Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = permeation tube

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 37431 KB  
Review
A Multiscale and Integrative Review of Bamboo Permeability: Structural Mechanisms, Detection Techniques, and Enhancement Approaches
by Na Su, Qingqing Yan, Yihua Li, Haocheng Xu, Changhua Fang and Wenyu Su
Forests 2025, 16(11), 1744; https://doi.org/10.3390/f16111744 - 19 Nov 2025
Viewed by 800
Abstract
Bamboo, a fast-growing and biodegradable industrial crop, exhibits excellent mechanical properties, which facilitate its widespread use in construction, furniture, and decorative applications. However, its inherently limited permeability hinders processing during drying, chemical modification, dyeing, and impregnation. Although previous studies have explored structural and [...] Read more.
Bamboo, a fast-growing and biodegradable industrial crop, exhibits excellent mechanical properties, which facilitate its widespread use in construction, furniture, and decorative applications. However, its inherently limited permeability hinders processing during drying, chemical modification, dyeing, and impregnation. Although previous studies have explored structural and treatment-related aspects, few have offered a comprehensive and integrative overview that bridges anatomical structure, permeation mechanisms, performance evaluation, and treatment strategies. This review synthesizes 126 publications from 1997 to 2024 to provide a comprehensive, multidimensional analysis of bamboo permeability. Structure–function relationships are examined by assessing how vessels, sieve tubes, perforation plates, pits, and bamboo nodes influence permeability, with an emphasis on quantitative correlations. Capillarity, diffusion, and viscous resistance are integrated into a unified theoretical framework, proposing a model that couples longitudinal capillary rise with transverse diffusion. Detection approaches, including both direct techniques (weight gain, microscopy, tracer elements, fluorescence imaging) and indirect techniques (porosity measurement, Micro-CT), with their respective advantages, limitations, and applications. Enhancement strategies are categorized into chemical, physical, and biological methods, with assessments of their effectiveness, environmental impact, and energy consumption. Overall, this review provides a holistic perspective on bamboo permeability and offers valuable guidance for future research and engineering applications. Full article
(This article belongs to the Special Issue Wood Processing, Modification and Performance)
Show Figures

Figure 1

16 pages, 1196 KB  
Article
Rapid On-Field Monitoring for Odor-Active Homologous Aliphatic Aldehydes and Ketones from Hot-Mix Asphalt Emission via Dynamic-SPME Air Sampling with Online Gas Chromatographic Analysis
by Stefano Dugheri, Giovanni Cappelli, Ilaria Rapi, Riccardo Gori, Lorenzo Venturini, Niccolò Fanfani, Chiara Vita, Fabio Cioni, Ettore Guerriero, Domenico Cipriano, Gian Luca Bartolucci, Luca Di Giampaolo, Mieczyslaw Sajewicz, Veronica Traversini, Nicola Mucci and Antonio Baldassarre
Molecules 2025, 30(17), 3545; https://doi.org/10.3390/molecules30173545 - 29 Aug 2025
Viewed by 1021
Abstract
Odorous emissions from hot-mix asphalt (HMA) plants are a growing environmental concern, particularly due to airborne aldehydes and ketones, which have low odor thresholds and a strong sensory impact. This study presents a field-ready analytical method for monitoring odor-active volatile compounds. The system [...] Read more.
Odorous emissions from hot-mix asphalt (HMA) plants are a growing environmental concern, particularly due to airborne aldehydes and ketones, which have low odor thresholds and a strong sensory impact. This study presents a field-ready analytical method for monitoring odor-active volatile compounds. The system uses dynamic solid-phase microextraction (SPME and SPME Arrow) with on-fiber derivatization via O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) and is coupled to gas chromatography–mass spectrometry (GC–MS) for direct detection. A flow-cell sampling unit enables the real-time capture of aliphatic aldehydes and ketones under transient emission conditions. Calibration using permeation tubes demonstrated sensitivity (limits of detection (LODs) below 0.13 μg/m3), recovery above 85% and consistent reproducibility. Compound identity was confirmed using retention indices and fragmentation patterns. Uncertainty assessment followed ISO GUM (Guide to the Expression of Uncertainty in Measurement) standards, thereby validating the method’s environmental applicability. Field deployment 200 m from an HMA facility identified measurable concentrations that aligned with CALPUFF model predictions. The method’s dual-isomer resolution and 10 min runtime make it ideal for responding to time-sensitive odor complaints. Overall, this approach supports regulatory efforts by enabling high-throughput on-site chemical monitoring and improving source attribution in cases of odor nuisance. Full article
Show Figures

Figure 1

12 pages, 2650 KB  
Article
Calibration and Detection of Phosphine Using a Corrosion-Resistant Ion Trap Mass Spectrometer
by Dragan Nikolić and Xu Zhang
Biophysica 2025, 5(3), 28; https://doi.org/10.3390/biophysica5030028 - 17 Jul 2025
Viewed by 710
Abstract
We present a corrosion-resistant quadrupole ion trap mass spectrometer (QIT-MS) designed for trace detection of volatiles in sulfuric acid aerosols, with a specific focus on phosphine (PH3). Here, we detail the gas calibration methodology using permeation tube technology for generating certified [...] Read more.
We present a corrosion-resistant quadrupole ion trap mass spectrometer (QIT-MS) designed for trace detection of volatiles in sulfuric acid aerosols, with a specific focus on phosphine (PH3). Here, we detail the gas calibration methodology using permeation tube technology for generating certified ppb-level PH3/H2S/CO2 mixtures, and report results from mass spectra with sufficient resolution to distinguish isotopic envelopes that validate the detection of PH3 at a concentration of 62 ppb. Fragmentation patterns for PH3 and H2S agree with NIST data, and signal-to-noise performance confirms ppb sensitivity over 2.6 h acquisition periods. We further assess spectral interferences from oxygen isotopes and propose a detection scheme based on isolated phosphorus ions (P+) to enable specific and interference-resistant identification of PH3 and other reduced phosphorus species of astrobiological interest in Venus-like environments. This work extends the capabilities of QIT-MS for trace gas analysis in chemically aggressive atmospheric conditions. Full article
(This article belongs to the Special Issue Mass Spectrometry Applications in Biology Research)
Show Figures

Figure 1

16 pages, 5440 KB  
Article
Investigation of Hydrogen Transport Behavior in Polyethylene Terephthalate Membrane by Prolonged Hydrogen Exposure Treatments
by Elman Abdullayev, Thorsten Fladung, Paul-Ludwig Michael Noeske and Bernd Mayer
Energies 2024, 17(24), 6478; https://doi.org/10.3390/en17246478 - 23 Dec 2024
Viewed by 2259
Abstract
Polyethylene terephthalate (PET) is one of the most used polymeric substances in production of packaging materials, fibers, textiles, coatings, and engineering materials. This paper elucidates the transport parameters of hydrogen gas through a PET membrane, which was selected to be a sufficiently permeable [...] Read more.
Polyethylene terephthalate (PET) is one of the most used polymeric substances in production of packaging materials, fibers, textiles, coatings, and engineering materials. This paper elucidates the transport parameters of hydrogen gas through a PET membrane, which was selected to be a sufficiently permeable substrate for setting up an empirical strategy that aims at developing hydrogen barrier coatings. An examination of the structural degradation of PET by prolonged hydrogen exposure was performed. Hydrogen permeation tests were performed on a PET membrane with a thickness of 50 μm. To investigate the behavior of the material by prolonged hydrogen treatment, hydrogen-exposure experiments were carried out at a certain hydrogen pressure and time. Comparisons of the mechanical properties of the material were documented both before and after hydrogen exposure. A strong impact of comparatively transient hydrogen exposure on the mechanical and hydrogen transport properties of PET was observed. After 72 h of hydrogen exposure at 103 hPa and 300 K, the tensile strength decreased by 19%, the diffusion coefficients more than doubled, and material fracture behavior changed from ductile to distinctly brittle. This underlines the importance of developing effective hydrogen barrier coatings in case PET tubing is intended for use in hydrogen transport or storage. Full article
Show Figures

Figure 1

18 pages, 1916 KB  
Article
SF6 Tracer Technique to Estimate Methane Emission in a Dual-Flow Continuous Culture System: Test and Application
by Richard R. Lobo, Gerald Salas-Solis, Juan Vargas, Alyce Monteiro, Sarah S. da Silva, Kaliu Silva, Jose Arce-Cordero, Diwakar Vyas, Nicolas DiLorenzo, Jhones O. Sarturi and Antonio P. Faciola
Fermentation 2024, 10(8), 394; https://doi.org/10.3390/fermentation10080394 - 31 Jul 2024
Viewed by 2780
Abstract
This study aimed to evaluate the sulfur hexafluoride (SF6) tracer technique for estimating methane (CH4) emissions in dual-flow continuous culture systems (DFCCS). In experiment 1 (Exp1), fermenters were filled with water, and known CH4 concentrations (0, 1.35, 2.93, [...] Read more.
This study aimed to evaluate the sulfur hexafluoride (SF6) tracer technique for estimating methane (CH4) emissions in dual-flow continuous culture systems (DFCCS). In experiment 1 (Exp1), fermenters were filled with water, and known CH4 concentrations (0, 1.35, 2.93, or 4.43 g/d) were injected using permeation tubes with SF6 release rates (3.30 or 9.65 mg/d). Headspace gas was collected using canisters, and the SF6 technique estimated CH4 recovery. Experiment 2 (Exp2) involved a DFCCS fermentation trial with ruminal fluid from three Holstein cows, testing diets with soybean meal or its partial replacement (50%) by Chlorella or Spirulina. Headspace gas was collected at intervals post-feeding. Standard curves for SF6 and CH4 quantification were inadequate for DFCCS samples, with the CH4:SF6 ratio differing from standards, indicating the data needs further SF6 release rate evaluation. In Exp1, a high correlation (r = 0.97) was found between infused and calculated CH4, indicating good repeatability. Low and high SF6 rates performed similarly at low CH4 infusion, but high SF6 overestimated CH4 at high infusion. Exp2 showed CH4 emissions irrespective of SF6 rate and indicated reduced CH4 emissions and increased NDF degradation with algae-containing diets. Further evaluation of the SF6 tracer technique is warranted for DFCCS. Full article
(This article belongs to the Special Issue In Vitro Digestibility and Ruminal Fermentation Profile, 2nd Edition)
Show Figures

Figure 1

15 pages, 1605 KB  
Article
Revisiting the Effect of the Resistance to Gas Accumulation in Constant Volume Systems on the Membrane Time Lag
by Peter Jr. Leszczynski, Siamak Lashkari and Boguslaw Kruczek
Membranes 2024, 14(8), 167; https://doi.org/10.3390/membranes14080167 - 30 Jul 2024
Cited by 2 | Viewed by 4213
Abstract
The time-lag method is commonly used to determine membrane permeability, diffusivity and solubility in a single gas permeation experiment in a constant volume system. An unwritten assumption on which this method relies is that there is no resistance to gas accumulation in the [...] Read more.
The time-lag method is commonly used to determine membrane permeability, diffusivity and solubility in a single gas permeation experiment in a constant volume system. An unwritten assumption on which this method relies is that there is no resistance to gas accumulation in the downstream receiver of the system. However, this is not the case, even with the specially designed receiver used in this study when, in addition to tubing, the receiver utilizes an additional accumulation tank. The resistance to gas accumulation originates from a finite diffusivity (Knudsen diffusion) of gases in tubing, which are magnified by “resistance-free” accumulation tank(s). As a result of the resistance to gas accumulation, the time lag of the membrane is underestimated, which leads to an overestimation of gas diffusivity in the membrane. The experimentally predicted resistances in different configurations of the receiver, expressed by the difference in the time lag at two different receiver locations, were several times greater than the theoretically predicted values. A high molecular PPO membrane was used to demonstrate this effect. The time lags measured at different locations differed by as much as 30%. The diffusivity of nitrogen in a PPO of 4.04 × 10−12 m2/s determined at the optimum configuration of the receiver is at least 50% lower than the literature-reported values. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

14 pages, 2420 KB  
Article
On the Scalability of a Membrane Unit for Ultrapure Hydrogen Separation
by Vincenzo Narcisi, Luca Farina and Alessia Santucci
Hydrogen 2024, 5(2), 149-162; https://doi.org/10.3390/hydrogen5020010 - 17 Apr 2024
Cited by 3 | Viewed by 2243
Abstract
Hydrogen permeation sparked a renewed interest in the second half of the 20th century due to the favorable features of this element as an energy factor. Furthermore, niche applications such as nuclear fusion gained attention for the highest selectivity ensured by self-supported dense [...] Read more.
Hydrogen permeation sparked a renewed interest in the second half of the 20th century due to the favorable features of this element as an energy factor. Furthermore, niche applications such as nuclear fusion gained attention for the highest selectivity ensured by self-supported dense metallic membranes, especially those consisting of Pd-based alloys. In this framework, the ENEA Frascati laboratories have decades of experience in the manufacturing, integration, and operation of Pd-Ag permeators. Most of the experimental investigations were performed on single-tube membranes, proving their performance under relevant operational conditions. Nowadays, once the applicability of this technology has been demonstrated, the scalability of the single-tube experience over medium- and large-scale units must be verified. To do this, ENEA Frascati laboratories have designed and constructed a multi-tube permeator, namely the Medium-Scaled Membrane Reactor (MeSMeR), focused on scalability assessment. In this work, the results obtained with the MeSMeR facility have been compared with previous experimental campaigns conducted on single-tube units, and the scalability of the permeation results has been proven. Moreover, post-test simulations have been performed based on single-tube finite element modeling, proving the scalability of the numerical outcomes and the possibility of using this tool for scale-up design procedures. Full article
Show Figures

Figure 1

20 pages, 9195 KB  
Article
Simultaneously Recovery of Thorium and Tungsten through Hybrid Electrolysis–Nanofiltration Processes
by Geani Teodor Man, Paul Constantin Albu, Aurelia Cristina Nechifor, Alexandra Raluca Grosu, Diana Ionela Popescu (Stegarus), Vlad-Alexandru Grosu, Virgil Emanuel Marinescu and Gheorghe Nechifor
Toxics 2024, 12(2), 103; https://doi.org/10.3390/toxics12020103 - 26 Jan 2024
Cited by 5 | Viewed by 2957
Abstract
The recovery and recycling of metals that generate toxic ions in the environment is of particular importance, especially when these are tungsten and, in particular, thorium. The radioactive element thorium has unexpectedly accessible domestic applications (filaments of light bulbs and electronic tubes, welding [...] Read more.
The recovery and recycling of metals that generate toxic ions in the environment is of particular importance, especially when these are tungsten and, in particular, thorium. The radioactive element thorium has unexpectedly accessible domestic applications (filaments of light bulbs and electronic tubes, welding electrodes, and working alloys containing aluminum and magnesium), which lead to its appearance in electrical and electronic waste from municipal waste management platforms. The current paper proposes the simultaneous recovery of waste containing tungsten and thorium from welding electrodes. Simultaneous recovery is achieved by applying a hybrid membrane electrolysis technology coupled with nanofiltration. An electrolysis cell with sulphonated polyether–ether–ketone membranes (sPEEK) and a nanofiltration module with chitosan–polypropylene membranes (C–PHF–M) are used to carry out the hybrid process. The analysis of welding electrodes led to a composition of W (tungsten) 89.4%; Th 7.1%; O2 2.5%; and Al 1.1%. Thus, the parameters of the electrolysis process were chosen according to the speciation of the three metals suggested by the superimposed Pourbaix diagrams. At a constant potential of 20.0 V and an electrolysis current of 1.0 A, the pH is varied and the possible composition of the solution in the anodic workspace is analyzed. Favorable conditions for both electrolysis and nanofiltration were obtained at pH from 6 to 9, when the soluble tungstate ion, the aluminum hydroxide, and solid thorium dioxide were formed. Through the first nanofiltration, the tungstate ion is obtained in the permeate, and thorium dioxide and aluminum hydroxide in the concentrate. By adding a pH 13 solution over the two precipitates, the aluminum is solubilized as sodium aluminate, which will be found after the second nanofiltration in the permeate, with the thorium dioxide remaining integrally (within an error of ±0.1 ppm) on the C–PHF–M membrane. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

17 pages, 3118 KB  
Article
A Feasibility Study of Vortex Tube-Powered Membrane Distillation (MD) for Desalination
by Jamel Orfi and Emad Ali
Water 2023, 15(21), 3767; https://doi.org/10.3390/w15213767 - 27 Oct 2023
Cited by 3 | Viewed by 2343
Abstract
This work theoretically studies the capability of using vortex tubes to provide the necessary heating and cooling energies required by a typical direct-contact membrane distillation (MD) process. The vortex tube generates a temperature separation that can supply the membrane distillation process with sufficiently [...] Read more.
This work theoretically studies the capability of using vortex tubes to provide the necessary heating and cooling energies required by a typical direct-contact membrane distillation (MD) process. The vortex tube generates a temperature separation that can supply the membrane distillation process with sufficiently hot feed and cold permeate with a temperature difference as large as 70 °C. Several structures integrating vortex tubes and MD with and without heat recovery and cascading are proposed and their respective performances are assessed and compared. A maximum distillate production of 38.5 kg/h was obtained at an inlet air pressure of 9 bar, cold air mass ratio of 0.7, and air-to-water mass ratio of 9. The corresponding energy consumption was found to be 25.9 kWh/m3. The production rate can be increased up to 75.2 kg/h and the specific energy consumption can be reduced to 13.3 kWh/m3 when three MD stages were connected in series using the same single vortex tube at the same operating conditions. It is found that the cold fraction plays an important role in the balance between heating and cooling operations. In addition, cold fraction values smaller than 0.7 should be avoided to prevent water from freezing inside the membrane. Full article
(This article belongs to the Special Issue Desalination Technologies and Renewable Energy Sources)
Show Figures

Figure 1

12 pages, 10769 KB  
Article
Manufacturing of PAV-ONE, a Permeator against Vacuum Mock-Up with Niobium Membrane
by Francesca Papa, Alessandro Venturini, Gianfranco Caruso, Serena Bassini, Chiara Ciantelli, Angela Fiore, Vincenzo Cuzzola, Antonio Denti and Marco Utili
Energies 2023, 16(14), 5471; https://doi.org/10.3390/en16145471 - 19 Jul 2023
Cited by 6 | Viewed by 2175
Abstract
The Permeator Against Vacuum (PAV) is one of the proposed technologies for the Tritium Extraction System of the WCLL BB (Water-Cooled Lithium-Lead Breeding Blanket) of the EU DEMO reactor. In this paper, the manufacturing of the first PAV mock-up with a niobium membrane [...] Read more.
The Permeator Against Vacuum (PAV) is one of the proposed technologies for the Tritium Extraction System of the WCLL BB (Water-Cooled Lithium-Lead Breeding Blanket) of the EU DEMO reactor. In this paper, the manufacturing of the first PAV mock-up with a niobium membrane with a cylindrical configuration is presented. This work aimed to demonstrate the possibility of manufacturing a relevant-size PAV to be later tested in the TRIEX-II facility. The adopted prototypical solutions are described in detail, starting with the methodology developed to join the Nb tubes with a 10CrMo9-10 (A182 F22) plate. Dedicated manufacturing and welding procedures, based on vacuum brazing with a nickel-based brazing alloy, were developed to solve the problem. This new kind of brazing was first analyzed to check the morphology of the joint and then tested to check its capability to withstand the TRIEX-II operative conditions. In parallel, the compatibility with a lithium-lead environment was analyzed by exposing samples of niobium and 10CrMo9-10 (A335 P22) to a flow of the eutectic alloy at 500 °C up to 4000 h. Finally, the PAV mock-up was installed in the TRIEX-II facility. Full article
Show Figures

Figure 1

16 pages, 3346 KB  
Article
Study on Facile and Full-Scale Reuse Treatment of Wastewater Produced from Tail Gas Oxidation-Absorption Technology of Natural Gas Purification Plant
by Quanwu Tang, Jing Li, Jingqiang Fu, Dong Lin, Chang Yi, Liang Zhao, Qiang Zeng and Chao Hu
Water 2023, 15(12), 2259; https://doi.org/10.3390/w15122259 - 16 Jun 2023
Cited by 4 | Viewed by 2724
Abstract
The oxidation-absorption technology of tail gas is perfect for natural gas purification plants to ensure the up-to-standard discharge of sulfur dioxide emissions, but it can produce a large amount of wastewater. In this paper, a facile and full-scale reuse treatment strategy based on [...] Read more.
The oxidation-absorption technology of tail gas is perfect for natural gas purification plants to ensure the up-to-standard discharge of sulfur dioxide emissions, but it can produce a large amount of wastewater. In this paper, a facile and full-scale reuse treatment strategy based on the sequential combination of disc tube reverse osmosis and low-temperature and low-pressure evaporation desalination was proposed and studied. The produced light yellow wastewater was acid sulfate-rich organic wastewater, in which sulfate ions (SO42−) existed up to 6479 mg/L, and the chemical oxygen demand (COD), 5-day biochemical oxygen demand (BOD5), total organic carbon (TOC), ammonia nitrogen (ammonia-N), total nitrogen (TN) and suspended solid (SS) were 207, 71.9, 67.6, 1.28, 70.5 and 20.9 mg/L, respectively. After the reuse treatment, there was COD (6 mg/L), BOD5 (1.4 mg/L), TOC (0.9 mg/L), TN (2.07 mg/L), SS (6 mg/L) and SO42− (90 mg/L) in permeated water, and condensate water with COD (11 mg/L), BOD5 (2.3 mg/L), TOC (4.3 mg/L), SS (2 mg/L) and SO42− (1.2 mg/L) was obtained. Thereby, pollution indexes were reduced after the reuse treatment so as to meet the water quality standard (GB/T18920-2022) in China, and the total water recovery rate reached 98.2 vol%. Ultimately, the priority pollutant migration mechanism during the reuse treatment process was determined. Full article
(This article belongs to the Special Issue Water, Waste and Wastewater: Treatment and Resource Recovery)
Show Figures

Figure 1

12 pages, 1568 KB  
Article
Experimental and Numerical Analysis of a Pd–Ag Membrane Unit for Hydrogen Isotope Recovery in a Solid Blanket
by Vincenzo Narcisi, Luca Tamborrini, Luca Farina, Gessica Cortese, Francesco Romanelli and Alessia Santucci
Membranes 2023, 13(6), 578; https://doi.org/10.3390/membranes13060578 - 1 Jun 2023
Cited by 8 | Viewed by 2160
Abstract
The interest of the fusion community in Pd–Ag membranes has grown in the last decades due to the high value of hydrogen permeability and the possibility of continuous operation, making it a promising technology when a gaseous stream of hydrogen isotopes must be [...] Read more.
The interest of the fusion community in Pd–Ag membranes has grown in the last decades due to the high value of hydrogen permeability and the possibility of continuous operation, making it a promising technology when a gaseous stream of hydrogen isotopes must be recovered and separated from other impurities. This is the case of the Tritium Conditioning System (TCS) of the European fusion power plant demonstrator, called DEMO. This paper presents an experimental and numerical activity aimed at (i) assessing the Pd–Ag permeator performance under TCS-relevant conditions, (ii) validating a numerical tool for scale-up purposes, and (iii) carrying out a preliminary design of a TCS based on Pd–Ag membranes. Experiments were performed by feeding the membrane with a He–H2 gas mixture in a specific feed flow rate ranging from 85.4 to 427.2 mol h−1 m−2. A satisfactory agreement between experiments and simulations was obtained over a wide range of compositions, showing a root mean squared relative error of 2.3%. The experiments also recognized the Pd–Ag permeator as a promising technology for the DEMO TCS under the identified conditions. The scale-up procedure ended with a preliminary sizing of the system, relying on multi-tube permeators with an overall number ranging between 150 and 80 membranes in lengths of 500 and 1000 mm each. Full article
Show Figures

Figure 1

10 pages, 3071 KB  
Article
Tritium Extraction from Lithium–Lead Eutectic Alloy: Experimental Characterization of a Permeator against Vacuum Mock-Up at 450 °C
by Francesca Papa, Alessandro Venturini, Daniele Martelli and Marco Utili
Energies 2023, 16(7), 3022; https://doi.org/10.3390/en16073022 - 26 Mar 2023
Cited by 9 | Viewed by 3020
Abstract
Tritium extraction is one of the key open issues toward the development of the WCLL BB (Water-Cooled Lithium–Lead Breeding Blanket) of EU DEMO reactors, and different technologies have been proposed to address it. Among them, the Permeator Against Vacuum (PAV) has promising features, [...] Read more.
Tritium extraction is one of the key open issues toward the development of the WCLL BB (Water-Cooled Lithium–Lead Breeding Blanket) of EU DEMO reactors, and different technologies have been proposed to address it. Among them, the Permeator Against Vacuum (PAV) has promising features, but it has never been tested in a relevant environment. This work presents the first experimental results ever obtained for a PAV mock-up. The experiments were carried out at ENEA Brasimone R.C. with the TRIEX-II facility on a mock-up characterized by a shell and tube configuration and using niobium as a membrane material. The experimental campaign was carried out with LiPb flowing at about 450 °C and 1.2 kg/s, while the hydrogen partial pressure was varied in the range 170–360 Pa. The characterization of the PAV performance was conducted by measuring the hydrogen partial pressure drop across the mock-up and the hydrogen permeated flux through a leak detector calibrated with an external hydrogen calibration cylinder. Moreover, the permeated flux was confirmed by a pressurization test performed measuring the pressure increase on the vacuum side of the PAV. The results constitute the first verification of the possibility to operate a PAV in flowing LiPb and to quantify its capabilities. Full article
Show Figures

Figure 1

15 pages, 3472 KB  
Article
Estimation of CO2 Separation Performances through CHA-Type Zeolite Membranes Using Molecular Simulation
by Yasuhisa Hasegawa, Mayumi Natsui, Chie Abe, Ayumi Ikeda and Sean-Thomas B. Lundin
Membranes 2023, 13(1), 60; https://doi.org/10.3390/membranes13010060 - 3 Jan 2023
Cited by 5 | Viewed by 3421
Abstract
Chabazite (CHA)-type zeolite membranes are a potential material for CO2 separations because of their small pore aperture, large pore volume, and low aluminum content. In this study, the permeation and separation properties were evaluated using a molecular simulation technique with a focus [...] Read more.
Chabazite (CHA)-type zeolite membranes are a potential material for CO2 separations because of their small pore aperture, large pore volume, and low aluminum content. In this study, the permeation and separation properties were evaluated using a molecular simulation technique with a focus on improving the CO2 separation performance. The adsorption isotherms of CO2 and CH4 on CHA-type zeolite with Si/Al = 18.2 were predicted by grand canonical Monte Carlo, and the diffusivities in zeolite micropores were simulated by molecular dynamics. The CO2 separation performance of the CHA-type zeolite membrane was estimated by a Maxwell–Stefan equation, accounting for mass transfer through the support tube. The results indicated that the permeances of CO2 and CH4 were influenced mainly by the porosity of the support, with the CO2 permeance reduced due to preferential adsorption with increasing pressure drop. In contrast, it was important for estimation of the CH4 permeance to predict the amounts of adsorbed CH4. Using molecular simulation and the Maxwell–Stefan equation is shown to be a useful technique for estimating the permeation properties of zeolite membranes, although some problems such as predicting accurate adsorption terms remain. Full article
(This article belongs to the Special Issue Catalysis in Membrane Reactors 2022)
Show Figures

Figure 1

18 pages, 3366 KB  
Article
Papain-Decorated Mucopenetrating SEDDS: A Tentative Approach to Combat Absorption Issues of Acyclovir via the Oral Route
by Arshad Mahmood, Rabbia Haneef, Ahmad Z. Al Meslamani, Mohammad F. Bostanudin, Muhammad Sohail, Muhammad Sarfraz and Mosab Arafat
Pharmaceutics 2022, 14(8), 1584; https://doi.org/10.3390/pharmaceutics14081584 - 29 Jul 2022
Cited by 8 | Viewed by 3043
Abstract
The aim of the current study was to enhance the oral bioavailability of Acyclovir (ACV) based on the papain-functionalized self-emulsifying drug delivery systems (SEDDS). The optimum control SEDDS formulation comprised of kolliphore (40%), transcutol (30%), propylene glycol (20%) and oleoyl chloride (10%). However, [...] Read more.
The aim of the current study was to enhance the oral bioavailability of Acyclovir (ACV) based on the papain-functionalized self-emulsifying drug delivery systems (SEDDS). The optimum control SEDDS formulation comprised of kolliphore (40%), transcutol (30%), propylene glycol (20%) and oleoyl chloride (10%). However, in the targeted SEDDS formulation, oleoyl chloride was replaced with oleoyl chloride-papain (OC-PAP) conjugate that was synthesized via an amide bond formation between the acyl halide groups of oleoyl chloride and the amino group of papain. Prior to adding in the SEDDS formulation, the newly synthesized conjugate was evaluated quantitatively by a Bradford assay that demonstrated 45 µg of papain contents per mg of the conjugate. Moreover, the conjugate formation was qualitatively confirmed through FTIR analysis and thin layer chromatography. ACV (a BCS class III drug) was incorporated into the SEDDS formulations after being hydrophobically ion paired with sodium deoxycholate, thereby making it lipophilic. The drug-loaded formulations were emulsified in the 0.1 M phosphate buffer (pH 6.8) and evaluated in vitro with respect to drug release and rabbit mucosal permeation studies. Both the formulations illustrated a very comparable drug release over a period of 4 h, afterwards, the OC-PAP-based formulation demonstrated a more sustaining effect. The extent of mucus diffusion evaluated via the silicon tube method demonstrated a 4.92-fold and a 1.46-fold higher penetration of the drug, a 3.21-fold and a 1.56-fold higher permeation through the rabbit intestinal mucus layer, and a 22.94-fold and a 2.27-fold higher retention of the drug over the intact mucosa of rabbit intestine, illustrated by OC-PAP-based nanoemulsions compared to the drug-free solution and controlled nanoemulsion, respectively. According to these in vitro results, papain-functionalized SEDDS is a promising approach for the oral delivery of ACV and many other drugs with oral bioavailability issues, however, in vivo studies in this respect have to be employed before making a comprehensive conclusion. Full article
(This article belongs to the Special Issue Mucoadhesive Drug Delivery Systems)
Show Figures

Figure 1

Back to TopTop