Aging Mechanism of Rubber-Modified Asphalt Under Variable-Intensity UV Aging
by Qian Liu, Fujin Hou, Dongdong Ge, Songtao Lv and Zihao Ju
Materials 2025, 18(13), 3186; https://doi.org/10.3390/ma18133186 - 5 Jul 2025
Cited by 1 | Viewed by 737
Abstract
Prolonged ultraviolet (UV) exposure accelerates aging and degradation, while conventional constant-intensity UV simulations do not reflect the variable nature of outdoor radiation. Aging duration and film thickness are both key factors affecting Rubber-Modified Asphalt (RMA), but how their combination influences RMA remains unclear. [...] Read more.
Prolonged ultraviolet (UV) exposure accelerates aging and degradation, while conventional constant-intensity UV simulations do not reflect the variable nature of outdoor radiation. Aging duration and film thickness are both key factors affecting Rubber-Modified Asphalt (RMA), but how their combination influences RMA remains unclear. To address this limitation, this research employed accelerated aging experiments under variable-intensity UV radiation to investigate the performance and aging mechanism of RMA across different aging durations and asphalt film thicknesses. Rheological properties were analyzed through rheological tests, and the UV aging mechanisms of RMA were revealed using FTIR and SEM. The results revealed that crumb rubber improved RMA’s UV aging resistance, including high-temperature performance, fatigue life, and low-temperature cracking resistance. Aging effects were more influenced in RMA with thinner films under prolonged UV exposure. After nine cycles of ultraviolet aging, the rutting resistance, elastic recovery, fatigue life, and low-temperature cracking resistance of RMA with a 1 mm film thickness were 1.33, 1.11, 0.54, and 0.67 times, respectively, those of RMA with a 2 mm film thickness subjected to three UV aging cycles. RMA demonstrated comparable high-temperature performance and elastic recovery under UV aging conditions corresponding to a 1.5 mm film thickness aged for three cycles and a 2.0 mm film thickness aged for six cycles, as well as a 1.0 mm film thickness aged for six cycles and a 1.5 mm film thickness aged for nine cycles. FTIR showed that the increased activity of C=C and C-H under photo-oxidative aging caused a greater impact on the carbonyl groups than the sulfoxide groups. Under high-intensity UV radiation, RMA with thinner films exhibited greater rubber powder detachment, increased surface oxidation, and a substantial widening of cracks. The rubber powder absorbed UV radiation, enhancing the stability of RMA. The maximum crack width of the 1 mm NA was twice that of RMA. These provided insight into the microstructural pattern of cracking resistance degradation caused by aging. This research provides theoretical support for the optimization of the anti-aging performance of RMA. Full article
Show Figures

Figure 1

Back to TopTop