Investigation of Hydrogen Transport Behavior in Polyethylene Terephthalate Membrane by Prolonged Hydrogen Exposure Treatments
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Hydrogen Permeation Measurement
2.3. Hydrogen Exposure Repetitions
2.4. Scanning Electron Microscopy
2.5. Mechanical Analysis
2.6. ATR-FTIR Analysis
2.7. DSC Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szczurek, A.; Tran, T.N.L.; Kubacki, J.; Gąsiorek, A.; Startek, K.; Mazur-Nowacka, A.; Dell’Anna, R.; Armellini, C.; Varas, S.; Carlotto, A.; et al. Mazur-Nowacka, Polyethylene terephtalate (PET) optical properties deterioration induced by temperature and protective effect of organically modified SiO2-TiO2 coating. Mat. Chem. Phys. 2023, 306, 128016. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, L.; Scholes, C.A.; Kentish, S.E. Crosslinked PVA based polymer coatings with shear-thinning behaviour and ultralow hydrogen permeability to prevent hydrogen embrittlement. Int. J. Hydrogen Energy 2024, 54, 947–954. [Google Scholar] [CrossRef]
- Barth, R.R.; Simmons, K.L.; San Marchi, C. Polymers for Hydrogen Infrastructure and Vehicle Fuel Systems: Applications, Properties, and Gap Analysis; Sandia Report; Pacific Northwest National Laboratory: Richland, WA, USA, 2013. [Google Scholar]
- Karki, S.; Hazarika, G.; Yadav, D.; Ingole, P.G. Polymeric membranes for industrial applications: Recent progress, challenges and perspectives. Desalination 2024, 573, 117200. [Google Scholar] [CrossRef]
- Condé-Wolter, J.; Ruf, M.G.; Liebsch, A.; Lebelt, T.; Koch, I.; Drechsler, K.; Gude, M. Hydrogen permeability of thermoplastic composites and liner systems for future mobility applications. Comp. Part A Appl. Sci. Manuf. 2023, 167, 107446. [Google Scholar] [CrossRef]
- Djukic, M.B.; Zeravcic, V.S.; Bakic, G.; Sedmak, A.; Rajicic, B. Hydrogen Embrittlement of Low Carbon Structural Steel. Procedia Mater. Sci. 2014, 3, 1167–1172. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Vishwakarma, M. Hydrogen embrittlement in different materials: A review. Int. J. Hydrogen Energy 2018, 43, 21603–21616. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, J.; Li, J.; Yu, B.; Wang, J.; Lyu, R.; Xi, Q. Research progress on corrosion and hydrogen embrittlement in hydrogen-natural gas pipeline transportation. Nat. Gas Ind. B 2023, 10, 570–582. [Google Scholar] [CrossRef]
- Yuan, S.; Sun, Y.; Yang, C.; Zhang, Y.; Cong, C.; Yuan, Y. A novel dual-functional epoxy-based composite coating with exceptional anti-corrosion and enhanced hydrogen gas barrier properties. Chem. Eng. J. 2022, 449, 137876. [Google Scholar] [CrossRef]
- Wan, H.; Cheng, Z.; Song, D.; Chen, C. Preparation and performance study of waterbone epoxy resin/non-covalent modified graphene oxide hydrogen barrier coatings. Int. J. Hydrogen Energy 2024, 53, 218–228. [Google Scholar] [CrossRef]
- Laadel, N.; El Mansori, M.; Kang, N.; Marlin, S.; Boussant-Roux, Y. Permeation barriers for hydrogen embrittlement prevention in metals- A review on mechanisms, materials suitability and efficiency. Int. J. Hydrogen Energy 2022, 47, 32707–32731. [Google Scholar] [CrossRef]
- Rueda, F.; Torres, J.P.; Machado, M.; Frontini, P.M.; Otegui, J.L. External pressure induced buckling collapse of high density polyethylene (HDPE) liners: FEM modelling and predictions. Thin-Walled Struct. 2015, 96, 56–63. [Google Scholar] [CrossRef]
- Beber, V.C.; Abels, G.; Hesebeck, O. Material Selection of Tanks for Storage and Transport of Liquid Organic Hydrogen Carriers: A Lightweight and Lifecycle Assessment Comparative Study of Metal, Polymer, and Composite Alternatives. Energy Technol. 2024, 2401297. [Google Scholar] [CrossRef]
- Rönnebro, E.C.E.; Oelrich, R.L.; Gates, R.O. Recent Advances and Prospects in Design of Hydrogen Permeation Barrier Materials for Energy Applications—A Review. Molecules 2022, 27, 6528. [Google Scholar] [CrossRef]
- Xiao, S.; Meng, X.; Shi, K.; Liu, L.; Wu, H.; Lian, W. Hydrogen permeation barriers and preparation techniques: A review. J. Vac. Sci. Technol. 2022, A40, 060803. [Google Scholar] [CrossRef]
- Shi, K.; Meng, X.; Xiao, S.; Chen, G.; Wu, H.; Zhou, C.; Jiang, S.; Chu, P.K. MXene Coatings: Novel Hydrogen Permeation Barriers for Pipe Steels. Nanomaterials 2021, 11, 2737. [Google Scholar] [CrossRef]
- Ke, N.; Huang, H.; Wang, F.; Dong, B.; Huang, A.; Hao, L.; Xu, X. Study on the hydrogen barrier performance of the SiOC coating. Int. J. Hydrogen Energy 2023, 48, 8286–8295. [Google Scholar] [CrossRef]
- Fite, S.; Zukerman, I.; Ben Shabat, A.; Barzilai, S. Hydrogen protection using CrN coatings: Experimental and theoretical study. Sur. Int. 2023, 37, 102629. [Google Scholar] [CrossRef]
- Lotkov, A.; Latushkina, S.; Kopylov, V.; Grishkov, V.; Baturin, A.; Girsova, N.; Zhapova, D.; Timkin, V. Nanostructured Coatings (Ti,Zr)N as a Barrier to Hydrogen Diffusion into Ti0.16Pd (wt.%) Alloy. Metals 2021, 11, 1332. [Google Scholar] [CrossRef]
- Zirbel, A.; Müller, M.; Ulrich, S. Plasma Deposition of Thin Hydrogen Barrier Coatings. 2024. Available online: https://ssrn.com/abstract=4959171 (accessed on 15 September 2024). [CrossRef]
- Yang, Y.H.; Haile, M.; Park, Y.T.; Malek, F.A.; Grunlan, J.C. Super gas barrier of all-polymer multilayer thin films. Macromolecules 2011, 44, 1450–1459. [Google Scholar] [CrossRef]
- Li, P.; Chen, K.; Zhao, L.; Zhang, H.; Sun, H.; Yang, X.; Kim, N.H.; Lee, J.H.; Niu, Q.J. Preparation of modified graphene oxide/polyethyleneimine film with enhanced hydrogen barrier properties by reactive layer-by-layer self-assembly. Composites 2019, 166, 663–672. [Google Scholar] [CrossRef]
- Hiroaki, O.; Hirotada, F.; Kiyoaki, O.; Shin, N. Influence of repetitions of the high-pressure hydrogen gas exposure on the internal damage quantity of high-density polyethylene evaluated by transmitted light digital image. Int. J. Hydrogen Energy 2019, 44, 23303–23319. [Google Scholar] [CrossRef]
- Lin, J.; Shenogin, S.; Nazarenko, S. Oxygen solubility and specific volume of rigid amorphous fraction in semicrystalline poly(ethylene terephtalate). Polymer 2002, 43, 4733–4743. [Google Scholar] [CrossRef]
- Michaels, A.S.; Vieth, W.R.; Barrie, J.J. Diffusion of Gases in Polyethylene Terephtalate. J. Appl. Phys. 1963, 34, 13–20. [Google Scholar] [CrossRef]
- Sekelik, D.J.; Stepanov, E.V.; Nazarenko, S.; Schiraldi, D.; Hiltner, A.; Baer, E. Oxygen barrier properties of crystallized and talc-filled poly(ethylene terephatalate). J. Polym. Sci. 1999, 37, 847. [Google Scholar] [CrossRef]
- Minelli, M.; Baschetti, M.G.; Doghieri, F. A comprehensive model for mass transport properties in nanocomposites. J. Membr. Sci. 2011, 381, 10–20. [Google Scholar] [CrossRef]
- Chen, X.; Papathanosiou, T.D. Barrier Properties of Flake-Filled Membranes: Review and Numerical Evaluation. J. Plast. Film Sheeting 2007, 23, 319–345. [Google Scholar] [CrossRef]
- Federico, R.; José Luis, O.; Patricia, F. Numerical tool to model collapse of polymeric liners in pipelines. Eng. Fail. Anal. 2012, 20, 25–34. [Google Scholar] [CrossRef]
- Bo, K.; Feng, H.; Jiang, Y.; Deng, G.; Wang, D.; Zhang, Y. Study of blister phenomena on polymer liner of type IV hydrogen storage cylinders. Int. J. Hydrogen Energy 2024, 54, 922–936. [Google Scholar] [CrossRef]
- Kis, D.I.; Kókai, E. A review on the factors of liner collapse in type IV hydrogen storage vessels. Int. J. Hydrogen Energy 2024, 50, 236–253. [Google Scholar] [CrossRef]
- Koga, A.; Yamabe, T.; Sato, H.; Uchida, K.; Nakayama, J.; Yamabe, J.; Nishimura, S. A Visualizing Study of Blister Initiation Behavior by Gas Decompression. Tribol Online 2013, 8, 68–75. [Google Scholar] [CrossRef]
- Persson, N. Fracture of poylmers. J. Chem. Phys. 1999, 110, 19. [Google Scholar] [CrossRef]
- Langer, J.S. Models of crack propagation. Phys. Rev. A 1992, 46, 3123. [Google Scholar] [CrossRef] [PubMed]
- Sixou, B. Molecular dynamics simulation of the first stages of the cavitation process in amorphous polymers. Mol. Simul. 2007, 33, 965–973. [Google Scholar] [CrossRef]
- Daynes, H.A. The process of diffusion through a rubber membrane. Proc. R. Soc. London 1920, 97, 286–307. [Google Scholar] [CrossRef]
- Barrer, R.M.; Rideal, R.M. Permeation, diffusion and solution of gases in organic polymers. Trans. Faraday Soc. 1939, 35, 628–643. [Google Scholar] [CrossRef]
- Brubaker, W.; Kammermeyer, K. Flow of Gases through Plastic Membranes. Ind. Eng. Chem. 1953, 45, 1148–1152. Available online: https://pubs.acs.org/doi/abs/10.1021/ie50521a069 (accessed on 15 September 2024). [CrossRef]
- Fraga, S.C.; Monteleone, M.; Lanc, M.; Esposito, E.; Fuoco, A.; Giorno, L.; Pilnacek, K.; Friess, K.; Carta, M.; McKeown, N.B.; et al. A novel time lag method for the analysis of mixed gas diffusion in polymeric membranes by on-line mass spectrometry: Method development and validation. J. Membr. Sci. 2018, 561, 39–58. [Google Scholar] [CrossRef]
- Jung, J.K.; Kim, I.G.; Kim, K.T. Evaluation of hydrogen permeation characteristics in rubbery polymers. J. App. Phys. 2021, 21, 43–49. [Google Scholar] [CrossRef]
- Humpenoder, J. Gas Permeation of Fibre Reinforced Plastics. Cryogenics 1998, 38, 1. Available online: https://api.semanticscholar.org/CorpusID:119536134 (accessed on 15 September 2024). [CrossRef]
- Beckman, I.N.; Syrtsova, D.A.; Shalygin, M.G.; Kandasamy, P.; Teplyakov, V.V. Transmembrane gas transfer: Mathematics of diffusion and experimental practice. J. Membr. Sci. 2020, 601, 117737. [Google Scholar] [CrossRef]
- Zafra, A.; Harris, Z.; Korec, E.; Martínez-Pañeda, E. On the relative efficacy of electropermeation and isothermal desorption approaches for measuring hydrogen diffusivity. Int. J. Hydrogen Energy 2023, 48, 1218–1233. [Google Scholar] [CrossRef]
- Sun, Y.; Lv, H.; Zhou, W.; Zhang, C. Research on hydrogen permeability of polyamide 6 as liner material for type IV hydrogen storage tank. Int. J. Hydrogen Energy 2020, 45, 24980–24990. [Google Scholar] [CrossRef]
- Fujiwara, H.; Ono, H.; Onoue, K.; Nishimura, S. High-pressure gaseous hydrogen permeation test method -property of polymeric materials for high-pressure hydrogen devices (1)-. Int. J. Hydrogen Energy 2020, 45, 29082–29094. [Google Scholar] [CrossRef]
- Baehr, H.D.; Stephan, K. Wärme- und Stoffübertragung, 8th ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 103–273. ISBN 978-3-642-36557-7. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Claredon Press: Oxford, UK, 1975; pp. 47–61. ISBN 0-19-853344-6. [Google Scholar]
- Mehrer, H. Diffusion in Solids; Springer: Berlin/Heidelberg, Germany, 2007; pp. 59–60. ISBN 978-3-540-71486-6. [Google Scholar]
- Extrand, W.; Monson, L. Gas permeation resistance of a perfluoroalkoxy-tetrafluoroethylene copolymer. J. Appl. Polym. Sci. 2006, 100, 2122–2125. [Google Scholar] [CrossRef]
- DIN EN ISO 11357-3-2018-07; Determination of Temperature and Enthalpy of Melting and Crystallization (ISO 11357-3:2018). German Version EN ISO 11357-3:2018. DIN Media: Berlin, Germany, 2018. Available online: https://www.dinmedia.de/de/norm/din-en-iso-11357-3/282639092 (accessed on 2 January 2024).
- Onsager, L. Reciprocal Relations in Irreversible Processes. Phys. Rev. 1931, 37, 405. [Google Scholar] [CrossRef]
- Agren, J. The Onsager Reciprocity Relations Revisited. J. Phase Equil. Diff. 2022, 43, 640–647. [Google Scholar] [CrossRef]
- Mason, E.A.; Malinauskas, A.P. Gas Transport in Porous Media: The Dusty-Gas Model; Elsevier: Amsterdam, The Netherlands, 1983; p. 13. ISBN 10-0444421904. [Google Scholar]
- Veldsink, J.W.; Van Damme, R.M.J.; Versteeg, G.F.; Van Swaaij, W.P.M. The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media. Chem. Eng. J. 1997, 57, 115–125. [Google Scholar] [CrossRef]
- Sangyoon, P.; Sarinthip, T.; Hojun, S.; Youngsoo, L.; Guman, T.; Jongchul, S. PET/Bio-Based Terpolyester Blends with High Dimensional Thermal Stability. Polymers 2021, 13, 728. [Google Scholar] [CrossRef]
- Schmidt, P.F. Praxis der Rasterelektronenmikroskopie und Mikrobereichsanalyse; Renningen-Malmsheim Expert-Verlag: Tübingen, Germany, 1994; pp. 585–588. ISBN 3-8169-1038-6. [Google Scholar]
- Matsushige, K.; Radcliffe, S.V.; Baer, E. The pressure and temperature effects on brittle-to-ductile transition in PS and PMMA. J. Appl. Polym. Sci. 1976, 20, 1853. [Google Scholar] [CrossRef]
- Jang, B.Z.; Uhlman, D.R.; Vander Sande, J.B. Ductile-brittle transition in polymers. J. Appl. Polym. Sci. 1984, 29, 3409–3420. [Google Scholar] [CrossRef]
- Hocker, S.J.A.; Kim, W.T.; Schniepp, H.C.; Krnbuehl, D.E. Polymer crystallinity and the ductile to brittle transition. Polymer 2018, 158, 72–76. [Google Scholar] [CrossRef]
- Van Den Heuvel, C.J.M.; Heuvel, H.M.; Faassen, W.A.; Veurink, J.; Lucas, L.J. Molecular changes of PET yarns during stretching measured with rheo-optical infrared spectroscopy and other techniques. J. App. Pol. Sci. 1993, 49, 925–934. [Google Scholar] [CrossRef]
- Elsner, P.; Eyerer, P.; Hirth, P.; Hrsg, T. Kunststoffe—Eigenschaften und Anwendungen, 7th ed.; Springer: Berlin, Germany, 2007; pp. 1057–1067. ISBN 978-3-540-72400-1. [Google Scholar]
- Haji, R.S. Rahbar, Structure evolution and mechanical behavior of poly(ethylene terephtalate) fibers drawn at different number of drawing stages. Chem. Ind. Chem. Eng. 2012, 18, 233–243. [Google Scholar] [CrossRef]
- Dieval, F.; Khoffi, F.; Mir, R.; Chaouch, W.; Nouen, D.L.; Chakfe, N.; Durand, B. Long-Term Biostability of PET Vascular Prostheses. Int. J. Pol. Sci. 2012, 2012, 646578. [Google Scholar] [CrossRef]
- Perret, E.; Sharma, K.; Braun, O.; Tritsch, S.; Muff, R.; Hufenus, R. 2D Raman, ATR-FTIR, WAXD, SAXS and DSC data of PET mono- and PET/PA6 bicomponent filaments. Data Brief 2021, 38, 107416. [Google Scholar] [CrossRef]
- Kong, Y.; Hay, J.H. The measurement of the crystallinity of polymers by DSC. Polymer 2002, 43, 3873–3878. [Google Scholar] [CrossRef]
- Kaisersberger, E.; Knappe, S.; Möhler, H. TA for Polymer Engineering DSC-TG-DMA. In NETZSCH Annual for Science and Industry; TGA-DSC-DMA: Würzburg, Germany, 1993; Volume 2, pp. 13–14. [Google Scholar]
- Kale, R.D.; Banerjee, A.; Katre, G. Dyeing of polyester and polyamide at low temperature using solvent crazing technique. Fib. Pol. 2015, 16, 54–56. [Google Scholar] [CrossRef]
- Teli, M.D.; Kale, R.D. Polyester nanocomposite fibers with improved flame retardancy and thermal stability. Pol. Eng. Sci. 2012, 52, 1148–1154. [Google Scholar] [CrossRef]
- Menczel, J.; Wunderlich, B. Heat capacity hysteresis of semicrystalline macromolecular glasses. J. Pol. Sci. Pol. Lett. Ed. 1981, 19, 261–264. [Google Scholar] [CrossRef]
- Heidrich, D.; Gehde, M. The 3-Phase Structure of Polyesters (PBT, PET) after Isothermal and Non-Isothermal Crystallization. Polymers 2022, 14, 793. [Google Scholar] [CrossRef] [PubMed]
- Menczel, J.D. The rigid amorphous fraction in semicrystalline macromolecules. J. Therm. Anal. Calorim. 2011, 106, 7–24. [Google Scholar] [CrossRef]
- Arnoult, M.; Dargent, E.; Mano, J.F. Mobile amorphous phase fragility in semi-crystalline polymers: Comparison of PET and PLLA. Polymer 2007, 48, 1012–1019. [Google Scholar] [CrossRef]
- Oultache, A.K.; Kong, X.; Pellerin, C.; Brisson, J.; Pezolet, M.; Prud’homme, R.E. Orientation and relaxation of orientation of amorphous poly(ethylene terephthalate). Polymer 2001, 42, 9051–9058. [Google Scholar] [CrossRef]
- Atiq, O.; Ricci, E.; Bashcetti, M.G.; Grazia De Angelis, M. Multi-scale modeling of gas solubility in semi-crystalline polymers: Bridging Molecular Dynamics with Lattice Fluid. Fluid Phase Eq. 2023, 570, 113798. [Google Scholar] [CrossRef]
- Atiq, O.; Ricci, E.; Baschetti, M.G.; Grazia De Angelis, M. Molecular Simulations of Hydrogen Sorption in Semicrystalline High-Density Polyethylene: The Impact of the Surface Fraction of Tie-Chains. J. Phys. Chem. 2024, 128, 2799–2810. [Google Scholar] [CrossRef]
- Stalker, M.R.; Grant, J.; Yong, C.W.; Ohene-Yeboah, L.A.; Mays, T.J.; Parker, S.C. Molecular simulation of hydrogen storage and tansport in cellulose. Mol. Sim. 2021, 43, 170–179. [Google Scholar] [CrossRef]
Exposure Time/h | Exposure Temperature/K | Exposure Pressure/Pa | Permeation Experiment Pressure/Pa | Diffusion Coefficient/m2/s | Permeation Coefficient/mol/m s Pa | Solubility Constant/mol/m3 Pa |
---|---|---|---|---|---|---|
0 | 300 | 105 | 104 | 3.145 × 10−13 | 4.097 × 10−13 | 1.199 |
12 | 300 | 105 | 104 | 4.301 × 10−13 | 4.178 × 10−13 | 0.971 |
24 | 300 | 105 | 104 | 5.009 × 10−13 | 4.149 × 10−13 | 0.828 |
36 | 300 | 105 | 104 | 5.141 × 10−13 | 4.153 × 10−13 | 0.807 |
48 | 300 | 105 | 104 | 5.844 × 10−13 | 4.175 × 10−13 | 0.714 |
72 | 300 | 105 | 104 | 7.218 × 10−13 | 4.181 × 10−13 | 0.579 |
Specimen | Young Modulus/Pa | Ultimate Tensile Strength/Pa | Reference |
---|---|---|---|
Initial | 1.84 × 109 | 70.41 × 106 | This work |
Initial (2) | 1.99 × 109 | 66.41 × 106 | This work |
72 h | 1.59 × 109 | 53.97 × 106 | This work |
72 h (2) | 1.69 × 109 | 57.57 × 106 | This work |
PET | 2.16 × 109 | 60.1 × 106 | [56] |
Specimen | ΔHm/J/g | XC/% | Reference |
---|---|---|---|
Initial | 40.18 | 27.7 | this work |
Initial (2) | 36.27 | 25.0 | this work |
72 h | 37.5 | 25.9 | this work |
72 h (2) | 36.36 | 25.1 | this work |
PET | 145 | 100 | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullayev, E.; Fladung, T.; Noeske, P.-L.M.; Mayer, B. Investigation of Hydrogen Transport Behavior in Polyethylene Terephthalate Membrane by Prolonged Hydrogen Exposure Treatments. Energies 2024, 17, 6478. https://doi.org/10.3390/en17246478
Abdullayev E, Fladung T, Noeske P-LM, Mayer B. Investigation of Hydrogen Transport Behavior in Polyethylene Terephthalate Membrane by Prolonged Hydrogen Exposure Treatments. Energies. 2024; 17(24):6478. https://doi.org/10.3390/en17246478
Chicago/Turabian StyleAbdullayev, Elman, Thorsten Fladung, Paul-Ludwig Michael Noeske, and Bernd Mayer. 2024. "Investigation of Hydrogen Transport Behavior in Polyethylene Terephthalate Membrane by Prolonged Hydrogen Exposure Treatments" Energies 17, no. 24: 6478. https://doi.org/10.3390/en17246478
APA StyleAbdullayev, E., Fladung, T., Noeske, P.-L. M., & Mayer, B. (2024). Investigation of Hydrogen Transport Behavior in Polyethylene Terephthalate Membrane by Prolonged Hydrogen Exposure Treatments. Energies, 17(24), 6478. https://doi.org/10.3390/en17246478