Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,515)

Search Parameters:
Keywords = phononics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6562 KB  
Article
Optimal CeO2 Doping for Synergistically Enhanced Mechanical, Tribological, and Thermal Properties in Zirconia Ceramics
by Feifan Chen, Yongkang Liu, Zhenye Tang, Xianwen Zeng, Yuwei Ye and Hao Chen
Materials 2026, 19(2), 362; https://doi.org/10.3390/ma19020362 - 16 Jan 2026
Abstract
CeO2 doping is a well-established strategy for enhancing the properties of zirconia (ZrO2) ceramics, with the prior literature indicating an optimal doping range of around 10–15 wt.% for specific attributes. Building upon this foundation, this study provides a systematic investigation [...] Read more.
CeO2 doping is a well-established strategy for enhancing the properties of zirconia (ZrO2) ceramics, with the prior literature indicating an optimal doping range of around 10–15 wt.% for specific attributes. Building upon this foundation, this study provides a systematic investigation into the concurrent evolution of mechanical, tribological, and thermophysical properties across a broad compositional spectrum (0–20 wt.% CeO2). The primary novelty lies in the holistic correlation of these often separately examined properties, revealing their interdependent trade-offs governed by microstructural development. The 15Ce-ZrO2 composition, consistent with the established optimal range, achieved a synergistic balance: hardness increased by 27.6% to 310 HV1, the friction coefficient was minimized to 0.205, and the wear rate was reduced to 1.81 × 10−3 mm3/(N m). Thermally, it exhibited a 72.2% reduction in the thermal expansion coefficient magnitude at 1200 °C and a low thermal conductivity of 0.612 W/(m·K). The enhancement mechanisms are consistent with solid solution strengthening, grain refinement, and likely enhanced phonon scattering, potentially from point defects such as oxygen vacancies commonly associated with aliovalent doping in oxide ceramics, while performance degradation beyond 15 wt.% is linked to CeO2 agglomeration and duplex microstructure formation. This work provides a relatively comprehensive insight into the dataset and mechanism, which is conducive to the fine design of multifunctional ZrO2 bulk ceramics. It is not limited to determining the optimal doping level, but also aims to clarify the comprehensive performance map, providing reference significance for the development of advanced ceramic materials with synergistically optimized hardness, wear resistance, and thermal properties. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

13 pages, 1760 KB  
Article
Optical Bistability in a Quantum Dot–Metallic Nanoshell–Cell Membrane Hybrid System: Applications for High-Performance Biosensing
by Xiao Ma, Hongmei Gong, Yuxiang Peng, Linwen Long and Jianbo Li
Coatings 2026, 16(1), 109; https://doi.org/10.3390/coatings16010109 - 14 Jan 2026
Viewed by 82
Abstract
We investigate optical bistability (OB) in a hybrid system comprising a semiconductor quantum dot (SQD), a metallic nanoshell (MNS), and a cell membrane within the framework of the multipole approximation. Bistability phase diagrams plotted in the system’s parameter subspaces demonstrate that, in the [...] Read more.
We investigate optical bistability (OB) in a hybrid system comprising a semiconductor quantum dot (SQD), a metallic nanoshell (MNS), and a cell membrane within the framework of the multipole approximation. Bistability phase diagrams plotted in the system’s parameter subspaces demonstrate that, in the weak exciton–phonon coupling regime, dynamic switching of bistable states among no-channel, single-channel, and dual-channel configurations can be achieved via precise modulation of the MNS’s dielectric shell thickness. Especially, a critical sensing threshold is identified: the absorption peak disappears and a bistable effect emerges when only 1.82% of normal cells undergo malignant transformation. Furthermore, the bistable region exhibits a gradual broadening trend with an increasing proportion of cancerous cells, yielding a quantitative and ultra-sensitive readout that underpins a highly accurate strategy for early cancer diagnosis. These findings not only deepen our fundamental understanding of bistability regulation in hybrid quantum-plasmonic systems interfaced with biological materials but also offer valuable insights for the development of next-generation optical switches and biomedical sensing platforms. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

21 pages, 1259 KB  
Review
Transition Metal-Doped ZnO and ZrO2 Nanocrystals: Correlations Between Structure, Magnetism, and Vibrational Properties—A Review
by Izabela Kuryliszyn-Kudelska and Witold Daniel Dobrowolski
Appl. Sci. 2026, 16(2), 786; https://doi.org/10.3390/app16020786 - 12 Jan 2026
Viewed by 81
Abstract
Transition metal (TM)-doped zinc oxide (ZnO) and zirconium dioxide (ZrO2) nanocrystals exhibit complex correlations between crystal structure, defect chemistry, vibrational properties, and magnetic behavior that are strongly governed by synthesis route and dopant incorporation mechanisms. This review critically summarizes recent progress [...] Read more.
Transition metal (TM)-doped zinc oxide (ZnO) and zirconium dioxide (ZrO2) nanocrystals exhibit complex correlations between crystal structure, defect chemistry, vibrational properties, and magnetic behavior that are strongly governed by synthesis route and dopant incorporation mechanisms. This review critically summarizes recent progress on Fe-, Mn-, and Co-doped ZnO and ZrO2 nanocrystals synthesized by wet chemical, hydrothermal, and microwave-assisted hydrothermal methods, with emphasis on synthesis-driven phase evolution and apparent solubility limits. ZnO and ZrO2 are treated as complementary host lattices: ZnO is a semiconducting, piezoelectric oxide with narrow solubility limits for most 3d dopants, while ZrO2 is a dielectric, polymorphic oxide in which transition metal doping may stabilize tetragonal or cubic phases. Structural and microstructural studies using X-ray diffraction, electron microscopy, Raman spectroscopy, and Mössbauer spectroscopy demonstrate that at low dopant concentrations, TM ions may be partially incorporated into the host lattice, giving rise to diluted or defect-mediated magnetic behavior. When solubility limits are exceeded, nanoscopic secondary oxide phases emerge, leading to superparamagnetic, ferrimagnetic, or spin-glass-like responses. Magnetic measurements, including DC magnetization and AC susceptibility, reveal a continuous evolution from paramagnetism in lightly doped samples to dynamic magnetic states characteristic of nanoscale magnetic entities. Vibrational spectroscopy highlights phonon confinement, surface optical phonons, and disorder-activated modes that sensitively reflect nanocrystal size, lattice strain, and defect populations, and often correlate with magnetic dynamics. Rather than classifying these materials as diluted magnetic semiconductors, this review adopts a synthesis-driven and correlation-based framework that links dopant incorporation, local structural disorder, vibrational fingerprints, and magnetic response. By emphasizing multi-technique characterization strategies required to distinguish intrinsic from extrinsic magnetic contributions, this review provides practical guidelines for interpreting magnetism in TM-doped oxide nanocrystals and outlines implications for applications in photocatalysis, sensing, biomedicine, and electromagnetic interference (EMI) shielding. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

12 pages, 3004 KB  
Article
Revealing the Thermophysical Behavior of Fluorite-Type High-Entropy Ceramics for Advanced Thermal Barrier Coating Applications
by Tingting Huang, Wei Fan, Run Zou, Xiaobin Zhong and Tiexiong Su
Coatings 2026, 16(1), 79; https://doi.org/10.3390/coatings16010079 - 9 Jan 2026
Viewed by 139
Abstract
Taking advantage of the ionic size and mass disorder as component design criteria, three novel high-entropy rare-earth zirconate ceramics, including (Sm0.2Gd0.2Dy0.2Er0.2Tm0.2)2Zr2O7, (Gd0.2Dy0.2Ho0.2 [...] Read more.
Taking advantage of the ionic size and mass disorder as component design criteria, three novel high-entropy rare-earth zirconate ceramics, including (Sm0.2Gd0.2Dy0.2Er0.2Tm0.2)2Zr2O7, (Gd0.2Dy0.2Ho0.2Er0.2Tm0.2)2Zr2O7 and (Gd0.2Dy0.2Ho0.2Er0.2Yb0.2)2Zr2O7, with single-phase fluorite structure were successfully synthesized. All compositions exhibited enhanced mechanical properties, with Vickers hardness and fracture toughness increasing as the grain size decreased. (Gd0.2Dy0.2Ho0.2Er0.2Yb0.2)2Zr2O7 demonstrated superior mechanical performance, achieving values of 11.41 ± 0.40 GPa and 1.78 ± 0.12 MPa·m1/2, respectively. The thermal expansion coefficients at 1000 °C ranged from 10.80 × 10−6 K−1 to 11.39 × 10−6 K−1, which is proportional to the average ionic bond length. Notably, (Sm0.2Gd0.2Dy0.2Er0.2Tm0.2)2Zr2O7 exhibited low room-temperature thermal conductivity (1.58 W·m−1·K−1) due to pronounced size and mass disorder, without compromising structural stiffness. These findings highlight the potential of high-entropy design for advanced thermal barrier coatings. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

12 pages, 4404 KB  
Article
Comprehensive Analysis of Temperature-Dependent Photoluminescence in Silica-Encapsulated CsPbBr3 and CsPbI3 Perovskite Nanocrystals
by Ming Mei, Minju Kim, Sang Hyuk Park, Ga Eul Choi, Songyi Lee, Robert A. Taylor, Wei Chen, Suck Won Hong and Kwangseuk Kyhm
Nanomaterials 2026, 16(1), 76; https://doi.org/10.3390/nano16010076 - 5 Jan 2026
Viewed by 321
Abstract
The temperature-dependent photoluminescence of CsPbBr3/SiO2 and CsPbI3/SiO2 nanocrystals was investigated to understand the thermal stability of SiO2 encapsulation. At increased temperature, intensity quenching, linewidth broadening, energy level shift, and decay dynamics were evaluated as quantified parameters. [...] Read more.
The temperature-dependent photoluminescence of CsPbBr3/SiO2 and CsPbI3/SiO2 nanocrystals was investigated to understand the thermal stability of SiO2 encapsulation. At increased temperature, intensity quenching, linewidth broadening, energy level shift, and decay dynamics were evaluated as quantified parameters. Comprehensive analysis of these parameters supports that CsPbI3/SiO2 nanocrystals show a stronger interaction with phonons compared with CsPbBr3/SiO2 nanocrystals. Despite SiO2 encapsulation, we conclude that trapping states are still present and the degree of localization can be characterized in terms of short-lived decay time and thermal activation energy. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

42 pages, 6169 KB  
Review
SnSe: A Versatile Material for Thermoelectric and Optoelectronic Applications
by Chi Zhang, Zhengjie Guo, Fuyueyang Tan, Jinhui Zhou, Xuezhi Li, Xi Cao, Yikun Yang, Yixian Xie, Yuying Feng, Chenyao Huang, Zaijin Li, Yi Qu and Lin Li
Coatings 2026, 16(1), 56; https://doi.org/10.3390/coatings16010056 - 3 Jan 2026
Viewed by 543
Abstract
Tin selenide (SnSe) is a sustainable, lead-free IV–VI semiconductor whose layered orthorhombic crystal structure induces pronounced electronic and phononic anisotropy, enabling diverse energy-related functionalities. This review systematically summarizes recent progress in understanding the structure–property–processing relationships that govern SnSe performance in thermoelectric and optoelectronic [...] Read more.
Tin selenide (SnSe) is a sustainable, lead-free IV–VI semiconductor whose layered orthorhombic crystal structure induces pronounced electronic and phononic anisotropy, enabling diverse energy-related functionalities. This review systematically summarizes recent progress in understanding the structure–property–processing relationships that govern SnSe performance in thermoelectric and optoelectronic applications. Key crystallographic characteristics are first discussed, including the temperature-driven Pnma–Cmcm phase transition, anisotropic band and valley structures, and phonon transport mechanisms that lead to intrinsically low lattice thermal conductivity below 0.5 W m−1 K−1 and tunable carrier transport. Subsequently, major synthesis strategies are critically compared, spanning Bridgman and vertical-gradient single-crystal growth, spark plasma sintering and hot pressing of polycrystals, as well as vapor- and solution-based thin-film fabrication, with emphasis on process windows, stoichiometry control, defect chemistry, and microstructure engineering. For thermoelectric applications, directional and temperature-dependent transport behaviors are analyzed, highlighting record thermoelectric performance in single-crystal SnSe at hi. We analyze directional and temperature-dependent transport, highlighting record thermoelectric figure of merit values exceeding 2.6 along the b-axis in single-crystal SnSe at ~900 K, as well as recent progress in polycrystalline and thin-film systems through alkali/coinage-metal doping (Ag, Na, Cu), isovalent and heterovalent substitution (Zn, S), and hierarchical microstructural design. For optoelectronic applications, optical properties, carrier dynamics, and photoresponse characteristics are summarized, underscoring high absorption coefficients exceeding 104 cm−1 and bandgap tunability across the visible to near-infrared range, together with interface engineering strategies for thin-film photovoltaics and broadband photodetectors. Emerging applications beyond energy conversion, including phase-change memory and electrochemical energy storage, are also reviewed. Finally, key challenges related to selenium volatility, performance reproducibility, long-term stability, and scalable manufacturing are identified. Overall, this review provides a process-oriented and application-driven framework to guide the rational design, synthesis optimization, and device integration of SnSe-based materials. Full article
(This article belongs to the Special Issue Advancements in Lasers: Applications and Future Trends)
Show Figures

Figure 1

18 pages, 1464 KB  
Article
Effects of 147 MeV Kr Ions on the Structural, Optical and Luminescent Properties of Gd3Ga5O12
by Zhakyp T. Karipbayev, Gulnara M. Aralbayeva, Kuat K. Kumarbekov, Askhat B. Kakimov, Amangeldy M. Zhunusbekov, Abdirash Akilbekov, Mikhail G. Brik, Marina Konuhova, Sergii Ubizskii, Yevheniia Smortsova, Yana Suchikova, Snežana Djurković, Sergei Piskunov and Anatoli I. Popov
Crystals 2026, 16(1), 40; https://doi.org/10.3390/cryst16010040 - 3 Jan 2026
Viewed by 277
Abstract
The optical and vibrational responses of Gd3Ga5O12 (GGG) single crystals to 147 MeV Kr-ion irradiations were systematically investigated to clarify defect formation pathways and their influence on luminescence mechanisms. Absorption spectra measured at room temperature reveal a stepwise [...] Read more.
The optical and vibrational responses of Gd3Ga5O12 (GGG) single crystals to 147 MeV Kr-ion irradiations were systematically investigated to clarify defect formation pathways and their influence on luminescence mechanisms. Absorption spectra measured at room temperature reveal a stepwise redshift of the fundamental edge and the progressive development of a broad sub-band-gap tail between 4.4 and 5.3 eV, indicating the accumulation of F- and F+-type oxygen-vacancy centers and increasing structural disorder. Raman spectroscopy shows that, despite substantial track overlap at fluences up to 1014 ions/cm2, the crystal preserves its phonon frequencies and linewidths, while peak intensities decrease due to a growing disordered volume fraction. Low-temperature (13 K) photoluminescence demonstrates the persistence of a dominant broad band near 2.4 eV and the emergence of an additional irradiation-induced band at ~2.75 eV whose width increases with fluence, reflecting the formation of vacancy-related defect complexes. Excitation spectra transform from band-edge-dominated behavior in the pristine crystal to defect-tail-mediated excitation in heavily irradiated samples. These results provide a consistent spectroscopic picture of ion-track-induced disorder in GGG and identify the defect states governing its luminescence under extreme irradiation conditions. Full article
(This article belongs to the Special Issue Research Progress of Photoluminescent Materials)
Show Figures

Figure 1

18 pages, 3270 KB  
Article
Characterization and Antimicrobial Assessment of Cadmium Sulfide Nanoparticles
by Ezinne Uchechi Ekwujuru, Moses Gbenga Peleyeju, Cornelius Ssemakalu, Mzimkhulu Monapathi and Michael Klink
Int. J. Mol. Sci. 2026, 27(1), 432; https://doi.org/10.3390/ijms27010432 - 31 Dec 2025
Viewed by 273
Abstract
Resistance to conventional antibiotics remains a global health challenge. The search for more effective antimicrobial agents has led to the consideration of nanoparticles due to their potential biocidal activities. This study synthesized, characterized, and evaluated the antimicrobial behavior of cadmium sulfide nanoparticles (CdS [...] Read more.
Resistance to conventional antibiotics remains a global health challenge. The search for more effective antimicrobial agents has led to the consideration of nanoparticles due to their potential biocidal activities. This study synthesized, characterized, and evaluated the antimicrobial behavior of cadmium sulfide nanoparticles (CdS NPs) during incubations at 37 °C and at room temperature (rt; 23 to 27 °C). XRD results showed that the synthesized nanoparticles had a cubic zinc blende structure, while microscopic investigations confirmed the particle size to be 7.236 nm on average. UV-Vis spectroscopy showed that the nanoparticles are active in the visible light region. Raman spectroscopy results showed peaks at 302.3 cm−1 and 601 cm−1, which represent the first- and second-order longitudinal optical phonon. Agar well diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays were conducted to investigate the antimicrobial activity of CdS NPs (50 mg/mL, 25 mg/mL, and 10 mg/mL) against Escherichia coli and Staphylococcus aureus. CdS NPs were effective against both test organisms. However, they were more effective against Gram-negative E. coli. The higher the concentration of CdS NPs, the more effective they were against the test organisms. Furthermore, MBC results showed greater bactericidal activity of CdS NPs at 37 °C. With increasing incidences of antimicrobial resistance against conventional antimicrobial agents, especially in wastewater treatment, nanoparticles are considered promising alternatives and the next generation of antimicrobial agents. Full article
Show Figures

Figure 1

15 pages, 1803 KB  
Article
High Thermoelectric Performance of Nanocrystalline Bismuth Antimony Telluride Thin Films Fabricated via Pressure-Gradient Sputtering
by Tetsuya Takizawa, Yuto Nakazawa, Keisuke Kaneko, Yoshiyuki Shinozaki, Cheng Zhang, Takumi Kaneko, Hiroshi Murotani and Masayuki Takashiri
Coatings 2026, 16(1), 35; https://doi.org/10.3390/coatings16010035 - 29 Dec 2025
Viewed by 280
Abstract
Bismuth–telluride-based alloys are excellent thermoelectric materials for Peltier modules and thermoelectric generators (TEGs). Owing to the emergence of the Internet of Things (IoT), the demand for sensors has increased considerably and self-power supplies to sensors using TEGs are garnering attention. To apply TEGs [...] Read more.
Bismuth–telluride-based alloys are excellent thermoelectric materials for Peltier modules and thermoelectric generators (TEGs). Owing to the emergence of the Internet of Things (IoT), the demand for sensors has increased considerably and self-power supplies to sensors using TEGs are garnering attention. To apply TEGs to IoT sensors, the thermoelectric materials used must be sufficiently small and thin while exhibiting high thermoelectric performance. In this study, Bi0.5Sb1.5Te3 thin films were prepared using a pressure-gradient sputtering system. The obtained films exhibit a nanocrystalline structure with a significantly smooth surface and no preferred crystal orientation. Because the Bi0.5Sb1.5Te3 thin films exhibit a high Seebeck coefficient and low thermal conductivity, the in-plane dimensionless figure of merit is 0.98, which is one of the highest values reported for thermoelectric materials measured near 300 K. Furthermore, the phonon mean-free path is 0.19 nm, as estimated using the 3ω method and nanoindentation. This value is significantly smaller than the average crystallite size of the thin film, thus indicating that phonon scattering occurs more frequently via ternary-alloy scattering inside the crystallites than via boundary scattering at the crystallite boundaries. The results of this study can advance thin-film TEGs as a source of self-sustaining power for IoT systems. Full article
(This article belongs to the Section Thin Films)
Show Figures

Graphical abstract

12 pages, 1228 KB  
Article
Background Issues in X-Ray Diffraction and Raman Spectroscopy of Carbon Materials
by Pascal Puech, Sébastien Moyano, Petros Mubari, Elsa Weiss-Hortala and Marc Monthioux
C 2026, 12(1), 2; https://doi.org/10.3390/c12010002 - 27 Dec 2025
Viewed by 368
Abstract
Removing background signals is a common preprocessing step, but it is not without drawbacks. In X-ray diffraction data, background correction can artificially symmetrize diffraction peaks, which becomes a critical issue for lamellar materials such as graphenic carbon when the Laue indices lie in [...] Read more.
Removing background signals is a common preprocessing step, but it is not without drawbacks. In X-ray diffraction data, background correction can artificially symmetrize diffraction peaks, which becomes a critical issue for lamellar materials such as graphenic carbon when the Laue indices lie in the plane (e.g., the 10 and 11 peaks). We discuss several approaches to background correction and their implications for the resulting data. In Raman spectroscopy, defects activate the phonon density of states, leading to higher intensity below the D band than above the G band, with respect to the Raman shift. After discussing the linear and circular polarization on the Raman selection rules, we show how flattening the background—a widely used measure of disorder—alters the ID/IG ratio. Finally, principal component analysis (PCA) provides a useful preliminary exploration of data structure; however, because its components may include negative contributions, it cannot be directly applied to spectral decomposition. In contrast, non-negative component decomposition offers an optimal way to preserve the Raman background, even in the presence of luminescence. We confirm our analysis with ANOVA p-values. Full article
(This article belongs to the Special Issue 10th Anniversary of C — Journal of Carbon Research)
Show Figures

Graphical abstract

11 pages, 4932 KB  
Article
Enhanced Electron–Phonon Coupling of Superconductivity in Indium-Doped Topological Crystalline Insulator SnTe
by Kwan-Young Lee, Gareoung Kim, Jae Hyun Yun, Jin Hee Kim and Jong-Soo Rhyee
Materials 2026, 19(1), 73; https://doi.org/10.3390/ma19010073 - 24 Dec 2025
Viewed by 403
Abstract
Indium-doped SnTe (Sn1−xInxTe) provides a model platform for exploring the emergence of superconductivity within a topological crystalline insulator. Here, we present a systematic investigation of the structural, transport, and thermodynamic properties of high-quality single crystals with 0.0 ≤ x [...] Read more.
Indium-doped SnTe (Sn1−xInxTe) provides a model platform for exploring the emergence of superconductivity within a topological crystalline insulator. Here, we present a systematic investigation of the structural, transport, and thermodynamic properties of high-quality single crystals with 0.0 ≤ x ≤ 0.5. All compositions up to x = 0.4 form a single-phase cubic structure, enabling a controlled study of the superconducting state. Electrical resistivity and specific heat measurements reveal a bulk, fully gapped s-wave superconducting phase whose transition temperature increases monotonically with In concentration, reaching Tc ≈ 4.7 K at x = 0.5. Analysis of the electronic specific heat and McMillan formalism shows that the electron–phonon coupling constant λel-ph systematically increases with doping, while the Debye temperature systematically decreases, resulting in the lattice softening. This behavior, together with the observed evolution of the normal-state resistivity exponent from Fermi-liquid (n ≈ 2.04) toward non-Fermi-liquid values (n ≈ 1.72), demonstrates a clear crossover from weak to strong interaction with increasing In content. These results establish Sn1−xInxTe as a tunable superconducting system in which coupling strength can be continuously controlled, offering a promising platform for future studies on the interplay between phonon-mediated superconductivity and crystalline topological band structure. Full article
Show Figures

Figure 1

19 pages, 6201 KB  
Article
First-Principles Investigation of Structural, Electronic, and Elastic Properties of Cu(In,Ga)Se2 Chalcopyrite Alloys Using GGA+U
by Mohamed Gandouzi, Owaid H. Alshammari, Fekhra Hedhili, Hissah Saedoon Albaqawi, Nwuyer A. Al-Shammari, Manal F. Alshammari and Takuo Tanaka
Symmetry 2026, 18(1), 25; https://doi.org/10.3390/sym18010025 - 23 Dec 2025
Viewed by 280
Abstract
This paper presents a theoretical study of the structural, electronic, and elastic properties of gallium-doped CuInSe2 using the GGA exchange-correlation functional with the Hubbard correction for five Ga compositions: 0, 0.25, 0.5, 0.75, and 1. The found lattice parameters decrease with gallium [...] Read more.
This paper presents a theoretical study of the structural, electronic, and elastic properties of gallium-doped CuInSe2 using the GGA exchange-correlation functional with the Hubbard correction for five Ga compositions: 0, 0.25, 0.5, 0.75, and 1. The found lattice parameters decrease with gallium composition and obey Vegard’s law. Traditional DFT calculations fail to explain the band structure of Copper Indium Gallium Selenide compounds (CIGS). The use of Hubbard corrections of d-electrons of copper, indium, gallium, and p-electrons of selenium opens the gap, showing a semiconductor’s behavior of CuInGaSe2 alloys in the range 1.04 eV to 1.88 eV, which are in good agreement with available experimental data and current theory using an expensive hybrid exchange-correlation functional. The obtained formation energies for the different gallium compositions are close to −1 eV/atom, and the phonon spectra indicate the thermodynamic stability of these alloys. The values of the elastic constant satisfy the Born elastic stability conditions, suggesting that these compounds are mechanically stable. Moreover, we compute the bulk modulus (B), shear modulus (G), Young’s modulus (E), Poisson ratio (p), Pugh’s ratio (r), and average Debye speed (v), and the Debye temperature (ΘD) with the Ga composition. There is a symmetry between our results and the experimental data, as well as earlier simulation results. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

14 pages, 2398 KB  
Article
Synergistic Triplet Exciton Management and Interface Engineering for High-Brightness Sky-Blue Multi-Cation Perovskite Light-Emitting Diodes
by Fawad Ali, Fang Yuan, Shuaiqi He, Peichao Zhu, Nabeel Israr, Songting Zhang, Puyang Wu, Jiaxin Liang, Wen Deng and Zhaoxin Wu
Nanomaterials 2026, 16(1), 4; https://doi.org/10.3390/nano16010004 - 19 Dec 2025
Viewed by 336
Abstract
Perovskite light-emitting diodes (PeLEDs) have garnered significant interest owing to their exceptional color purity, broadly tunable emission spectra, and cost-effective solution processability. However, blue PeLEDs continue to underperform in efficiency and operational stability compared to their red and green counterparts, primarily due to [...] Read more.
Perovskite light-emitting diodes (PeLEDs) have garnered significant interest owing to their exceptional color purity, broadly tunable emission spectra, and cost-effective solution processability. However, blue PeLEDs continue to underperform in efficiency and operational stability compared to their red and green counterparts, primarily due to defect-induced non-radiative recombination losses and inefficient exciton management. Herein, we demonstrate a synergistic approach that integrates multi-cation compositional engineering with triplet exciton management by incorporating a high-triplet-energy material, mCBP (3,3-Di(9H-carbazol-9-yl)biphenyl), during film fabrication. Temperature-dependent photoluminescence reveals that mCBP incorporation significantly enhances the exciton binding energy from 49.36 meV to 68.84 meV and reduces phonon coupling strength, indicating improved exciton stability and suppressed non-radiative channels. The corresponding PeLEDs achieve a peak external quantum efficiency of 10.2% and a maximum luminance exceeding 12,000 cd/m2, demonstrating the effectiveness of this solution-based triplet management strategy. This work highlights the critical role of scalable, solution-processed triplet exciton management strategies in advancing blue PeLED performance, offering a practical pathway toward high-performance perovskite-based display and lighting technologies. Full article
Show Figures

Graphical abstract

19 pages, 6173 KB  
Article
Strain-Engineered Thermal Transport at One- to Two-Dimensional Junctions in 3D Nanostructures
by Moath Al Hayek, Aayush Patel, Joshua Ellison and Jungkyu Park
C 2026, 12(1), 1; https://doi.org/10.3390/c12010001 - 19 Dec 2025
Viewed by 560
Abstract
In the present study, molecular dynamics simulations with three interatomic potentials (Polymer Consistent Force Field, Adaptive Intermolecular Reactive Empirical Bond Order, and Tersoff) are employed to investigate strain-dependent interfacial thermal resistance across one-dimensional to two-dimensional junctions. Carbon nanotube–graphene junctions exhibit exceptionally low interfacial [...] Read more.
In the present study, molecular dynamics simulations with three interatomic potentials (Polymer Consistent Force Field, Adaptive Intermolecular Reactive Empirical Bond Order, and Tersoff) are employed to investigate strain-dependent interfacial thermal resistance across one-dimensional to two-dimensional junctions. Carbon nanotube–graphene junctions exhibit exceptionally low interfacial resistances (1.69–2.37 × 10−10 K·m2/W at 300 K)—two to three orders of magnitude lower than conventional metal–dielectric interfaces. Strain-dependent behavior is highly potential-dependent, with different potentials showing inverse, positive, or minimal strain sensitivity. Local phonon density of states analysis with Tersoff reveals that strain-induced spectral redistribution in graphene toward lower frequencies enhances phonon coupling with carbon nanotube modes. Temperature significantly affects resistance, with 37–59% increases at 10 K compared to 300 K due to long-wavelength phonon scattering. Boron nitride nanotube–hexagonal boron nitride nanosheet junctions exhibit 60% higher resistance (3.2 × 10−10 K·m2/W) with temperature-dependent strain behavior and spacing-insensitive performance. Interfacial resistance is independent of pillar height, confirming junction-dominated transport. The discovery of exceptionally low interfacial resistances and material-specific strain responses enables the engineering of thermally switchable devices and mechanically robust thermal pathways. These findings directly address critical challenges in next-generation flexible electronics where devices must simultaneously manage high heat fluxes while maintaining thermal performance under repeated mechanical deformation. Full article
(This article belongs to the Special Issue 10th Anniversary of C — Journal of Carbon Research)
Show Figures

Graphical abstract

22 pages, 2440 KB  
Article
Radiation-Induced Disorder and Lattice Relaxation in Gd3Ga5O12 Under Swift Xe Ion Irradiation
by Zhakyp T. Karipbayev, Gulnara M. Aralbayeva, Abil T. Zhalgas, Kymbat Burkanova, Amangeldy M. Zhunusbekov, Ilze Manika, Abdirash Akilbekov, Aizat Bakytkyzy, Sergii Ubizskii, Gibrat E. Sagyndykova, Marina Konuhova, Anatolijs Sarakovskis, Yevheniia Smortsova and Anatoli I. Popov
Crystals 2025, 15(12), 1065; https://doi.org/10.3390/cryst15121065 - 18 Dec 2025
Cited by 1 | Viewed by 384
Abstract
This study presents a comprehensive Raman spectroscopic and mechanical investigation of Gd3Ga5O12 (GGG) single crystals irradiated with 231 MeV 131Xe ions at fluences ranging from 1 × 1011 to 3.3 × 1013 ions/cm2. [...] Read more.
This study presents a comprehensive Raman spectroscopic and mechanical investigation of Gd3Ga5O12 (GGG) single crystals irradiated with 231 MeV 131Xe ions at fluences ranging from 1 × 1011 to 3.3 × 1013 ions/cm2. Raman analysis reveals that all fundamental vibrational modes of the garnet structure remain observable up to the highest fluence, with the preservation of garnet crystalline topology/absence of secondary crystalline phases. However, significant line broadening (FWHM increase by 20–100%) and low-frequency shifts indicate progressive lattice disorder and phonon-defect scattering. High-frequency Ga-O stretching modes (A1g, T2g ~740 cm−1) remain the most resistant to irradiation, while low-energy translational modes involving Gd3+ ions exhibit pronounced degradation and partial disappearance at high fluence. Complementary nanoindentation measurements show radiation-induced softening: hardness decreases by up to ≈60% at 3.3 × 1013 ions/cm2, consistent with amorphization and overlapping ion tracks (~10–12 μm deep). Raman spectroscopy shows that the garnet lattice remains as the only crystalline phase up to 3.3 × 1013 ions/cm2, while significant line broadening, mode suppression and a strong hardness decrease indicate progressive structural disorder and partial amorphization of the near-surface region. These results demonstrate that GGG maintains crystalline integrity below the track-overlap threshold (~6 keV/nm) but undergoes strong structural relaxation and mechanical weakening once this limit is exceeded. A new analytical methodology has been developed to quantify radiation-induced structural degradation. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

Back to TopTop