Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (191)

Search Parameters:
Keywords = perovskite quantum dots

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1346 KiB  
Article
Scintillation Properties of CsPbBr3 Quantum Dot Film-Enhanced Ga:ZnO Wafer and Its Applications
by Shiyi He, Silong Zhang, Liang Chen, Yang Li, Fangbao Wang, Nan Zhang, Naizhe Zhao and Xiaoping Ouyang
Materials 2025, 18(15), 3691; https://doi.org/10.3390/ma18153691 - 6 Aug 2025
Abstract
In high energy density physics, the demand for precise detection of nanosecond-level fast physical processes is high. Ga:ZnO (GZO), GaN, and other fast scintillators are widely used in pulsed signal detection. However, many of them, especially wide-bandgap materials, still face issues of low [...] Read more.
In high energy density physics, the demand for precise detection of nanosecond-level fast physical processes is high. Ga:ZnO (GZO), GaN, and other fast scintillators are widely used in pulsed signal detection. However, many of them, especially wide-bandgap materials, still face issues of low luminous intensity and significant self-absorption. Therefore, an enhanced method was proposed to tune the wavelength of materials via coating perovskite quantum dot (QD) films. Three-layer samples based on GZO were primarily investigated and characterized. Radioluminescence (RL) spectra from each face of the samples, as well as their decay times, were obtained. Lower temperatures further enhanced the luminous intensity of the samples. Its overall luminous intensity increased by 2.7 times at 60 K compared to room temperature. The changes in the RL processes caused by perovskite QD and low temperatures were discussed using the light tuning and transporting model. In addition, an experiment under a pico-second electron beam was conducted to verify their pulse response and decay time. Accordingly, the samples were successfully applied in beam state monitoring of nanosecond pulsed proton beams, which indicates that GZO wafer coating with perovskite QD films has broad application prospects in pulsed radiation detection. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

16 pages, 1820 KiB  
Article
Ultrafast Study of Interfacial Charge Transfer Mechanism in Assembled Systems of CsPbBr3 and Titanium Dioxide: Size Effect of CsPbBr3
by Ying Lv, Menghan Duan, Jie An, Yunpeng Wang and Luchao Du
Nanomaterials 2025, 15(14), 1065; https://doi.org/10.3390/nano15141065 - 9 Jul 2025
Viewed by 405
Abstract
Lead halide perovskite quantum dots, also known as perovskite nanocrystals, are considered one of the most promising photovoltaic materials for solar cells due to their outstanding optoelectronic properties and simple preparation techniques. The key factors restricting the photoelectric conversion efficiency of solar cell [...] Read more.
Lead halide perovskite quantum dots, also known as perovskite nanocrystals, are considered one of the most promising photovoltaic materials for solar cells due to their outstanding optoelectronic properties and simple preparation techniques. The key factors restricting the photoelectric conversion efficiency of solar cell systems are the separation and transmission performances of charge carriers. Here, femtosecond time-resolved ultrafast spectroscopy was used to measure the interfacial charge transfer dynamics of different sizes of CsPbBr3 assembled with TiO2. The effect of perovskite size on the charge transfer is discussed. According to our experimental data analysis, the time constants of the interfacial electron transfer and charge recombination of the assembled systems of CsPbBr3 and titanium dioxide become larger when the size of the CsPbBr3 nanocrystals increases. We discuss the physical mechanism by which the size of perovskites affects the rate of charge transfer in detail. We expect that our experimental results provide experimental support for the application of novel quantum dots for solar cell materials. Full article
(This article belongs to the Special Issue Metal Halide Perovskite Nanocrystals and Thin Films)
Show Figures

Figure 1

14 pages, 4844 KiB  
Article
In Situ Epitaxial Quantum Dot Passivation Enables Highly Efficient and Stable Perovskite Solar Cells
by Yahya A. Alzahrani, Raghad M. Alqahtani, Raghad A. Alqarni, Jenan R. Alnakhli, Shahad A. Anezi, Ibtisam S. Almalki, Ghazal S. Yafi, Sultan M. Alenzi, Abdulaziz Aljuwayr, Abdulmalik M. Alessa, Huda Alkhaldi, Anwar Q. Alanazi, Masaud Almalki and Masfer H. Alkahtani
Nanomaterials 2025, 15(13), 978; https://doi.org/10.3390/nano15130978 - 24 Jun 2025
Viewed by 590
Abstract
We report an advanced passivation strategy for perovskite solar cells (PSCs) by introducing core–shell structured perovskite quantum dots (PQDs), composed of methylammonium lead bromide (MAPbBr3) cores and tetraoctylammonium lead bromide (tetra-OAPbBr3) shells, during the antisolvent-assisted crystallization step. The epitaxial [...] Read more.
We report an advanced passivation strategy for perovskite solar cells (PSCs) by introducing core–shell structured perovskite quantum dots (PQDs), composed of methylammonium lead bromide (MAPbBr3) cores and tetraoctylammonium lead bromide (tetra-OAPbBr3) shells, during the antisolvent-assisted crystallization step. The epitaxial compatibility between the PQDs and the host perovskite matrix enables effective passivation of grain boundaries and surface defects, thereby suppressing non-radiative recombination and facilitating more efficient charge transport. At an optimal PQD concentration of 15 mg/mL, the modified PSCs demonstrated a remarkable increase in power conversion efficiency (PCE) from 19.2% to 22.85%. This enhancement is accompanied by improved device metrics, including a rise in open-circuit voltage (Voc) from 1.120 V to 1.137 V, short-circuit current density (Jsc) from 24.5 mA/cm2 to 26.1 mA/cm2, and fill factor (FF) from 70.1% to 77%. Spectral response analysis via incident photon-to-current efficiency (IPCE) revealed enhanced photoresponse in the 400–750 nm wavelength range. Additionally, long-term stability assessments showed that PQD-passivated devices retained more than 92% of their initial PCE after 900 h under ambient conditions, outperforming control devices which retained ~80%. These findings underscore the potential of in situ integrated PQDs as a scalable and effective passivation strategy for next-generation high-efficiency and stable perovskite photovoltaics. Full article
(This article belongs to the Special Issue Nanomaterials for Inorganic and Organic Solar Cells)
Show Figures

Figure 1

30 pages, 5617 KiB  
Review
Perovskite Quantum Dot-Based Memory Technologies: Insights from Emerging Trends
by Fateh Ullah, Zina Fredj and Mohamad Sawan
Nanomaterials 2025, 15(11), 873; https://doi.org/10.3390/nano15110873 - 5 Jun 2025
Viewed by 811
Abstract
Perovskite quantum dots (PVK QDs) are gaining significant attention as potential materials for next-generation memory devices leveraged by their ion dynamics, quantum confinement, optoelectronic synergy, bandgap tunability, and solution-processable fabrication. In this review paper, we explore the fundamental characteristics of organic/inorganic halide PVK [...] Read more.
Perovskite quantum dots (PVK QDs) are gaining significant attention as potential materials for next-generation memory devices leveraged by their ion dynamics, quantum confinement, optoelectronic synergy, bandgap tunability, and solution-processable fabrication. In this review paper, we explore the fundamental characteristics of organic/inorganic halide PVK QDs and their role in resistive switching memory architectures. We provide an overview of halide PVK QDs synthesis techniques, switching mechanisms, and recent advancements in memristive applications. Special emphasis is placed on the ionic migration and charge trapping phenomena governing resistive switching, along with the prospects of photonic memory devices that leverage the intrinsic photosensitivity of PVK QDs. Despite their advantages, challenges such as stability, scalability, and environmental concerns remain critical hurdles. We conclude this review with insights into potential strategies for enhancing the reliability and commercial viability of PVK QD-based memory technologies. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Graphical abstract

16 pages, 2160 KiB  
Article
Enhancing Stability and Emissions in Metal Halide Perovskite Nanocrystals Through Mn2⁺ Doping
by Thi Thu Trinh Phan, Thi Thuy Kieu Nguyen, Trung Kien Mac and Minh Tuan Trinh
Nanomaterials 2025, 15(11), 847; https://doi.org/10.3390/nano15110847 - 1 Jun 2025
Cited by 1 | Viewed by 674
Abstract
Metal halide perovskite (MHP) nanocrystals (NCs) offer great potential for high-efficiency optoelectronic devices; however, they suffer from structural softness and chemical instability. Doping MHP NCs can overcome this issue. In this work, we synthesize Mn-doped methylammonium lead bromide (MAPbBr3) NCs using [...] Read more.
Metal halide perovskite (MHP) nanocrystals (NCs) offer great potential for high-efficiency optoelectronic devices; however, they suffer from structural softness and chemical instability. Doping MHP NCs can overcome this issue. In this work, we synthesize Mn-doped methylammonium lead bromide (MAPbBr3) NCs using the ligand-assisted reprecipitation method and investigate their structural and optical stability. X-ray diffraction confirms Mn2⁺ substitution at Pb2⁺ sites and lattice contraction. Photoluminescence (PL) measurements show a blue shift, significant PL quantum yield enhancement, reaching 72% at 17% Mn2⁺ doping, and a 34% increase compared to undoped samples, attributed to effective defect passivation and reduced non-radiative recombination, supported by time-resolved PL data. Mn2⁺ doping also improves long-term stability under ambient conditions. Low-temperature PL reveals the crystal-phase transitions of perovskite NCs and Mn-doped NCs to be somewhat different than those of pure MAPbBr3. Mn2⁺ incorporation into perovskite promotes self-assembly into superlattices with larger crystal sizes, better structural order, and stronger inter-NC coupling. These results demonstrate that Mn2⁺ doping enhances both optical performance and structural robustness, advancing the potential of MAPbBr3 NCs for stable optoelectronic applications. Full article
(This article belongs to the Special Issue Recent Advances in Halide Perovskite Nanomaterials)
Show Figures

Graphical abstract

9 pages, 1394 KiB  
Article
Magnetically Induced Switching of Circularly Polarized Luminescence Using Electromagnets
by Yoshitane Imai, Kota Fukuchi, Yoshihiko Yanagihashi and Satoko Suzuki
Molecules 2025, 30(11), 2426; https://doi.org/10.3390/molecules30112426 - 31 May 2025
Viewed by 461
Abstract
Intense circularly polarized luminescence is crucial for high-performance electroluminescent, optoelectronic, and photonic devices. This study investigates the magneto-chiral characteristics of two achiral soluble diamagnetic perovskite-type PbQDs. Magnetic fields of 158 and 198 mT are applied using an electromagnet in a toluene solution at [...] Read more.
Intense circularly polarized luminescence is crucial for high-performance electroluminescent, optoelectronic, and photonic devices. This study investigates the magneto-chiral characteristics of two achiral soluble diamagnetic perovskite-type PbQDs. Magnetic fields of 158 and 198 mT are applied using an electromagnet in a toluene solution at 25 °C. Both PbQDs show a magnetic circularly polarized luminescence magnitude of approximately 10−3 within the (480 to 580) nm wavelength range. The strength of the magnetic circularly polarized luminescence increases with the intensity of the applied magnetic field. Furthermore, the study demonstrates rapid and reversible switching of the rotation direction of the magnetic circularly polarized luminescence when the magnetic poles are rapidly changed. These results suggest that the direction (right- and left-rotating light) and circular polarization of circularly polarized luminescence (CPL) from circularly polarized perovskites can be alternately and freely controlled by applying an external magnetic field with an appropriate direction and strength. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Graphical abstract

13 pages, 1143 KiB  
Article
Activation of Perovskite Nanocrystals for Volumetric Displays Using Near-Infrared Photon Upconversion by Triplet Fusion
by Yu Hu, Guiwen Luo, Pengfei Niu, Ling Zhang, Tianjun Yu, Jinping Chen, Yi Li and Yi Zeng
Molecules 2025, 30(11), 2273; https://doi.org/10.3390/molecules30112273 - 22 May 2025
Viewed by 456
Abstract
Coupling organic light-harvesting materials with lead halide perovskite quantum dots (LHP QDs) is an attractive approach that could provide great potential in optoelectronic applications owing to the diversity of organic materials available and the intriguing optical and electronic properties of LHP QDs. Here, [...] Read more.
Coupling organic light-harvesting materials with lead halide perovskite quantum dots (LHP QDs) is an attractive approach that could provide great potential in optoelectronic applications owing to the diversity of organic materials available and the intriguing optical and electronic properties of LHP QDs. Here, we demonstrate energy collection by CsPbI3 QDs from a near-infrared (NIR) light-harvesting upconversion system. The upconversion system consists of Pd-tetrakis-5,10,15,20-(p-methoxycarbonylphenyl)-tetraanthraporphyrin (PdTAP) as the sensitizer to harvest NIR photons and rubrene as the annihilator to generate upconverted photons via triplet fusion. Steady-state and time-resolved photoluminescence spectra reveal that CsPbI3 QDs are energized via radiative energy transfer from the singlet excited rubrene with photophysics fidelity of respective components. In addition, a volumetric display demo incorporating CsPbI3 QDs as light emitters employing triplet fusion upconversion was developed, showing bright luminescent images from CsPbI3 QDs. These results present the feasibility of integrating organic light-harvesting systems and perovskite QDs, enabling diverse light harvesting and activation of perovskite materials for optoelectronic applications. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Graphical abstract

10 pages, 2743 KiB  
Article
Ternary Heterojunction Synaptic Transistors Based on Perovskite Quantum Dots
by Shuqiong Lan, Jinkui Si, Wangying Xu, Lan Yang, Jierui Lin and Chen Wu
Nanomaterials 2025, 15(9), 688; https://doi.org/10.3390/nano15090688 - 1 May 2025
Viewed by 499
Abstract
The traditional von Neumann architecture encounters significant limitations in computational efficiency and energy consumption, driving the development of neuromorphic devices. The optoelectronic synaptic device serves as a fundamental hardware foundation for the realization of neuromorphic computing and plays a pivotal role in the [...] Read more.
The traditional von Neumann architecture encounters significant limitations in computational efficiency and energy consumption, driving the development of neuromorphic devices. The optoelectronic synaptic device serves as a fundamental hardware foundation for the realization of neuromorphic computing and plays a pivotal role in the development of neuromorphic chips. This study develops a ternary heterojunction synaptic transistor based on perovskite quantum dots to tackle the critical challenge of synaptic weight modulation in organic synaptic devices. Compared to binary heterojunction synaptic transistor, the ternary heterojunction synaptic transistor achieves an enhanced hysteresis window due to the synergistic charge-trapping effects of acceptor material and perovskite quantum dots. The memory window decreases with increasing source-drain voltage (VDS) but expands with prolonged program/erase time, demonstrating effective carrier trapping modulation. Furthermore, the device successfully emulates typical photonic synaptic behaviors, including excitatory postsynaptic currents (EPSCs), paired-pulse facilitation (PPF), and the transition from short-term plasticity (STP) to long-term plasticity (LTP). This work provides a simplified strategy for high-performance optoelectronic synaptic transistors, showcasing significant potential for neuromorphic computing and adaptive intelligent systems. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

9 pages, 2715 KiB  
Article
Three-Dimensional High-Resolution Laser Lithography of CsPbBr3 Quantum Dots in Photoresist with Sub-100 nm Feature Size
by Boyuan Cai, Haoran Jiang, Run Bai, Shengting Zhu, Yinan Zhang, Haoyi Yu, Min Gu and Qiming Zhang
Nanomaterials 2025, 15(7), 531; https://doi.org/10.3390/nano15070531 - 31 Mar 2025
Cited by 1 | Viewed by 677
Abstract
Perovskite quantum dots (PQDs), with their excellent optical properties, have become a leading semiconductor material in the field of optoelectronics. However, to date, it has been a challenge to achieve the three-dimensional high-resolution patterning of perovskite quantum dots. In this paper, an in [...] Read more.
Perovskite quantum dots (PQDs), with their excellent optical properties, have become a leading semiconductor material in the field of optoelectronics. However, to date, it has been a challenge to achieve the three-dimensional high-resolution patterning of perovskite quantum dots. In this paper, an in situ femtosecond laser-direct-writing technology was demonstrated for three-dimensional high-resolution patterned CsPbBr3 PQDs using a two-photon photoresist nanocomposite doped with the CsPbBr3 perovskite precursor. By adjusting the laser processing parameters, the minimum line width of the PQDs material was confirmed to be 98.6 nm, achieving a sub-100 nm PQDs nanowire for the first time. In addition, the fluorescence intensity of the laser-processed PQDs can be regulated by the laser power. Our findings provide a new technology for fabricating high-resolution display devices based on laser-direct-writing CsPbBr3 PQDs materials. Full article
(This article belongs to the Special Issue Nano-Optics and Nanophotonics)
Show Figures

Figure 1

15 pages, 5983 KiB  
Article
Mn2+-Doped CsPbBr2I Quantum Dots Photosensitive Films for High-Performance Photodetectors
by Mengwei Chen, Wei Huang, Chenguang Shen, Yingping Yang and Jie Shen
Nanomaterials 2025, 15(6), 444; https://doi.org/10.3390/nano15060444 - 15 Mar 2025
Viewed by 833
Abstract
The variable bandgap and high absorption coefficient of all-inorganic halide perovskite quantum dots (QDs), particularly CsPbBr2I make them highly promising for photodetector applications. However, their high defect density and poor stability limit their performance. To overcome these problems, Mn2+-doped [...] Read more.
The variable bandgap and high absorption coefficient of all-inorganic halide perovskite quantum dots (QDs), particularly CsPbBr2I make them highly promising for photodetector applications. However, their high defect density and poor stability limit their performance. To overcome these problems, Mn2+-doped CsPbBr2I QDs with varying concentrations were synthesized via the one-pot method in this work. By replacing Pb2+ ions, moderate Mn2+ doping caused lattice contraction and improved crystallinity. At the same time, Mn2+-doping effectively passivated surface defects, reducing the defect density by 33%, and suppressed non-radiative recombination, thereby improving photoluminescence (PL) intensity and carrier mobility. The optimized Mn:CsPbBr2I QDs-based photodetector exhibited superior performance, with a dark current of 1.19 × 10−10 A, a photocurrent of 1.29 × 10−5 A, a responsivity (R) of 0.83 A/W, a specific detectivity (D*) of 3.91 × 1012 Jones, an on/off ratio up to 105, and the response time reduced to less than 10 ms, all outperforming undoped CsPbBr2I QDs devices. Stability tests demonstrated enhanced durability, retaining 80% of the initial photocurrent after 200 s of cycling (compared to 50% for undoped devices) and stable operation over 20 days. This work offers a workable strategy for rational doping and structural optimization in the construction of high-performance perovskite optoelectronic devices. Full article
(This article belongs to the Special Issue Advances in Polymer Nanofilms)
Show Figures

Figure 1

21 pages, 2799 KiB  
Article
Numerical Simulation and Hole Transport Layers Optimization of a Lead Sulfide-Based Solar Cell with a Power Conversion Efficiency of Above 22%
by Edson L. Meyer, Inam Vulindlela, Athandwe Paca, Mojeed A. Agoro and Nicholas Rono
Coatings 2025, 15(3), 255; https://doi.org/10.3390/coatings15030255 - 20 Feb 2025
Viewed by 1208
Abstract
Recently, the numerical simulation of solar cells has attracted tantamount scientific attention in the photovoltaic community because it saves on research time and resources before the actual fabrication of the devices in the laboratories. Despite significant advancements in the fabrication of quantum dot-sensitized [...] Read more.
Recently, the numerical simulation of solar cells has attracted tantamount scientific attention in the photovoltaic community because it saves on research time and resources before the actual fabrication of the devices in the laboratories. Despite significant advancements in the fabrication of quantum dot-sensitized solar cells (QDSSCs), the power conversion efficiency (PCE) is still low when compared to other solar cells such as perovskite. This efficiency gap poses a substantial challenge in harnessing the full potential of QDSSCs for widespread adoption in renewable energy applications. Enhancing the efficiency of QDSSCs is imperative for their commercial viability and widespread deployment. In this work, SCAPS-1D was used in the simulation of QDSSCs. The solar cell with a general configuration of FTO/TiO2/PbS/HTL/Au was investigated. In the device, PbS quantum dots were inserted as the absorber layer, TiO2 as the electron transport layer (ETL), gold as the back contact, and the following inorganic materials, i.e., copper (I) iodide (CuI), copper (I) oxide (Cu2O), cadmium zinc telluride selenide (CZTSe), copper iron tin sulfide (CFTS), and copper zinc tin sulfide selenide (CZTSSe) were tested as HTL materials, and FTO acted as the conductive substrate. The best HTL material (CZTSSe) exhibited a PCE of 22.61%, with a fill factor (FF) of 84.67%, an open circuit voltage (Voc) of 0.753 V, and a current density (Jsc) of 35.48 mA cm−2. This study contributes to the field by employing SCAPS-1D simulations to optimize QDSSCs, exploring novel inorganic HTL materials for these solar cells and identifying CZTSSe as a promising low-cost HTL that significantly enhances both the performance and commercial viability of QDSSCs. Full article
Show Figures

Figure 1

12 pages, 3447 KiB  
Article
High Performance Phototransistor Based on 0D-CsPbBr3/2D-MoS2 Heterostructure with Gate Tunable Photo-Response
by Chen Yang, Yangyang Xie, Lei Zheng, Hanqiang Liu, Peng Liu, Fang Wang, Junqing Wei and Kailiang Zhang
Nanomaterials 2025, 15(4), 307; https://doi.org/10.3390/nano15040307 - 17 Feb 2025
Cited by 2 | Viewed by 973
Abstract
Monolayer MoS2 has been widely researched in high performance phototransistors for its high carrier mobility and strong photoelectric conversion ability. However, some defects in MoS2, such as vacancies or impurities, provide more possibilities for carrier recombination; thus, restricting the formation [...] Read more.
Monolayer MoS2 has been widely researched in high performance phototransistors for its high carrier mobility and strong photoelectric conversion ability. However, some defects in MoS2, such as vacancies or impurities, provide more possibilities for carrier recombination; thus, restricting the formation of photocurrents and resulting in decreased responsiveness. Herein, all-inorganic CsPbBr3 perovskite quantum dots (QDs) with high photoelectric conversion efficiency and light absorption coefficients are introduced to enhance the responsivity of a 2D MoS2 phototransistor. The CsPbBr3/MoS2 heterostructure has a type II energy band, and it has a high responsivity of ~1790 A/W and enhanced detectivity of ~2.4 × 1011 Jones. Additionally, the heterostructure CsPbBr3/MoS2 enables the synergistic effect mechanism of photoconduction and photogating effects with the gate tunable photo-response, which could also contribute to an improved performance of the MoS2 phototransistor. This work provides new strategies for performance phototransistors and is expected to play an important role in many fields, such as optical communication, environmental monitoring and biomedical imaging, and promote the development and application of related technologies. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

27 pages, 10263 KiB  
Review
Recent Advances and Challenges in Metal Halide Perovskite Quantum Dot-Embedded Hydrogels for Biomedical Application
by Junyi Yu, Chengran Zhang, Lijun Kong and Zhengtao Deng
Molecules 2025, 30(3), 643; https://doi.org/10.3390/molecules30030643 - 31 Jan 2025
Viewed by 1584
Abstract
Metal halide perovskite quantum dots (MHP QDs), as a kind of fluorescent material, have attracted much attention due to their excellent photoluminescence (PL) quantum yield (QY), narrow full width at half maximum (FWHM), broad absorption, and tunable emission wavelength. However, the instability and [...] Read more.
Metal halide perovskite quantum dots (MHP QDs), as a kind of fluorescent material, have attracted much attention due to their excellent photoluminescence (PL) quantum yield (QY), narrow full width at half maximum (FWHM), broad absorption, and tunable emission wavelength. However, the instability and biological incompatibility of MHP QDs greatly hinder their application in the field of biomedicine. Hydrogels are three-dimensional polymer networks that are widely used in biomedicine because of their high transparency and excellent biocompatibility. This review not only introduces the latest research progress in improving the mechanical and optical properties of hydrogels/MHP QDs but also combines it with the existing methods for enhancing the stability of MHP QDs in hydrogels, aiming to provide new ideas for researchers in material selection and methods for constructing MHP QD-embedded hydrogels. Finally, their application prospects and future challenges are introduced. Full article
(This article belongs to the Special Issue Emerging Topics in Luminescent Materials)
Show Figures

Figure 1

11 pages, 1841 KiB  
Article
Complex Refractive Index Spectrum of CsPbBr3 Nanocrystals via the Effective Medium Approximation
by Sang-Hyuk Park, Jungwon Kim, Min Ju Kim, Min Woo Kim, Robert A. Taylor and Kwangseuk Kyhm
Nanomaterials 2025, 15(3), 181; https://doi.org/10.3390/nano15030181 - 24 Jan 2025
Cited by 1 | Viewed by 1709
Abstract
We have estimated the intrinsic complex refractive index spectrum of a CsPbBr3 nanocrystal. With various dilute solutions of CsPbBr3 nanocrystals dissolved in toluene, effective refractive indices were measured at two different wavelengths using Michelson interferometry. Given the effective absorption spectrum of [...] Read more.
We have estimated the intrinsic complex refractive index spectrum of a CsPbBr3 nanocrystal. With various dilute solutions of CsPbBr3 nanocrystals dissolved in toluene, effective refractive indices were measured at two different wavelengths using Michelson interferometry. Given the effective absorption spectrum of the solution, a full spectrum of the effective refractive index was also obtained through the Kramers–Krönig relations. Based on the Maxwell–Garnett model in the effective medium approximation, the real and imaginary spectrum of the complex refractive index was estimated for the CsPbBr3 nanocrystal, and the dominant inaccuracy was attributed to the size inhomogeneity. Full article
(This article belongs to the Special Issue Photonics and Optoelectronics with Functional Nanomaterials)
Show Figures

Figure 1

25 pages, 7109 KiB  
Review
Research Progress on Quantum Dot-Embedded Polymer Films and Plates for LCD Backlight Display
by Bin Xu, Jiankang Zhou, Chengran Zhang, Yunfu Chang and Zhengtao Deng
Polymers 2025, 17(2), 233; https://doi.org/10.3390/polym17020233 - 17 Jan 2025
Cited by 3 | Viewed by 2138
Abstract
Abstract: Quantum dot–polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates [...] Read more.
Abstract: Quantum dot–polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates has made great progress in both synthesis technology and optical properties. However, due to the shortcomings of quantum dots, such as cadmium selenide (CdSe), indium phosphide (InP), lead halide perovskite (LHP), poor water, oxygen, and light stability, and incapacity for large-scale synthesis, their practical application is still restricted. Various polymers, such as methyl methacrylate (PMMA), polyethylene terephthalate (PET), polystyrene (PS), polyvinylidene fluoride (PVDF), polypropylene (PP), etc., are widely used in packaging quantum dot materials because of their high plasticity, simple curing, high chemical stability, and good compatibility with quantum dot materials. This paper focuses on the application and development of quantum dot–polymer materials in the field of backlight displays, summarizes and expounds the synthesis strategies, advantages, and disadvantages of different quantum dot–polymer materials, provides inspiration for the optimization of quantum dot–polymer materials, and promotes their application in the field of wide-color-gamut backlight display. Full article
(This article belongs to the Special Issue Polymers/Their Hybrid Materials for Optoelectronic Applications)
Show Figures

Figure 1

Back to TopTop