Characterization and Antimicrobial Assessment of Cadmium Sulfide Nanoparticles
Abstract
1. Introduction
2. Results
2.1. Characterization of Nanoparticles
2.1.1. Fourier Transform Infrared (FTIR) Spectroscopy
2.1.2. The Raman Spectroscopy Analysis
2.1.3. Structural and Surface Morphological Studies Using SEM
2.1.4. Elemental Analysis Using EDX
2.1.5. Structural and Surface Morphological Studies Using TEM
2.1.6. Optical Studies Using Ultraviolet–Visible Spectrophotometer
2.1.7. XRD Patterns
2.2. Evaluation of Antimicrobial Activity of CdS NPs
2.2.1. Agar Well Diffusion Assay
2.2.2. Minimum Inhibitory Concentration (MIC)
2.2.3. Minimum Bactericidal Concentration (MBC)
3. Discussion
3.1. Limitation of the Study
3.2. Future Perspectives
4. Materials and Methods
4.1. Synthesis of Cadmium Sulfide Nanoparticles
4.2. Characterization of the Synthesized Cadmium Sulfide Nanoparticles
4.2.1. Fourier Transform Infrared (FTIR) Spectroscopy
4.2.2. Scanning Electron Microscopic (SEM) and Energy-Dispersive X-Ray Spectroscopic (EDX) Analysis
4.2.3. Transmission Electron Microscopy (TEM)
4.2.4. UV-Vis Spectrophotometric Analysis
4.2.5. X-Ray Powder Diffraction (XRD)
4.2.6. Raman Spectroscopy
4.3. Antimicrobial Activity of Cadmium Sulfide Nanoparticles
4.3.1. Agar Well Diffusion Technique
4.3.2. Minimum Inhibitory Concentration Assay
4.3.3. Minimum Bactericidal Concentration (MBC)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CdS NPs | Cadmium sulfide nanoparticles |
| rt | Room temperature |
| XRD | X-ray diffraction |
| MIC | Minimum inhibitory concentration |
| MBC | Minimum bactericidal concentration |
| ROS | Reactive oxygen species |
| DNA | deoxyribonucleic acid |
| FTIR | Fourier transform infrared |
| EDX | Energy-dispersive X-ray |
| SEM | Scanning electron microscopy |
| TEM | Transmission electron microscopy |
| SDGs | Sustainable Development Goal |
| MH | Mueller–Hinton agar |
| JCPDS | Joint Committee on Powder Diffraction Standards |
References
- Ahmed, F.Y.; Farghaly Aly, U.; Abd El-Baky, R.M.; Waly, N.G. Comparative study of antibacterial effects of titanium dioxide nanoparticles alone and in combination with antibiotics on MDR Pseudomonas aeruginosa strains. Int. J. Nanomed. 2020, 15, 3393–3404. [Google Scholar] [CrossRef] [PubMed]
- Sabat, A.J.; Pantano, D.; Akkerboom, V.; Bathoorn, E.; Friedrich, A.W. Pseudomonas aeruginosa and Staphylococcus aureus virulence factors as biomarkers of infection. Biol. Chem. 2021, 402, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control 2017, 6, 47. [Google Scholar] [CrossRef]
- Serwecińska, L. Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A. Antimicrobial resistance: A growing serious threat for global public health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Ahmed, S.K.; Hussein, S.; Qurbani, K.; Ibrahim, R.H.; Fareeq, A.; Mahmood, K.A.; Mohamed, M.G. Antimicrobial resistance: Impacts, challenges, and future prospects. J. Med. Surg. Public Health 2024, 2, 100081. [Google Scholar] [CrossRef]
- Von Wintersdorff, C.J.; Penders, J.; Van Niekerk, J.M.; Mills, N.D.; Majumder, S.; Van Alphen, L.B.; Savelkoul, P.H.; Wolffs, P.F. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Kaur, R.; Verma, S.; Singh, S. Antimicrobials and antibiotic resistance genes in water bodies: Pollution, risk, and control. Front. Environ. Sci. 2022, 10, 830861. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, J.; Zhao, Z.; Cao, Y.; Li, B. Hospital wastewater as a reservoir for antibiotic resistance genes: A meta-analysis. Front. Public Health 2020, 8, 574968. [Google Scholar] [CrossRef]
- Amin, M.T.; Alazba, A.A.; Manzoor, U. A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv. Mater. Sci. Eng. 2014, 2014, 825910. [Google Scholar] [CrossRef]
- Rajasulochana, P.; Preethy, V. Comparison on efficiency of various techniques in treatment of waste and sewage water—A comprehensive review. Resour.-Effic. Technol. 2016, 2, 175–184. [Google Scholar]
- Chawla, H.; Chandra, A.; Ingole, P.P.; Garg, S. Recent advancements in enhancement of photocatalytic activity using bismuth-based metal oxides Bi2MO6 (M = W, Mo, Cr) for environmental remediation and clean energy production. J. Ind. Eng. Chem. 2021, 95, 1–15. [Google Scholar] [CrossRef]
- Obayomi, O.V.; Olawoyin, D.C.; Oguntimehin, O.; Mustapha, L.S.; Kolade, S.O.; Oladoye, P.O.; Oh, S.; Obayomi, K.S. Exploring emerging water treatment technologies for the removal of microbial pathogens. Curr. Res. Biotechnol. 2024, 8, 100252. [Google Scholar] [CrossRef]
- Gebreyohannes, G.; Nyerere, A.; Bii, C.; Sbhatu, D.B. Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon 2019, 5, e02192. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.-Y.; Ko, W.-C.; Hsueh, P.-R. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol. 2019, 10, 1153. [Google Scholar] [CrossRef] [PubMed]
- Manke, A.; Wang, L.; Rojanasakul, Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res. Int. 2013, 2013, 942916. [Google Scholar] [CrossRef] [PubMed]
- Slavin, Y.N.; Asnis, J.; Hńfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017, 15, 65. [Google Scholar] [CrossRef]
- Shivashankarappa, A.; Sanjay, K. Study on biological synthesis of cadmium sulfide nanoparticles by Bacillus licheniformis and its antimicrobial properties against food borne pathogens. Nanosci. Nanotechnol. Res. 2015, 3, 6–15. [Google Scholar]
- Mohmand, N.Z.K.; Ullah, H.; Shah, Y.; Ahmad, S.; Hassan, A.; Ali, L.; Rahman, H.U. Exploration of Antibacterial Activity of Plant-Mediated Green Synthesis of Cadmium Sulfide Nanoparticles. Lett. Appl. NanoBioSci. 2024, 13, 74. [Google Scholar]
- Regmi, A.; Basnet, Y.; Bhattarai, S.; Gautam, S.K. Cadmium sulfide nanoparticles: Synthesis, characterization, and antimicrobial study. J. Nanomater. 2023, 2023, 8187000. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef]
- Vaishampayan, A.; Grohmann, E. Antimicrobials functioning through ros-mediated mechanisms: Current insights. Microorganisms 2021, 10, 61. [Google Scholar] [CrossRef]
- Sekar, P.V.; Parvathi, V.D.; Sumitha, R. Green nanotechnology in cadmium sulphide nanoparticles and understanding its toxicity and antimicrobial properties. Biomed. Res. 2019, 30, 805–809. [Google Scholar] [CrossRef]
- Ghasempour, A.; Dehghan, H.; Ataee, M.; Chen, B.; Zhao, Z.; Sedighi, M.; Guo, X.; Shahbazi, M.-A. Cadmium sulfide nanoparticles: Preparation, characterization, and biomedical applications. Molecules 2023, 28, 3857. [Google Scholar] [CrossRef]
- Ibrahim, I.; Lim, H.; Huang, N.; Pandikumar, A. Cadmium sulphide-reduced graphene oxide-modified photoelectrode-based photoelectrochemical sensing platform for copper (II) ions. PLoS ONE 2016, 11, e0154557. [Google Scholar] [CrossRef] [PubMed]
- Hayat, M.; Saepudin, E.; Einaga, Y.; Ivandini, T.A. Cds nanoparticle-based biosensor development for aflatoxin determination. Int. J. Technol. 2019, 10, 787–797. [Google Scholar] [CrossRef]
- Alsaggaf, M.S.; Elbaz, A.F.; El Badawy-, S.; Moussa, S.H. Anticancer and antibacterial activity of cadmium sulfide nanoparticles by Aspergillus niger. Adv. Polym. Technol. 2020, 2020, 4909054. [Google Scholar] [CrossRef]
- Gupta, R. Cadmium nanoparticles and its toxicity. J. Crit. Rev. 2019, 6, 1–7. [Google Scholar] [CrossRef]
- Malik, S.; Muhammad, K.; Waheed, Y. Nanotechnology: A revolution in modern industry. Molecules 2023, 28, 661. [Google Scholar] [CrossRef] [PubMed]
- Dabhane, H.; Ghotekar, S.; Tambade, P.; Pansambal, S.; Murthy, H.A.; Oza, R.; Medhane, V. A review on environmentally benevolent synthesis of CdS nanoparticle and their applications. Environ. Chem. Ecotoxicol. 2021, 3, 209–219. [Google Scholar] [CrossRef]
- Liu, H.; Xing, F.; Zhou, Y.; Yu, P.; Xu, J.; Luo, R.; Xiang, Z.; Rommens, P.M.; Liu, M.; Ritz, U. Nanomaterials-based photothermal therapies for antibacterial applications. Mater. Des. 2023, 233, 112231. [Google Scholar] [CrossRef]
- Shivashankarappa, A.; Sanjay, K.R. Escherichia coli-based synthesis of cadmium sulfide nanoparticles, characterization, antimicrobial and cytotoxicity studies. Braz. J. Microbiol. 2020, 51, 939–948. [Google Scholar] [CrossRef]
- El-Baz, A.F.; Sorour, N.M.; Shetaia, Y.M. Trichosporon jirovecii–mediated synthesis of cadmium sulfide nanoparticles. J. Basic Microbiol. 2016, 56, 520–530. [Google Scholar] [CrossRef]
- Jain, K.; Patel, A.S.; Pardhi, V.P.; Flora, S.J.S. Nanotechnology in wastewater management: A new paradigm towards wastewater treatment. Molecules 2021, 26, 1797. [Google Scholar] [CrossRef]
- Atif, M.; Ayub, G.; Shakoor, F.; Farooq, M.; Iqbal, M.; Zaman, Q.; Ilyas, M. Evolution of waterborne diseases: A case study of Khyber Pakhtunkhwa, Pakistan. SAGE Open Med. 2024, 12, 20503121241263032. [Google Scholar] [CrossRef] [PubMed]
- United Nations. The 17 goals|sustainable development. In Sustainable Development; United Nations: New York, NY, USA, 2015; Available online: https://sdgs.un.org/goals (accessed on 17 June 2025).
- Qu, X.; Brame, J.; Li, Q.; Alvarez, P.J. Nanotechnology for a safe and sustainable water supply: Enabling integrated water treatment and reuse. Acc. Chem. Res. 2013, 46, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sharma, J. Stable phase CdS nanoparticles for optoelectronics: A study on surface morphology, structural and optical characterization. Mater. Sci.-Pol. 2016, 34, 368–373. [Google Scholar] [CrossRef]
- Senasu, T.; Ruengchai, N.; Khamdon, S.; Lorwanishpaisarn, N.; Nanan, S. Hydrothermal synthesis of cadmium sulfide photocatalyst for detoxification of azo dyes and ofloxacin antibiotic in wastewater. Molecules 2022, 27, 7944. [Google Scholar] [CrossRef] [PubMed]
- Pandian, S.R.K.; Deepak, V.; Kalishwaralal, K.; Gurunathan, S. Biologically synthesized fluorescent CdS NPs encapsulated by PHB. Enzym. Microb. Technol. 2011, 48, 319–325. [Google Scholar] [CrossRef]
- Devamani, R.H.P.; Kiruthika, R.; Mahadevi, P.; Sagithapriya, S. Synthesis and characterization of cadmium sulfide nanoparticles. Int. J. Innov. Sci. Eng. Technol. 2017, 4, 181–185. [Google Scholar]
- Thirumavalavan, S.V.; Venkat, D.M.; Kumar, G.M.; Srikanth, D. Synthesis and characterization of cadmium sulfide nanoparticles. Int. J. Recent. Technol. Eng. 2019, 7, 649–652. [Google Scholar]
- Haile, A. Fourier transform infrared spectroscopy (FTIR) study of cadmium sulfide (CdS) thin film prepared by chemical rute. Int. J. Sci. Eng. Res. 2020, 11, 1539. [Google Scholar]
- Devi, R.A.; Latha, M.; Velumani, S.; Oza, G.; Reyes-Figueroa, P.; Rohini, M.; Becerril-Juarez, I.; Lee, J.-H.; Yi, J. Synthesis and characterization of cadmium sulfide nanoparticles by chemical precipitation method. J. Nanosci. Nanotechnol. 2015, 15, 8434–8439. [Google Scholar] [CrossRef]
- Mbuyazi, T.B.; Ajibade, P.A. Influence of different capping agents on the structural, optical, and photocatalytic degradation efficiency of magnetite (Fe3O4) nanoparticles. Nanomaterials 2023, 13, 2067. [Google Scholar] [CrossRef] [PubMed]
- Dumbrava, A.; Badea, C.; Prodan, G.; Ciupina, V. Synthesis and characterization of cadmium sulfide obtained at room temperature. Chalcogenide Lett. 2010, 7, 111–118. [Google Scholar]
- Glaubitz, C.; Rothen-Rutishauser, B.; Lattuada, M.; Balog, S.; Petri-Fink, A. Designing the ultrasonic treatment of nanoparticle-dispersions via machine learning. Nanoscale 2022, 14, 12940–12950. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, R.; Moldovanska, N.; Bonev, I. Cadmium sulphide oxidation. Thermochim. Acta 2002, 385, 41–49. [Google Scholar] [CrossRef]
- Naqvi, Q.-u.-A.; Kanwal, A.; Qaseem, S.; Naeem, M.; Ali, S.R.; Shaffique, M.; Maqbool, M. Size-dependent inhibition of bacterial growth by chemically engineered spherical ZnO nanoparticles. J. Biol. Phys. 2019, 45, 147–159. [Google Scholar] [CrossRef]
- Mimona, M.A.; Rimon, M.I.H.; Zohura, F.T.; Sony, J.M.; Rim, S.I.; Arup, M.M.R.; Mobarak, M.H. Quantum Dot nanomaterials: Empowering advances in optoelectronic devices. Chem. Eng. J. Adv. 2025, 21, 100704. [Google Scholar] [CrossRef]
- Holder, C.F.; Schaak, R.E. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 2019, 13, 7359–7365. [Google Scholar] [CrossRef]
- Simonnet, T.; Grangeon, S.; Claret, F.; Maubec, N.; Fall, M.D.; Harba, R.; Galerne, B. Phase quantification using deep neural network processing of XRD patterns. IUCrJ 2024, 11, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Klink, M.J.; Laloo, N.; Leudjo Taka, A.; Pakade, V.E.; Monapathi, M.E.; Modise, J.S. Synthesis, characterization and antimicrobial activity of zinc oxide nanoparticles against selected waterborne bacterial and yeast pathogens. Molecules 2022, 27, 3532. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, A.R.; Trahan, N.D.; Son, M.S. Growth and maintenance of Escherichia coli laboratory strains. Curr. Protoc. 2021, 1, e20. [Google Scholar] [CrossRef]
- Xie, Z.; Peng, Y.; Li, C.; Luo, X.; Wei, Z.; Li, X.; Yao, Y.; Fang, T.; Huang, L. Growth kinetics of Staphylococcus aureus and background microorganisms in camel milk. J. Dairy Sci. 2020, 103, 9958–9968. [Google Scholar] [CrossRef]
- Baeza, R.; Rossler, C.; Mielnicki, D.; Zamora, M.C.; Chirife, J. Theoretical modelling of Staphylococcus aureus growth in a cooked meat product kept at ambient temperature using temperature profiles of selected Mexican cities. Food Sci. Technol. 2009, 29, 81–84. [Google Scholar] [CrossRef]
- Wei, A.A.Q. The effect of temperature on microorganisms growth rate. Expedition 2020, 10, 9. [Google Scholar]
- EUCAST Definitive Document. Methods for the determination of susceptibility of bacteria to antimicrobial agents. Terminol. Clin. Microbiol. Infect. 1998, 4, 291. [Google Scholar] [CrossRef]
- Rampersad, S.N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 2012, 12, 12347–12360. [Google Scholar] [CrossRef]
- Moukangoe, G.; Laloo, N.; Pakade, V.; Mtunzi, F.; Monapathi, M.; Modise, J.; Klink, M. Synthesis and antibacterial activity of Cobalt-thiourea nanoparticles on selected waterborne bacterial pathogens. Dig. J. Nanomater. Biostruct. 2020, 15, 757–766. [Google Scholar] [CrossRef]
- Ocampo, P.S.; Lázár, V.; Papp, B.; Arnoldini, M.; Abel zur Wiesch, P.; Busa-Fekete, R.; Fekete, G.; Pál, C.; Ackermann, M.; Bonhoeffer, S. Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob. Agents Chemother. 2014, 58, 4573–4582. [Google Scholar] [CrossRef]
- Nemeth, J.; Oesch, G.; Kuster, S.P. Bacteriostatic versus bactericidal antibiotics for patients with serious bacterial infections: Systematic review and meta-analysis. J. Antimicrob. Chemother. 2015, 70, 382–395. [Google Scholar] [CrossRef]
- Santos, N.C.d.S.; Scodro, R.B.d.L.; Sampiron, E.G.; Ieque, A.L.; Carvalho, H.C.d.; Santos, T.d.S.; Ghiraldi Lopes, L.D.; Campanerut-Sá, P.A.Z.; Siqueira, V.L.D.; Caleffi-Ferracioli, K.R. Minimum bactericidal concentration techniques in Mycobacterium tuberculosis: A systematic review. Microb. Drug Resist. 2020, 26, 752–765. [Google Scholar] [CrossRef]
- Patil, S.M.; Patel, P. Bactericidal and Bacteriostatic Antibiotics. In Infections and Sepsis Development; Neri, V., Huang, L., Li, J., Eds.; IntechOpen: London, UK, 2021; Volume 3, p. 394. [Google Scholar]
- Krishnan, R.; Arumugam, V.; Vasaviah, S.K. The MIC and MBC of silver nanoparticles against Enterococcus faecalis-a facultative anaerobe. J. Nanomed. Nanotechnol. 2015, 6, 285. [Google Scholar]
- Stavitskaya, A.; Sitmukhanova, E.; Sayfutdinova, A.; Khusnetdenova, E.; Mazurova, K.; Cherednichenko, K.; Naumenko, E.; Fakhrullin, R. Photoinduced Antibacterial Activity and Cytotoxicity of CdS Stabilized on Mesoporous Aluminosilicates and Silicates. Pharmaceutics 2022, 14, 1309. [Google Scholar] [CrossRef] [PubMed]
- Walia, S.; Acharya, A. Fluorescent cadmium sulfide nanoparticles for selective and sensitive detection of toxic pesticides in aqueous medium. J. Nanoparticle Res. 2014, 16, 2778. [Google Scholar] [CrossRef]
- Rather, A.H.; Wani, T.U.; Khan, R.S.; Abdal-hay, A.; Rather, S.-u.; Macossay, J.; Sheikh, F.A. Recent progress in the green fabrication of cadmium sulfide and cadmium oxide nanoparticles: Synthesis, antimicrobial and cytotoxic studies. Mater. Sci. Eng. B 2022, 286, 116022. [Google Scholar] [CrossRef]
- Tiwary, K.; Ali, F.; Mishra, R.; Kumar, S.; Sharma, K. Study of structural, morphological and optical properties of Cu and Ni doped CdS nanoparticles prepared by microwave assisted solvo thermal method. Dig. J. Nanomater. Biostruct. 2019, 14, 305–313. [Google Scholar]
- Lanza, G.; Perez-Taborda, J.A.; Avila, A. Improving Temperature Adaptation for Food Safety: Colorimetric Nanoparticle-Based Time–Temperature Indicators (TTIs) to Detect Cumulative Temperature Disturbances. Foods 2025, 14, 742. [Google Scholar] [CrossRef]
- Radu, G.-L.; Truică, G.-I.; Penu, R.; Moroeanu, V.; Litescu, S.C. Use of the Fourier transform infrared spectroscopy in characterization of specific samples. UPB Sci. Bull. Ser. B 2012, 74, 137–148. [Google Scholar]
- Tsegaye, G.; Kiflie, Z.; Mekonnen, T.H.; Jida, M. Synthesis and characterization of coffee husk extract (CHE)-capped Fe3O4/PU/ZnO nanocomposites with antimicrobial activity. Biomass Convers. Biorefinery 2024, 15, 9083–9096. [Google Scholar] [CrossRef]
- Gu, J.; Ying, M.; Zhao, Y. The influence of posttreatment processes on the structures and the optical and electrical properties of CuInS2 and its heterojunction with various sulfides (CdS, CdZnS, and CdCuS). J. Sol-Gel Sci. Technol. 2021, 97, 672–684. [Google Scholar] [CrossRef]
- Azam, A.; Ahmed, A.S.; Oves, M.; Khan, M.S.; Habib, S.S.; Memic, A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. Int. J. Nanomed. 2012, 7, 6003–6009. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition; CLSI Document M07-A10; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; Available online: https://clsi.org/media/1632/m07a10_sample.pdf (accessed on 4 August 2024).
- Parvekar, P.; Palaskar, J.; Metgud, S.; Maria, R.; Dutta, S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater. Investig. Dent. 2020, 7, 105–109. [Google Scholar] [CrossRef]
- Mansoor, A.; Mehmood, M.; Ul Hassan, S.M.; Ali, M.I.; Badshah, M.; Jamal, A. Anti-Bacterial Effect of Titanium-Oxide Nanoparticles and their Application as Alternative to Antibiotics. Pak. Vet. J. 2023, 43, 269–275. [Google Scholar]
- Sykes, J.E.; Rankin, S.C. Isolation and identification of aerobic and anaerobic bacteria. Canine Feline Infect. Dis. 2013, 6, 17–28. [Google Scholar]









| Mean Zones of Inhibition (in mm) | ||||||||
|---|---|---|---|---|---|---|---|---|
| Microorganisms | CdS NPs (mg/mL) | Neomycin (mg/mL) | ||||||
| 50 | 25 | 10 | ||||||
| RT 1 | 37 °C | RT | 37 °C | RT | 37 °C | RT | 37 °C | |
| E. coli | 20 ± 1.53 | 16 ± 1 | 16 ± 2.31 | 13 ± 2 | 12 ± 0.58 | 12 ± 0.58 | 24 ± 5.29 | 27± 1.53 |
| S. aureus | 24 ± 2.31 | 14 ± 3.22 | 19 ± 1.16 | 10 ± 2.52 | 17 ± 0 | 9 ± 2.52 | 27 ± 2.31 | 25 ± 0 |
| Minimum Inhibitory/Bactericidal Concentrations | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Microorganisms | CdS NPs (mg/mL) | Neomycin (mg/mL) | |||||||
| 50 | 25 | 10 | |||||||
| 37 °C | RT 1 | 37 °C | RT | 37 °C | RT | 37 °C | RT | ||
| E. coli | MIC 2 | 6.25 | 3.125 | 12.5 | 6.25 | 25 | 12.5 | ˂0.391 | ˂0.391 |
| MBC 3 | 6.25 | 12.5 | 12.5 | 25 | 50 | - 4 | ˂0.391 | ˂0.391 | |
| S. aureus | MIC | 6.25 | 6.25 | 12.5 | 6.25 | - | 25 | ˂0.391 | ˂0.391 |
| MBC | 12.5 | - | 25 | - | - | - | ˂0.391 | ˂0.391 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ekwujuru, E.U.; Peleyeju, M.G.; Ssemakalu, C.; Monapathi, M.; Klink, M. Characterization and Antimicrobial Assessment of Cadmium Sulfide Nanoparticles. Int. J. Mol. Sci. 2026, 27, 432. https://doi.org/10.3390/ijms27010432
Ekwujuru EU, Peleyeju MG, Ssemakalu C, Monapathi M, Klink M. Characterization and Antimicrobial Assessment of Cadmium Sulfide Nanoparticles. International Journal of Molecular Sciences. 2026; 27(1):432. https://doi.org/10.3390/ijms27010432
Chicago/Turabian StyleEkwujuru, Ezinne Uchechi, Moses Gbenga Peleyeju, Cornelius Ssemakalu, Mzimkhulu Monapathi, and Michael Klink. 2026. "Characterization and Antimicrobial Assessment of Cadmium Sulfide Nanoparticles" International Journal of Molecular Sciences 27, no. 1: 432. https://doi.org/10.3390/ijms27010432
APA StyleEkwujuru, E. U., Peleyeju, M. G., Ssemakalu, C., Monapathi, M., & Klink, M. (2026). Characterization and Antimicrobial Assessment of Cadmium Sulfide Nanoparticles. International Journal of Molecular Sciences, 27(1), 432. https://doi.org/10.3390/ijms27010432

