Bridging the Seismic Vulnerability Data Gap Through UAV and 360° Imagery: The Case of Nejapa, El Salvador
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Seismic Risk Analysis
2.1.1. Seismic Action
2.1.2. Exposure and Vulnerability
2.1.3. Damage and Losses
2.2. Study Area and Data
2.3. In-Field Data Collection
- Panoramic camera: The Ricoh Theta V 14 Mpx camera was used, costing around USD 500. A total of 500 photographs were taken in 3 h, covering all the streets in the study area (Figure 3B). The software provided by the camera allowed for creating continuous imaging. By photo-interpreting these ground perspective images, it was possible to obtain the attributes related to the materials of the structure and the exterior walls, as well as the number of floors of each building.
- UAV flight (Figure 3): a DJI MAVIC pro drone was used, at a cost of approximately USD 1500. We used the Ground Station pro application to set a flight over the area at an altitude of 100 m in 11 passes, with 90% longitudinal and 60% transverse overlap between passes. Two flight sessions of about 2 h each were conducted, according to the battery lifespan. We created the orthophoto and the digital surface model of the study area with Metashape Version 1.7 software. Both were used to derive the footprints (contours) of the buildings and the construction material of the roofs.
3. Results and Analysis
3.1. Ground Motion Estimation
3.2. Exposure and Seismic Vulnerability Evaluation
3.3. Earthquake Damage and Loss Assessment
3.4. Dissemination of Results
4. Discussion and Main Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EM-DAT. 2023. Available online: https://reliefweb.int/attachments/305f0dbc-ee04-4631-a518-0238240c41aa/2023_EMDAT_report.pdf (accessed on 25 May 2024).
- Torres, Y.; Arranz, J.J.; Gaspar-Escribano, J.M.; Haghi, A.; Martínez-Cuevas, S.; Benito, B.; Ojeda, J.C. Integration of LiDAR and multispectral images for rapid exposure and earthquake vulnerability estimation. Application in Lorca, Spain. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 161–175. [Google Scholar] [CrossRef]
- Silva, V.; Crowley, H.; Varum, H.; Pinho, R. Seismic risk assessment for mainland Portugal. Bull. Earthq. Eng. 2015, 13, 429–457. [Google Scholar] [CrossRef]
- Riedel, I.; Gueguen, P.; Dunand, F.; Cottaz, S. Macroscale VulnerabilityAssessment of Cities Using Association Rule Learning. Seismol. Res. Lett. 2014, 85, 295–305. [Google Scholar] [CrossRef]
- Riedel, I.; Gueguen, P.; Mura, M.D.; Pathier, E.; Leduc, T.; Chanussot, J. Seismic Vulnerability Assessment of Urban environments in Moderate-To-Low Seismic Hazard Regions Using Association Rule learning and Support Vector Machine Methods. Nat. Hazards 2015, 76, 1111–1141. [Google Scholar] [CrossRef]
- Chaulagain, H.; Rodrigues, H.; Silva, V.; Spacone, E.; Varum, H. Seismic risk assessment and hazard mapping in Nepal. Nat. Hazards 2015, 78, 583–602. [Google Scholar] [CrossRef]
- Raduszynski, T.; Numada, M. Measure and spatial identification of social vulnerability, exposure and risk to natural hazards in Japan using open data. Sci. Rep. 2023, 13, 664. [Google Scholar] [CrossRef]
- Murnane, R.J.; Allegri, G.; Bushi, A.; Dabbeek, J.; de Moel, H.; Duncan, M.; Fraser, S.; Galasso, C.; Giovando, C.; Henshaw, P.; et al. Data schemas for multiple hazards, exposure and vulnerability. Disaster Prev. Manag. 2019, 28, 752–763. [Google Scholar] [CrossRef]
- Silva, V.; Brzev, S.; Scawthorn, C.; Yepes, C.; Dabbeek, J.; Crowley, H. Building Classification System for Multi-hazard Risk Assessment. Int. J. Disaster Risk Sci. 2022, 13, 161–177. [Google Scholar] [CrossRef]
- Menteşe, E.Y.; Cremen, G.; Gentile, R.; Galasso, C.; Filippi, E.M.; McCloskey, J. Future exposure modelling for risk-informed decision making in urban planning. Int. J. Disaster Risk Reduct. 2023, 90, 103651. [Google Scholar] [CrossRef]
- Yepes-Estrada, C.; Calderon, A.; Costa, C.; Crowley, H.; Dabbeek, J.; Hoyos, M.C.; Martins, L.; Paul, N.; Rao, A.; Silva, V. Global building exposure model for earthquake risk assessment. Earthq. Spectra 2023, 39, 2212–2235. [Google Scholar] [CrossRef]
- Scaini, C.; Tamaro, A.; Adilkhan, B.; Sarzhanov, S.; Ismailov, V.; Umaraliev, R.; Safarov, M.; Belikov, V.; Karayev, J.; Faga, E. A new regionally consistent exposure database for Central Asia: Population and residential buildings. Nat. Hazards Earth Syst. Sci. 2024, 24, 929–945. [Google Scholar] [CrossRef]
- Mateos Ruiz, R.M.; Arcedo y Cabrilla, F.; Vílchez Mata, M.; Dutra dos Santos, T.; Ribeiro, R.; Mansini, M.; Días, R.; Machado, S.; Carranco, F.; León, J.; et al. Geological hazards in Ibero-America. The role of the Ibero-American geological and mining services (ASGMI). Geol. Min. Bull. 2021, 131, 695–708. [Google Scholar] [CrossRef]
- Kanbara, S.; Shaw, R. Disaster risk reduction regime in Japan: An analysis in the perspective of open data, open governance. Sustainability 2021, 14, 19. [Google Scholar] [CrossRef]
- Grigoratos, I.; Monteiro, R.; Ceresa, P.; Di Meo, A.; Faravelli, M.; Borzi, B. Crowdsourcing Exposure Data for Seismic Vulnerability Assessment in Developing Countries. J. Earthq. Eng. 2021, 25, 835–852. [Google Scholar] [CrossRef]
- Cadag, J.R.D.; Gaillard, J.C. Integrating knowledge and actions in disaster risk reduction: The contribution of participatory mapping. Area 2012, 44, 100–109. [Google Scholar] [CrossRef]
- Sousa, L.; Silva, V.; Bazzurro, P. Using open-access data in the development of exposure data sets of industrial buildings for earthquake risk modeling. Earthq. Spectra 2017, 33, 63–84. [Google Scholar] [CrossRef]
- Geiss, C.; Schauss, A.; Riedlinger, T.; Dech, S.; Zelaya, C.; Nicolas-Guzman, M.A.H.; Arsanjani, J.J.; Taubenböck, H. Joint Use of Remote Sensing Data and Volunteered Geographic Information for Exposure Estimation: Evidence from Valparaíso, Chile. Nat. Hazards 2017, 86, 81–105. [Google Scholar] [CrossRef]
- Gómez Zapata, J.C.; Zafrir, R.; Pittore, M.; Merino, Y. Towards a sensitivity analysis in seismic risk with probabilistic building exposure models: An application in Valparaiso, Chile using ancillary open-source data and parametric ground motions. ISPRS Int. J. Geo-Inf. 2022, 11, 113. [Google Scholar] [CrossRef]
- Albulescu, A.C. Open Source Data-Based Solutions for Identifying Patterns of Urban Earthquake Systemic Vulnerability in High-Seismicity Areas. Remote Sens. 2023, 15, 1453. [Google Scholar] [CrossRef]
- Nievas, C.I.; Pilz, M.; Prehn, K.; Schorlemmer, D.; Weatherill, G.; Cotton, F. Calculating earthquake damage building by building: The case of the city of Cologne, Germany. Bull. Earthq. Eng. 2022, 20, 1519–1565. [Google Scholar] [CrossRef]
- Kechidi, S.; Castro, J.M.; Monteiro, R.; Marques, M.; Yelles, K.; Bourahla, N.; Hamdache, M. Development of exposure datasets for earthquake damage and risk modelling: The case study of northern Algeria. Bull. Earthq. Eng. 2021, 19, 5253–5283. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Nie, G.; Cheng, H.; Yang, X.; Chen, X.; Gross, L. Building extraction and floor area estimation at the village level in rural China via a comprehensive method integrating UAV photogrammetry and the novel EDSANet. Remote Sens. 2022, 14, 5175. [Google Scholar] [CrossRef]
- Boonpook, W.; Tan, Y.; Xu, B. Deep learning-based multi-feature semantic segmentation in building extraction from images of UAV photogrammetry. Int. J. Remote Sens. 2020, 42, 1–19. [Google Scholar] [CrossRef]
- Shukla, A.; Jain, K. Automatic extraction of urban land information from unmanned aerial vehicle (UAV) data. Earth Sci. Inform. 2020, 13, 1225–1236. [Google Scholar] [CrossRef]
- Portela, J.; Staller, A.; Béjar-Pizarro, M.; Hamling, I.J.; Hernández, D. Tectonic deformation in El Salvador from combined InSAR and GNSS data. Tectonophysics 2024, 882, 230364. [Google Scholar] [CrossRef]
- Alonso-Henar, J.; Benito, B.; Staller, A.; Álvarez-Gómez, J.A.; Martínez-Díaz, J.J.; Canora, C. Large-magnitude crustal seismic sources in El Salvador and deterministic hazard scenarios. Eng. Geol. 2018, 243, 70–83. [Google Scholar] [CrossRef]
- Martinez-Diaz, J.J.; Álvarez-Gómez, J.A.; Staller, A.; Alonso-Henar, J.; Canora, C.; Insua-Arevalo, J.M.; Tsige, M.; Villamor, P.; Herrero-Barbero, P.; Hernández-Moreno, C.; et al. Active faults of El Salvador. J. S. Am. Earth Sci. 2021, 105, 103038. [Google Scholar] [CrossRef]
- El Salvador Maps Web Viewer. Available online: https://mapa.elsalvadormaps.sv/cnr/map/4 (accessed on 18 October 2025).
- Open-ended Intergovernmental Expert Working Group (OIEWG). Report of the Open-Ended Intergovernmental Expert Working Group on Indicators and Terminology Relating to Disaster Risk Reduction; United Nations General Assembly: New York, NY, USA, 2016; A/71/644; 41p, Available online: https://www.preventionweb.net/files/50683_oiewgreportenglish.pdf (accessed on 31 August 2025).
- Gaspar-Escribano, J.M.; Navarro, M.; Benito, B.; García-Jerez, A.; Vidal, F. From regional-to local-scale seismic hazard assessment: Examples from Southern Spain. Bull. Earthq. Eng. 2010, 8, 1547–1567. [Google Scholar] [CrossRef]
- Cornell, C.A. Engineering seismic risk analysis. Bull. Seismol. Soc. Am. 1968, 58, 1583–1606. [Google Scholar] [CrossRef]
- Bazzurro, P.; Cornell, C.A. Disaggregation of Seismic Hazard. Bull. Seismol. Soc. Am. 1999, 89, 501–520. [Google Scholar] [CrossRef]
- Lagomarsino, S.; Giovinazzi, S. Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull. Earthq. Eng. 2006, 4, 415–443. [Google Scholar] [CrossRef]
- Freeman, S.A. Development and use of capacity spectrum method. In Proceedings of the 6th U.S. National Conference on Earthquake Engineering, Seattle, WA, USA, 31 May–4 June 1998. [Google Scholar]
- FEMA-440. Improvement of Nonlinear Static Seismic Analysis Procedures; FEMA 440, Federal Emergency Management Agency: Washington, DC, USA, 2005. [Google Scholar]
- Poland, C.D.; Mitchell, A.D. A New Seismic Rehabilitation Standard-ASCE/SEI 41-06. In New Horizons and Better Practices; American Society of Civil Engineers: Reston, VA, USA, 2007; pp. 1–2. [Google Scholar]
- Vacareanu, R.; Lungu, D.; Aldea, A.; Arion, C. Risk-UE: An advanced approach to earthquake risk scenarios with applications to different European towns. In WP7 Report: Seismic Risk Scenarios Handbook; SAMCO Association: Cambridge, UK, 2004; 55p. [Google Scholar]
- Torres, Y.; Martínez-Cuevas, S.; Molina-Palacios, S.; Arranz, J.J.; Arredondo, Á. Using remote sensing for exposure and seismic vulnerability evaluation: Is it reliable? GIScience Remote Sens. 2023, 60, 2196162. [Google Scholar] [CrossRef]
- Benito, B.; Lindholm, C.; Camacho, E.; Climent, Á.; Marroquín, G.; Molina, E.; Rojas, W.; Escobar, J.J.; Talavera, E.; Alvarado, G.E.; et al. A New Evaluation of Seismic Hazard for the Central America Region. Bull. Seismol. Soc. Am. 2012, 102, 504–523. [Google Scholar] [CrossRef]
- Kalapodis, N.A.; Muho, E.V.; Beskos, D.E. Structure-specific, multi-modal and multi-level scalar intensity measures for steel plane frames. Soil Dyn. Earthq. Eng. 2025, 190, 109185. [Google Scholar] [CrossRef]
- Muho, E.V.; Kalapodis, N.A.; Beskos, D.E. Multi-modal and multi-level structure-specific spectral intensity measures for seismic evaluation of reinforced concrete frames. Bull. Earthq. Eng. 2024, 22, 6955–6989. [Google Scholar] [CrossRef]
- Staller, A.; Martínez-Díaz, J.J.; Benito, B.; Alonso-Henar, J.; Hernández, D.; Hernández-Rey, R.; Díaz, M. Present-day crustal deformation along the el Salvador fault zone from ZFESNet GPS network. Tectonophysics 2016, 670, 66–81. [Google Scholar] [CrossRef]
- Akkar, S.; Sandıkkaya, M.A.; Bommer, J.J. Empirical ground-motion models for point-and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull. Earthq. Eng. 2014, 12, 359–387. [Google Scholar] [CrossRef]
- Mixco Durán, L.E. Evaluación Probabilística de Amenaza Sísmica de El Salvador; Dirección General del Observatorio Ambiental, Ministerio de Medio Ambiente y Recursos Naturales: Santo Domingo, Dominican Republic, 2020; 142p, Available online: https://www.snet.gob.sv/informacion/areas/sismologia/Documentos/Descargas/Plan_de_accion/Evaluacion_probabilistica_de_amenaza_sismica_de_El_Salvador_2020.pdf (accessed on 14 October 2025).
- Mixco Durán, L.E. Generación de Mapa de Velocidades Promedio a 30 Metros de Profundidad (Vs30) de El Salvador; Dirección General del Observatorio Ambiental, Ministerio de Medio Ambiente y Recursos Naturales: Santo Domingo, Dominican Republic, 2020; 127p, Available online: https://www.snet.gob.sv/informacion/areas/sismologia/Documentos/Descargas/Plan_de_accion/Generacion_de_mapa_de_velocidades_promedio_a_30_metros_de_profundidad_(Vs30)_de_El%20Salvador_2021.pdf (accessed on 14 October 2025).
- Vapnik, V. The Nature of Statistical Learning Theory, 2nd ed.; Springer: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Fawcett, T. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Wieland, M.; Pittore, M.; Parolai, S.; Zschau, J. Exposure Estimation from Multi-Resolution Optical Satellite Imagery for Seismic Risk Assessment. Isprs Int. J. Geo-Inf. 2012, 1, 69–88. [Google Scholar] [CrossRef]
- Guiwu, S.; Wenhua, Q.; Zhang, S.; Sim, T.; Liu, X.; Sun, R.; Sun, L.; Jin, Y. An Integrated Method Combining Remote Sensing Data and Local Knowledge for the Large-Scale Estimation of Seismic Loss Risks to Buildings in the Context of Rapid Socioeconomic Growth: A Case Study in Tangshan, China. Remote Sens. 2015, 7, 2543–2601. [Google Scholar] [CrossRef]
- Dashboard URL. Available online: https://mitgis.maps.arcgis.com/apps/dashboards/260351a333834a36981bf5a1521ed4df (accessed on 17 October 2025).
- White, R.; Ligorria, J.; Cifuentes, I. Seismic history of the Middle America subduction zone along El Salvador, Guatemala, and Chiapas, Mexico: 1526–2000, in natural hazards in El Salvador. In Geological Society of America Special Papers; Rose, W.I., Bommer, J.J.L., Lopez, D., Carr, M.J., Major, J.J., Eds.; The Geological Society of America: Boulder, CO, USA, 2004; Volume 375, pp. 379–396. [Google Scholar]
- Baquedano, P.; Eudave, R.R.; Miranda, F.N.; Graus, S.; Ferreira, T.M. Traditional earth construction in Latin America: A review on the construction systems and reinforcement strategies. In Masonry Construction in Active Seismic Regions; Rupakhety, R., Gautam, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 99–121. [Google Scholar] [CrossRef]
- FEMA. Reducing the Risks of Nonstructural Earthquake Damage—A Practical Guide; Federal Emergency Management Agency: Washington, DC, USA, 2012; FEMA E-74. [Google Scholar]










| Fault Parameters | |
|---|---|
| Length (km) | 25.3 |
| Depth (km) | 12.7 |
| Max. Magnitude | 7.0 |
| Strike (°) | 108 |
| Dip (°) | 80 |
| Rake (°) | 180 |
| Paleoseismic Slip Rate (mm/yr) | 5.3 |
| Geodetic Slip Rate (mm/yr) | 8.0 |
| Earthquake Scenario Rupture Data | |
| Hypocentre Latitude (° N) | 13.87 |
| Hypocentre Longitude (° W) | 89.28 |
| Hypocentre Depth (km) | 10 |
| Nr. Samples | ||
|---|---|---|
| Class | Training | Testing |
| Grey Asbestos | 16 pol. (1,029,905 pix.) | 16 |
| Red Asbestos | 12 pol. (522,707 pix.) | |
| Metal | 14 pol. (611,631 pix.) | 16 |
| Clay Tile | 32 pol. (2,956,151 pix.) | 24 |
| Vegetation | 20 pol. (2,418,297 pix.) | 12 |
| Total | 94 pol. (7,538,691 pix.) | 68 |
| Predicted | ||||||
|---|---|---|---|---|---|---|
| Vegetation | Asbestos | Clay Tile | Metal | total | ||
| Real Class | Vegetation | 10 | 0 | 2 | 0 | 12 |
| Asbestos | 1 | 13 | 2 | 0 | 16 | |
| Clay Tile | 0 | 3 | 17 | 4 | 24 | |
| Metal | 0 | 0 | 1 | 15 | 16 | |
| TOTAL | 11 | 16 | 22 | 19 | 68 | |
| Average accuracy measures | ||||||
| Overall Accuracy | Recall | Precision | F1-Score | Kappa | ||
| 80.9% | 80.9% | 81.0% | 80.7% | 0.74 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, Y.; Gaspar-Escribano, J.M.; Martín, J.; Martínez-Cuevas, S.; Staller, A. Bridging the Seismic Vulnerability Data Gap Through UAV and 360° Imagery: The Case of Nejapa, El Salvador. Appl. Sci. 2025, 15, 11350. https://doi.org/10.3390/app152111350
Torres Y, Gaspar-Escribano JM, Martín J, Martínez-Cuevas S, Staller A. Bridging the Seismic Vulnerability Data Gap Through UAV and 360° Imagery: The Case of Nejapa, El Salvador. Applied Sciences. 2025; 15(21):11350. https://doi.org/10.3390/app152111350
Chicago/Turabian StyleTorres, Yolanda, Jorge M. Gaspar-Escribano, Joaquín Martín, Sandra Martínez-Cuevas, and Alejandra Staller. 2025. "Bridging the Seismic Vulnerability Data Gap Through UAV and 360° Imagery: The Case of Nejapa, El Salvador" Applied Sciences 15, no. 21: 11350. https://doi.org/10.3390/app152111350
APA StyleTorres, Y., Gaspar-Escribano, J. M., Martín, J., Martínez-Cuevas, S., & Staller, A. (2025). Bridging the Seismic Vulnerability Data Gap Through UAV and 360° Imagery: The Case of Nejapa, El Salvador. Applied Sciences, 15(21), 11350. https://doi.org/10.3390/app152111350

