Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (197)

Search Parameters:
Keywords = phenolic compounds-protein interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5927 KiB  
Article
Modeling the Anti-Adhesive Role of Punicalagin Against Listeria Monocytogenes from the Analysis of the Interaction Between Internalin A and E-Cadherin
by Lorenzo Pedroni, Sergio Ghidini, Javier Vázquez, Francisco Javier Luque and Luca Dellafiora
Int. J. Mol. Sci. 2025, 26(15), 7327; https://doi.org/10.3390/ijms26157327 - 29 Jul 2025
Viewed by 290
Abstract
Listeria monocytogenes poses health threats due to its resilience and potential to cause severe infections, especially in vulnerable populations. Plant extracts and/or phytocomplexes have demonstrated the capability of natural compounds in mitigating L. monocytogenes virulence. Here we explored the suitability of a computational [...] Read more.
Listeria monocytogenes poses health threats due to its resilience and potential to cause severe infections, especially in vulnerable populations. Plant extracts and/or phytocomplexes have demonstrated the capability of natural compounds in mitigating L. monocytogenes virulence. Here we explored the suitability of a computational pipeline envisioned to identify the molecular determinants for the recognition between the bacterial protein internalin A (InlA) and the human E-cadherin (Ecad), which is the first step leading to internalization. This pipeline consists of molecular docking and extended atomistic molecular dynamics simulations to identify key interaction clusters between InlA and Ecad. It exploits this information in the screening of chemical libraries of natural compounds that might competitively interact with InIA and hence impede the formation of the InIA–Ecad complex. This strategy was effective in providing a molecular model for the anti-adhesive activity of punicalagin and disclosed two natural phenolic compounds with a similar interaction pattern. Besides elucidating key aspects of the mutual recognition between InIA and Ecad, this study provides a molecular basis about the mechanistic underpinnings of the anti-adhesive action of punicalagin that enable application against L. monocytogenes. Full article
(This article belongs to the Special Issue Computational Approaches for Protein Design)
Show Figures

Figure 1

23 pages, 1634 KiB  
Review
Insights into the Molecular Basis of Pollen Coat Development and Its Role in Male Sterility
by Binyang Lyu and Cuiyue Liang
Int. J. Mol. Sci. 2025, 26(15), 7036; https://doi.org/10.3390/ijms26157036 - 22 Jul 2025
Viewed by 344
Abstract
The pollen coat is the outermost layer of pollen and plays a key role in successful pollination and environmental adaptation. It consists of lipids, proteins, and phenolic compounds that protect pollen from environmental stress, promote hydration, and enable a proper interaction with the [...] Read more.
The pollen coat is the outermost layer of pollen and plays a key role in successful pollination and environmental adaptation. It consists of lipids, proteins, and phenolic compounds that protect pollen from environmental stress, promote hydration, and enable a proper interaction with the stigma. However, many questions remain unanswered, such as what the components of the pollen coat are and how they are formed, as well as how defects in the pollen coat affect the normal function of pollen. This review highlights the molecular mechanisms behind the biosynthesis and transport of pollen coat components and their contributions to pollen hydration, pollination compatibility, and fertility. Moreover, we discuss the role of selected gene families in pollen coat formation and their potential impact on agricultural breeding, paving the way for the breeding of more efficient crops. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 3121 KiB  
Article
Hydroxytyrosol Reprograms the Tumor Microenvironment in 3D Melanoma Models by Suppressing ERBB Family and Kinase Pathways
by David Tovar-Parra and Marion Zammit Mangion
Int. J. Mol. Sci. 2025, 26(14), 6957; https://doi.org/10.3390/ijms26146957 - 20 Jul 2025
Viewed by 401
Abstract
Malignant cutaneous melanoma is among the most aggressive forms of skin cancer, characterized by high metastatic potential and frequent resistance to standard therapies. Hydroxytyrosol, a phenolic compound derived from extra virgin olive oil, has shown promising anticancer properties in various models, yet its [...] Read more.
Malignant cutaneous melanoma is among the most aggressive forms of skin cancer, characterized by high metastatic potential and frequent resistance to standard therapies. Hydroxytyrosol, a phenolic compound derived from extra virgin olive oil, has shown promising anticancer properties in various models, yet its effects in 3D melanoma systems remain poorly understood. In this study, we used paired 3D spheroid models of non-tumorigenic (HEMa) and melanoma (C32) to assess the therapeutic potential of hydroxytyrosol. To evaluate the anti-tumoral effect of hydroxytyrosol, we performed cytotoxicity, metastasis, invasiveness, cell cycle arrest, apoptotic, and proteomic assays. Hydroxytyrosol treatment significantly impaired spheroid growth, reduced cell viability, and induced cell cycle arrest and apoptosis in C32 spheroids, with minimal cytotoxicity observed in HEMa models. Proteomic profiling further demonstrated that hydroxytyrosol selectively downregulated a network of oncogenic proteins, including ERBB2, ERBB3, ERBB4, VEGFR-2, and WIF-1, along with suppression of downstream PI3K-Akt and MAPK/ERK signaling pathways. In conclusion, compared to dabrafenib, hydroxytyrosol exerted a broader range of molecular effects and was more selective toward tumor cells. These findings support the use of hydroxytyrosol as a multi-targeted agent capable of attenuating melanoma progression through suppression of kinase signaling and tumor-stromal interactions. Full article
Show Figures

Figure 1

23 pages, 1410 KiB  
Article
Effects of Electrostatic Field and CO2 Interaction on Growth and Physiological Metabolism in Asparagus
by Xinyuan Liu, Lirui Liang, Peiran Chen, Wenjun Peng, Kexin Guo, Xiaole Huang, Chi Qin, Zijing Luo, Kewen Ouyang, Chengyao Jiang, Mengyao Li, Tonghua Pan, Yangxia Zheng and Wei Lu
Agriculture 2025, 15(13), 1416; https://doi.org/10.3390/agriculture15131416 - 30 Jun 2025
Viewed by 429
Abstract
Asparagus (Asparagus officinalis L.) is a highly nutritious vegetable rich in various bioactive compounds. Ensuring both yield improvement and quality preservation is a shared goal for producers and researchers. As novel green yield-enhancing technologies in facility agriculture, electrostatic fields and elevated CO [...] Read more.
Asparagus (Asparagus officinalis L.) is a highly nutritious vegetable rich in various bioactive compounds. Ensuring both yield improvement and quality preservation is a shared goal for producers and researchers. As novel green yield-enhancing technologies in facility agriculture, electrostatic fields and elevated CO2 application hold significant potential. This study investigated the effects of the interaction between electrostatic fields and elevated CO2 on the growth and physiological characteristics of asparagus. The results demonstrated that the combined treatment of electrostatic fields and elevated CO2 significantly increased total yield, tender stem number, and single tender stem weight of asparagus, while also shortening the harvesting period and promoting rapid shoot growth. Additionally, the treatment markedly enhanced the total chlorophyll content in asparagus leaves, improving photosynthetic capacity. By boosting antioxidant enzyme activities (e.g., SOD, APX) and reducing malondialdehyde (MDA) levels, the treatment maintained the redox homeostasis of asparagus shoots, effectively mitigating oxidative damage. In terms of nutrient accumulation, the interaction between electrostatic fields and elevated CO2 significantly promoted the synthesis and accumulation of key nutrients, including soluble sugars, reducing sugars, soluble proteins, total phenolics, total flavonoids, and ascorbic acid, thereby substantially improving the nutritional quality of asparagus. Comprehensive analysis using fuzzy membership functions revealed that the combined treatment of electrostatic fields and elevated CO2 outperformed individual treatments in enhancing asparagus growth and physiological characteristics. This study provides important theoretical insights and technical support for the efficient and sustainable cultivation of asparagus in facility agriculture. Full article
(This article belongs to the Special Issue Research on Plant Production in Greenhouse and Plant Factory Systems)
Show Figures

Figure 1

16 pages, 1373 KiB  
Article
Alteration of m6A Methylation in Breast Cancer Cells by Kalanchoe pinnata Aqueous Extract
by Carlos Rogelio Alvizo-Rodríguez, Fernando Calzada, Uriel López-Vázquez, Emmanuel Tomay Tiburcio, Juan A. Hernandez-Rivera, Alan Carrasco-Carballo and Marta Elena Hernández-Caballero
Molecules 2025, 30(12), 2634; https://doi.org/10.3390/molecules30122634 - 18 Jun 2025
Cited by 1 | Viewed by 680
Abstract
Kalanchoe pinnata is used in traditional medicine to treat cancer, as it contains flavonoids and phenols known to regulate key cellular processes associated with cancer. Breast cancer, the most common cancer among women globally, presents ongoing challenges in treatment. The discovery of m [...] Read more.
Kalanchoe pinnata is used in traditional medicine to treat cancer, as it contains flavonoids and phenols known to regulate key cellular processes associated with cancer. Breast cancer, the most common cancer among women globally, presents ongoing challenges in treatment. The discovery of m6A methylation and its regulation by methylosome proteins offers novel therapeutic avenues for cancer management. This study aimed to investigate the cytotoxic and epitranscriptomic effects of an aqueous extract from K. pinnata on MCF-7 (luminal A) and HCC1937 (triple-negative) breast cancer cells. Cell lines were treated with the aqueous K. pinnata extract, characterized by HPLC, for 72 h, followed by an assessment of cytotoxicity and migration. The expression of methylosome components METTL3 and FTO was measured using RT-PCR. m6A global methylation was assessed via colorimetry, and molecular docking studies were conducted. The results indicated that only HCC1937 cells exhibited altered migration capacity. This change was correlated in silico with the inhibition of METTL3 by luteolin and quercetin, constituents of the aqueous extract. METTL3, a methyltransferase, was overexpressed by scratch stimuli but was downregulated following K. pinnata treatment in both MCF-7 and HCC1937 cells. The FTO demethylase was overexpressed in both cell lines. In silico analysis suggested an interaction between FTO and compounds such as gallic acid and myricetin. Additionally, m6A global methylation decreased in MCF-7 cells but increased in HCC1937 cells, potentially affecting cell migration. Our findings indicate that K. pinnata influences both METTL3 and FTO, altering m6A methylation in a cell-type-dependent manner, with HCC1937 cells being particularly sensitive. Further research is required to elucidate the complete molecular mechanism of K. pinnata’s aqueous extract in breast cancer treatment. Full article
Show Figures

Figure 1

24 pages, 3718 KiB  
Review
Fruit Astringency: Mechanisms, Technologies, and Future Directions
by Wanru Zhao, Meizhu Zheng, Xue Li, Kai Song and Dongfang Shi
Horticulturae 2025, 11(6), 699; https://doi.org/10.3390/horticulturae11060699 - 17 Jun 2025
Viewed by 1960
Abstract
Fruit astringency, which primarily results from the interaction between polyphenolic compounds such as tannins and salivary proteins, is a critical sensory attribute that limits the commercial value and consumer acceptance of many fruits. A thorough understanding of the mechanisms underlying astringency formation and [...] Read more.
Fruit astringency, which primarily results from the interaction between polyphenolic compounds such as tannins and salivary proteins, is a critical sensory attribute that limits the commercial value and consumer acceptance of many fruits. A thorough understanding of the mechanisms underlying astringency formation and the development of efficient and safe de-astringency technologies are crucial for the fruit industry. This review systematically elucidates the molecular basis of fruit astringency, focusing on the biosynthesis pathways, accumulation dynamics, and transcriptional regulatory networks of key phenolic substances, such as tannins, as well as their modulation by environmental factors. It also evaluates the efficacy and current applications of existing de-astringency methods and discusses the potential impacts of different treatments on fruit quality attributes. This study thoroughly analyzes the major challenges faced by current technologies, including balancing de-astringency efficiency with quality preservation, ensuring environmental friendliness and food safety, reducing costs, and promoting wider application. Finally, future research directions are discussed, emphasizing the importance of precise genetic improvement using tools such as gene editing, developing green and efficient processes, achieving intelligent process control, and focusing on synergistic quality regulation and the exploration of functional value. This review aims to provide an integrated knowledge framework for developing innovative, efficient, safe, and sustainable fruit de-astringency solutions, offering a scientific reference to advance technological upgrades in the fruit industry. Full article
Show Figures

Figure 1

31 pages, 2699 KiB  
Article
Developmental and Temperature-Driven Variations in Metabolic Profile and Antioxidant Capacity of Broccoli (Brassica oleracea var. cymosa)
by Daria Gmižić and Ivana Šola
Plants 2025, 14(12), 1825; https://doi.org/10.3390/plants14121825 - 13 Jun 2025
Viewed by 475
Abstract
This study investigates the impact of high temperature (HT) on the metabolic profile, oxidative-stress parameters, and antioxidant capacity of broccoli (Brassica oleracea var. cymosa) at different developmental stages—microgreens, seedlings, and two organs at the mature stage (leaves and head). We used [...] Read more.
This study investigates the impact of high temperature (HT) on the metabolic profile, oxidative-stress parameters, and antioxidant capacity of broccoli (Brassica oleracea var. cymosa) at different developmental stages—microgreens, seedlings, and two organs at the mature stage (leaves and head). We used spectrophotometric and chromatographic methods to quantify the concentrations of different groups and individual phenolic compounds, L-ascorbic acids, soluble sugars, proteins, glucosinolates, nitrates, pigments, oxidative-stress parameters, and antioxidant capacity. The highest number of analyzed variables significantly impacted by HT was in mature broccoli heads, with the most substantial change being an increase in proline by 168%. The lowest number of variables susceptible to HT (66%) was in the leaves of mature broccoli. The most dramatic change observed in this study was an increase in proline in seedlings by 587%. Statistical analyses showed that developmental stage plays a dominant role in shaping metabolic profiles, while HT further modulates it. Based on the measured parameters, the average contribution of developmental stage to the variance was 75%, while temperature explained 39% of the variance. The highest proportion of variance caused by temperature was seen in proline (92%), followed by kaempferol (80%), chlorophyll a/b (76%), soluble sugars (73%), total flavonoids (65%), antioxidant capacity measured by DPPH (58%), and chlorophyll/carotenoids ratio (56%). Temperature explained more variance than developmental stage for the concentration of soluble sugars, total hydroxycinnamic acids, and total tannins, which indicates an important role of these metabolites’ groups in the response of broccoli to HTs. The interaction of developmental stage and temperature explained more variance than developmental stage alone for the concentration of total proanthocyanidins, hydroxycinnamic acids, and phenolic acids. These findings underscore the complexity of metabolic regulation in broccoli and emphasize the importance of considering both developmental stage and environmental conditions when assessing its nutritional and functional properties. Full article
Show Figures

Graphical abstract

27 pages, 3028 KiB  
Article
Integrated Assessment of Antibacterial Activity, Polyphenol Composition, Molecular Docking, and ADME Properties of Romanian Oak and Fir Honeydew Honeys
by Calin Hulea, Diana Obistioiu, Anca Hulea, Mukhtar Adeiza Suleiman, Doris Floares (Oarga), Ersilia Alexa, Ilinca Merima Imbrea, Alina-Georgeta Neacșu, Marius Pentea, Cosmin Alin Popescu and Florin Imbrea
Antibiotics 2025, 14(6), 592; https://doi.org/10.3390/antibiotics14060592 - 8 Jun 2025
Viewed by 824
Abstract
Background: This study evaluated the polyphenolic composition, antibacterial activity, molecular docking interactions, and pharmacokinetic properties of Romanian oak and fir honeydew honeys. Methods: Spectrophotometric methods quantified total phenolic, flavonoid contents and antioxidant activity, and individual polyphenols were identified via HPLC-MS. Antibacterial efficacy against [...] Read more.
Background: This study evaluated the polyphenolic composition, antibacterial activity, molecular docking interactions, and pharmacokinetic properties of Romanian oak and fir honeydew honeys. Methods: Spectrophotometric methods quantified total phenolic, flavonoid contents and antioxidant activity, and individual polyphenols were identified via HPLC-MS. Antibacterial efficacy against Gram-positive and Gram-negative bacteria was evaluated by determining the bacterial inhibition percentage and minimum inhibitory concentrations. The bioactive compounds identified via LC-MS analysis were used to further delineate the possible antibacterial activities in silico. Molecular docking was carried out to predict the binding interactions and complex formation of the identified compounds against protein crystal structures of the bacteria used in this study. Additionally, the pharmacokinetic profile of compounds with high inhibitory potential was assessed via ADMET (absorption, Distribution, Metabolism, Excretion, toxicity) predictors to ascertain their value. Results: Fir honeydew honey showed higher total phenolic (844.5 mg GAE/kg) and flavonoid contents (489.01 mg QUE/kg) compared to oak honeydew honey, correlating with more potent antioxidant activity (IC50 = 5.16 mg/mL). In vitro antimicrobial tests indicated a stronger inhibitory effect of fir honeydew honey, especially against Gram-positive strains like S. aureus, S. pyogenes, and L. monocytogenes, alongside certain Gram-negative strains such as E. coli and H. influenzae. Oak honeydew honey displayed selective antimicrobial action, particularly against P. aeruginosa and S. typhimurium. The docking outcomes showed rutin, rosmarinic acid, beta resorcylic acid, quercetin, ferulic acid, and p-coumaric acid have high inhibitory activities characterised by binding affinities and binding interactions against shiga toxin, riboflavin synthase, ATP-binding sugar transporter-like protein, undecaprenyl diphosphate synthase, putative lipoprotein, sortase A, and immunity protein, making them key contributors to the honey’s antimicrobial activity. Moreover, beta-resorcylic acid, quercetin, ferulic acid, and p-coumaric acid revealed interesting ADMET scores that qualify honey to serve as a good antimicrobial agent. Conclusions: These findings support their potential use as natural antibacterial agents and emphasise the value of integrating chemical, biological, and computational approaches for multidisciplinary characterisations. Full article
Show Figures

Figure 1

22 pages, 2352 KiB  
Article
Procyanidins and Anthocyanins in Young and Aged Prokupac Wines: Evaluation of Their Reactivity Toward Salivary Proteins
by Katarina Delić, Danijel D. Milinčić, Aleksandar V. Petrović, Slađana P. Stanojević, Anne-Laure Gancel, Michael Jourdes, Mirjana B. Pešić and Pierre-Louis Teissedre
Foods 2025, 14(10), 1780; https://doi.org/10.3390/foods14101780 - 17 May 2025
Viewed by 463
Abstract
In this study, the reactivity of procyanidins and anthocyanins in young and aged Prokupac wines toward salivary proteins is investigated via SDS-PAGE and UHPLC-QTOF-MS to determine the differences between the phenolic compounds of red wine in relation to the aging process of wine. [...] Read more.
In this study, the reactivity of procyanidins and anthocyanins in young and aged Prokupac wines toward salivary proteins is investigated via SDS-PAGE and UHPLC-QTOF-MS to determine the differences between the phenolic compounds of red wine in relation to the aging process of wine. SDS-PAGE analysis revealed that procyanidins, flavanol-anthocyanin polymers, and ellagitannins in aged wine have strong affinities for salivary proteins, leading to the formation of insoluble complexes. By contrast, young wine contained predominantly procyanidins with high salivary protein affinity, as well as monomeric flavan-3-ols and anthocyanins, which mainly form soluble aggregates, while polymeric phenolics were less represented. Electrophoretic patterns further showed that seed-derived procyanidins mainly formed insoluble complexes with salivary proteins, whereas skin-derived anthocyanins tended to form soluble ones. The total content of all phenolic compounds quantified by UHPLC-QTOF-MS was 2.5 times higher in young wine than in aged wine, primarily due to the significantly greater abundance of malvidine-3-O-glucoside in young wine (eightfold higher level in young wine). Targeted UHPLC-QTOF-MS analysis of selected phenolics confirmed the electrophoretic results and showed a higher binding affinity of procyanidins in aged wine compared to young wine, as well as a higher percentage of procyanidin binding compared to anthocyanins, independent of the age of the wine. Sensory evaluation showed that aged wine had higher tannin quality scores, whereas young wine exhibited greater acidity and astringency, with bitterness being comparable between them. These results highlight the influence of wine aging on the interaction between phenolic compounds and salivary proteins and emphasize the dominant role of procyanidins in protein binding and the potential synergistic contribution of anthocyanins to mouthfeel perception. Full article
Show Figures

Figure 1

18 pages, 2885 KiB  
Article
A Study of the Effects of Oleuropein and Polydatin Association on Muscle and Bone Metabolism
by Maria Beatrice Morelli, Cristina Aguzzi, Riccardo Rascioni and Fiorenzo Mignini
Biomolecules 2025, 15(5), 628; https://doi.org/10.3390/biom15050628 - 28 Apr 2025
Cited by 1 | Viewed by 560
Abstract
Sarcopenia and osteoporosis are age-related musculoskeletal pathologies that often develop in parallel, and numerous studies support the concept of a bone–muscle unit, where deep interaction between the two tissues takes place. In Mediterranean areas, the lowest incidence of osteoporosis within Europe is observed, [...] Read more.
Sarcopenia and osteoporosis are age-related musculoskeletal pathologies that often develop in parallel, and numerous studies support the concept of a bone–muscle unit, where deep interaction between the two tissues takes place. In Mediterranean areas, the lowest incidence of osteoporosis within Europe is observed, so the Mediterranean diet was suggested to play an important role. Consequently, in this study, oleuropein, a phenolic compound found in olive oil, and polydatin, another natural polyphenol found in the Mediterranean diet, were evaluated to determine their beneficial effects on bone and muscle metabolism. In human osteoblasts and skeletal muscle myoblasts, the effects were examined, and, after analyzing the cytotoxic effect to find non-toxic doses, the modulation of bone and muscle differentiation markers was evaluated at the gene and protein levels using PCR, Western blot, and immunohistochemistry. Interestingly, the compounds increased markers involved in osteoblast differentiation, such as osteocalcin, type I collagen, and dentin-sialo-phosphoprotein, as well as markers involved in myoblast differentiation, such as myogenic regulatory factors and creatine kinase. These effects were most noticeable when the compounds were administered together. These results suggest a beneficial role for oleuropein–polydatin association on bone and muscle tissue pathologies simultaneously. Full article
(This article belongs to the Special Issue The Value of Natural Compounds as Therapeutic Agents: 2nd Edition)
Show Figures

Figure 1

28 pages, 2985 KiB  
Review
Chemical Composition and Biological Activities of Torreya grandis Kernels: Characteristics of Polymethylene-Interrupted Fatty Acids and Polyphenolic Compounds and Their Potential Health Effects
by Ran Liu, Baogang Zhou, Kundian Che, Wei Gao, Haoyuan Luo, Jialin Yang, Zhanjun Chen and Wenzhong Hu
Forests 2025, 16(5), 737; https://doi.org/10.3390/f16050737 - 25 Apr 2025
Cited by 1 | Viewed by 648
Abstract
Torreya grandis kernels, with their long cultivation history and significant economic value, have gained attention for their characteristic chemical components. This review systematically evaluates recent research on the chemical constituents and biological activities of T. grandis kernels. The key highlights include the following. [...] Read more.
Torreya grandis kernels, with their long cultivation history and significant economic value, have gained attention for their characteristic chemical components. This review systematically evaluates recent research on the chemical constituents and biological activities of T. grandis kernels. The key highlights include the following. (1) Chemical composition: This review details their unique fatty acid profile, particularly the high content of unsaturated fatty acids and rare polymethylene-interrupted polyunsaturated fatty acids such as sciadonic acid. It also examines polyphenolic compounds (flavonoids, phenolic acids, and biflavonoids like kayaflavone) and volatile components dominated by D-limonene. Other constituents, such as proteins, amino acids, vitamins, and minerals, are covered. Advanced analytical techniques (Gas Chromatography–Mass Spectrometry, GC-MS; Liquid Chromatography–Tandem Mass Spectrometry, LC-MS/MS) for component identification are discussed. (2) Biological activities: This review summarizes the major biological activities of T. grandis kernel extracts and key components. These include antioxidant effects (via the polyphenol-mediated NF-E2-related factor 2 (Nrf2) pathway), anti-inflammatory properties (via polymethylene-interrupted polyunsaturated fatty acids, PMI-PUFAs, inhibition of 5-LOX, and polyphenol regulation of NF-κB), and cardiovascular protection (potentially involving the AMPKα/SREBP-1c pathway). Research on gut microbiota regulation and enzyme inhibition is also outlined. (3) Research gaps and prospects: This review critically analyzes the limitations in the current research, including mechanism elucidation, component interactions, bioavailability, and safety assessment (especially the lack of human studies). Future research directions should focus on multiomics integration, structure–activity relationship analysis, standardization, and rigorous clinical evaluation. This review provides a theoretical reference for understanding the scientific value of T. grandis kernels and promoting their sustainable development. Full article
Show Figures

Figure 1

19 pages, 4706 KiB  
Article
Evaluation of the Anti-Inflammatory Activity of Microwave Extracts of Thymus algeriensis: In Vitro, In Vivo, and In Silico Studies
by Nassima Boutaoui, Meryem Acila, Nesrine Lariche, Redouane Lemoui, Asma Khellafi, Cristina Campestre, Francesco Melfi and Marcello Locatelli
Analytica 2025, 6(2), 16; https://doi.org/10.3390/analytica6020016 - 25 Apr 2025
Viewed by 989
Abstract
The objective of this work is to study the anti-inflammatory effect in vitro and in vivo of microwave (MW) extracts of Thymus algeriensis. The in vitro study was performed by the human red blood cell protection test, while the in vivo study [...] Read more.
The objective of this work is to study the anti-inflammatory effect in vitro and in vivo of microwave (MW) extracts of Thymus algeriensis. The in vitro study was performed by the human red blood cell protection test, while the in vivo study used the carrageenan-induced rat paw edema model. The experimental results were confirmed by a molecular docking calculation. The results indicated that all the microwave extracts have a moderate anti-inflammatory effect, depending on their richness in phenolic compounds. Among the extracts studied, the one obtained at 100 °C for 15 min exhibited the most pronounced anti-inflammatory effect, with an inhibition of 78.52%, which is attributed to its high flavonoid content. In particular, the flavonoids naringin and catechin showed the best affinity for the target protein, with values of −10.3 kcal/mol and −9.2 kcal/mol, respectively, as well as low inhibition constants of 0.028 μM and 0.18 μM. These results indicate that these flavonoids generate interactions that enhance the stability of the target ligand–protein complex, thus contributing to the observed anti-inflammatory effect. Full article
Show Figures

Graphical abstract

24 pages, 7713 KiB  
Article
Resveratrol’s Pro-Apoptotic Effects in Cancer Are Mediated Through the Interaction and Oligomerization of the Mitochondrial VDAC1
by Tal Raviv, Anna Shteinfer-Kuzmine, Meital M. Moyal and Varda Shoshan-Barmatz
Int. J. Mol. Sci. 2025, 26(9), 3963; https://doi.org/10.3390/ijms26093963 - 22 Apr 2025
Viewed by 972
Abstract
Resveratrol is a naturally occurring phenolic compound found in various foods such as red wine, chocolate, peanuts, and blueberries. Both in-vitro and in-vivo studies have shown that it has a broad spectrum of pharmacological effects such as providing cellular protection and promoting longevity. [...] Read more.
Resveratrol is a naturally occurring phenolic compound found in various foods such as red wine, chocolate, peanuts, and blueberries. Both in-vitro and in-vivo studies have shown that it has a broad spectrum of pharmacological effects such as providing cellular protection and promoting longevity. These effects include antioxidant, anti-inflammatory, neuroprotective, and anti-viral properties, as well as improvements in cardio-metabolic health and anti-aging benefits. Additionally, resveratrol has demonstrated the ability to induce cell death and inhibit tumor growth across different types and stages of cancer. However, the dual effects of resveratrol—acting to support cell survival in some contexts, while inducing cell death in others—is still not fully understood. In this study, we identify a novel target for resveratrol: the voltage-dependent anion channel 1 (VDAC1), a multi-functional outer mitochondrial membrane protein that plays a key role in regulating both cell survival and death. Our findings show that resveratrol increased VDAC1 expression levels and promoted its oligomerization, leading to apoptotic cell death. Additionally, resveratrol elevated intracellular Ca2+ levels and enhanced the production of reactive oxygen species (ROS). Resveratrol also induced the detachment of hexokinase I from VDAC1, a key enzyme in metabolism, and regulating apoptosis. When VDAC1 expression was silenced using specific siRNA, resveratrol-induced cell death was significantly reduced, indicating that VDAC1 is essential for its pro-apoptotic effects. Additionally, both resveratrol and its analog, trans-2,3,5,4′-tetrahydroxystilbene-2-O-glucoside (TSG), directly interacted with purified VDAC1, as revealed by microscale thermophoresis, with similar binding affinities. However, unlike resveratrol, TSG did not induce VDAC1 overexpression or apoptosis. These results demonstrate that resveratrol-induced apoptosis is linked to increased VDAC1 expression and its oligomerization. This positions resveratrol not only as a protective agent, but also as a pro-apoptotic compound. Consequently, resveratrol offers a promising therapeutic approach for cancer, with potentially fewer side effects compared to conventional treatments, due to its natural origins in plants and food products. Full article
(This article belongs to the Collection Feature Papers in Molecular Oncology)
Show Figures

Figure 1

20 pages, 5653 KiB  
Article
Exploring the Use of Tenebrio molitor Larvae Proteins to Functionalize Durum Wheat Pasta
by Serena Carpentieri, Agnieszka Orkusz, Joanna Harasym and Giovanna Ferrari
Foods 2025, 14(7), 1194; https://doi.org/10.3390/foods14071194 - 28 Mar 2025
Cited by 1 | Viewed by 637
Abstract
Background: Edible insects, such as Tenebrio molitor larvae (TM), offer a sustainable protein alternative to meet increasing dietary demands. The aim of this study is to investigate the functionalization of durum wheat pasta through the incorporation of TM flour (0–30%), focusing on how [...] Read more.
Background: Edible insects, such as Tenebrio molitor larvae (TM), offer a sustainable protein alternative to meet increasing dietary demands. The aim of this study is to investigate the functionalization of durum wheat pasta through the incorporation of TM flour (0–30%), focusing on how the addition of this non-conventional ingredient affects pasta production processing and its technological and chemical characteristics. Methods: Pasting properties, color, total phenolic content, antioxidant activity, and reducing sugars were determined for dry and cooked pasta. Texture profile and cooking properties were assessed for cooked samples. Results: The insect flour contributed to enhance polyphenols content in pasta, which increased from 0.06 and 0.03 mgGAE/g up to 0.19 and 0.10 mgGAE/g for dry and cooked pasta, respectively, and remained constant after the production process. The addition of TM flour altered the microstructure of wheat macromolecules, forming complex molecules, such as amylose–lipid complexes, and hydrogen and electrostatic interactions between proteins and polysaccharides, contributing to improved molecular stability and bioactivity. The pasta produced with insect flour up to 10% showed water absorption capacity, cooking properties, and consistency comparable to those of traditional pasta. Moreover, the addition of TM flour led to a reduction in peak viscosities from 2146.5 cP to 911.5 cP and roughness of pasta. Conclusions: The findings demonstrated the potential of TM flour as a unique source of bioactive compounds enhancing both the nutritional and functional properties of durum wheat pasta. Overcoming processing challenges through the optimization of product formulation and process parameters is crucial for exploring the production of insect flour enriched pasta at industrial scale while maintaining product uniformity and satisfying consumers expectations. Full article
(This article belongs to the Special Issue Cereal Processing and Quality Control Technology)
Show Figures

Figure 1

29 pages, 10931 KiB  
Article
Berries as Nature’s Therapeutics: Exploring the Potential of Vaccinium Metabolites in Gastric Cancer Treatment Through Computational Insights
by Angelica Rachel Carpio, Nicholas Dale Talubo, Po-Wei Tsai, Bor-Yann Chen and Lemmuel L. Tayo
Life 2025, 15(3), 406; https://doi.org/10.3390/life15030406 - 5 Mar 2025
Viewed by 1247
Abstract
Berries from the Vaccinium genus, known for their rich array of bioactive metabolites, are recognized for their antioxidant, anti-inflammatory, and anticancer properties. These compounds, including anthocyanins, flavonoids, and phenolic acids, have attracted significant attention for their potential health benefits, particularly in cancer prevention [...] Read more.
Berries from the Vaccinium genus, known for their rich array of bioactive metabolites, are recognized for their antioxidant, anti-inflammatory, and anticancer properties. These compounds, including anthocyanins, flavonoids, and phenolic acids, have attracted significant attention for their potential health benefits, particularly in cancer prevention and treatment. Gastric cancer (GC), a leading cause of cancer-related deaths worldwide, remains challenging to treat, especially in its advanced stages. This study investigates the therapeutic potential of Vaccinium species in GC treatment using computational methods. RNA sequencing revealed upregulated genes associated with GC, while network pharmacology and molecular docking approaches identified strong interactions between cyanidin 3-O-glucoside (C3G), a key bioactive metabolite. Furthermore, molecular dynamics simulations of the HSP90AA1-C3G complex demonstrated stable binding and structural integrity, suggesting that C3G may inhibit HSP90AA1, a protein involved in cancer progression. These findings highlight the therapeutic potential of Vaccinium metabolites, offering a novel approach to GC treatment by targeting key molecular pathways. This research provides valuable insights into the role of berries as natural therapeutics, supporting their integration into future gastric cancer treatment strategies. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

Back to TopTop