Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = permeable wall channel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 9411 KiB  
Article
Localization and Expression of Aquaporin 1 (AQP1) in the Tissues of the Spiny Dogfish (Squalus acanthias)
by Christopher P. Cutler and Bryce MacIver
Int. J. Mol. Sci. 2025, 26(12), 5593; https://doi.org/10.3390/ijms26125593 - 11 Jun 2025
Viewed by 323
Abstract
Aquaporin 1 is a membrane water channel protein, which was studied here in spiny dogfish (Squalus acanthias) osmoregulatory tissues using a variety of techniques. The cloning of aquaporin 1 (AQP1) in the spiny dogfish identified a splice variant version [...] Read more.
Aquaporin 1 is a membrane water channel protein, which was studied here in spiny dogfish (Squalus acanthias) osmoregulatory tissues using a variety of techniques. The cloning of aquaporin 1 (AQP1) in the spiny dogfish identified a splice variant version of the mRNA/protein (AQP1SV1/AQP1SV1). Polymerase chain reaction (PCR) in a range of tissues showed AQP1 to be expressed at very high levels in the rectal gland with ubiquitous mRNA expression at lower levels in other tissues. Northern blotting showed that AQP1 had a mRNA size of 5.3 kb in kidney total RNA. The level of AQP1 mRNA was significantly lower in the rectal glands of fish acclimated to 120% seawater (SW; vs. 75% SW (p = 0.0007) and 100% SW (p = 0.0025)) but was significantly higher in those fish in the kidney (vs. 100% SW (p = 0.0178)) and intestine (vs. 75% SW (p= 0.0355) and 100% SW (p = 0.0285)). Quantitative PCR determined that AQP1SV1 mRNA levels were also significantly lower in the rectal glands of both 120% (p = 0.0134) and 100% SW (p = 0.0343) fish in comparison to 75% SW-acclimated dogfish. Functional expression in Xenopus oocytes showed that AQP1 exhibited significant apparent membrane water permeability (p = 0.000008–0.0158) across a range of pH values, whereas AQP1SV1 showed no similar permeability. Polyclonal antibodies produced against AQP1 (AQP1 and AQP1/2 antibodies) and AQP1SV1 had bands at the expected sizes of 28 kDa and 24 kDa, respectively, as well as some other banding. The weak AQP1 antibody and the stronger AQP1/2 antibody exhibited staining in the apical membranes of rectal gland secretory tubules, particularly towards the periphery of the gland. In the gill, the AQP1/2 antibody in particular showed staining in secondary-lamellar pavement-cell basal membranes, and in blood vessels and connective tissue in the gill arch. In the spiral valve intestine side wall and valve flap, the AQP1/2 antibody stained muscle tissue and blood vessel walls and, after tyramide signal amplification, showed some staining in the apical membranes of epithelial cells at the ends of the luminal surface of epithelial folds. In the rectum/colon, there was also some muscle and blood vessel staining, but the AQP1 and AQP1/2 antibodies both stained a layer of cells at the base of the surface epithelium. In the kidney convoluted bundle zone, all three antibodies stained bundle sheath membranes to variable extents, and the AQP1/2 antibody also showed staining in the straight bundle zone bundle sheath. In the kidney sinus zone, the AQP1/2 antibody stained the apical membranes of late distal tubule (LDT) nephron loop cells most strongly, with the strongest staining in the middle of the LDT loop and in patches towards the start of the LDT loop. There was also a somewhat less strong staining of segments of the first sinus zone nephron loop, particularly in the intermediate I (IS-I) tubule segment. Some tubules appeared to show no or only low levels of staining. The results suggest that AQP1 plays a role in rectal gland fluid secretion, kidney fluid reabsorption and gill pavement-cell volume regulation and probably a minor role in intestinal/rectal/colon fluid absorption. Full article
(This article belongs to the Special Issue New Insights into Aquaporins: 2nd Edition)
Show Figures

Graphical abstract

18 pages, 12789 KiB  
Article
A Study on the Residual Oil Distribution in Tight Reservoirs Based on a 3D Pore Structure Model
by Rujun Wang, Yintao Zhang, Chong Sun, Jing Li, Xiaoyu Meng, Chengqiang Yang and Zhaoyang Chen
Processes 2025, 13(1), 203; https://doi.org/10.3390/pr13010203 - 13 Jan 2025
Viewed by 1012
Abstract
A tight reservoir is characterized by low porosity and permeability as well as a complex pore structure, resulting in low oil recovery efficiency. Understanding the micro-scale distribution of residual oil is of great significance for improving oil production and water flooding recovery rates. [...] Read more.
A tight reservoir is characterized by low porosity and permeability as well as a complex pore structure, resulting in low oil recovery efficiency. Understanding the micro-scale distribution of residual oil is of great significance for improving oil production and water flooding recovery rates. In this study, a 3D pore structure model of tight sandstone was established using CT scanning to characterize the residual oil distribution after water flooding. The effects of displacement methods and wettability on residual oil distribution at the micro-scale were then studied and discussed. Moreover, increasing the displacement rate has little effect on the distribution area and dominant seepage channels. Microscopic residual oil is classified into five discontinuous phases according to the oil–water–pore–throat contact relationship. The microscopic residual oil exhibits characteristics of being dispersed overall but locally concentrated. Under water-wet conditions, the injected water tends to strip the oil phase along the pore walls. Under oil-wet conditions, the pore walls have an improved adsorption capacity for the oil phase, resulting in a large amount of porous and membranous residual oil retained in the pores, which leads to a decrease in the overall recovery rate. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

17 pages, 479 KiB  
Article
Thermal Stability and Entropy Generation Analysis for Combustible Third-Grade Fluid Flow Through a Slant Channel: A Spectral Study
by Kgomotshwana Frans Thosago, Peace Oluwalonimi Banjo, Lazarus Rundora and Samuel Olumide Adesanya
Appl. Sci. 2024, 14(24), 11491; https://doi.org/10.3390/app142411491 - 10 Dec 2024
Viewed by 771
Abstract
This paper addresses the mixed convective flow and heat transfer in combustible third-grade fluids through a slant porous channel filled with permeable materials. The fluid layer in contact with the channel wall is exposed to asymmetrical slippage and isothermal conditions. We employ the [...] Read more.
This paper addresses the mixed convective flow and heat transfer in combustible third-grade fluids through a slant porous channel filled with permeable materials. The fluid layer in contact with the channel wall is exposed to asymmetrical slippage and isothermal conditions. We employ the spectral Chebyshev collocation method (SCCM) to the coupled nonlinear flow governing equations and validate using the Shooting–Runge–Kutta method (RK4). Fluid velocity and temperature profiles, local entropy generation, and irreversibility ratio are computed and analyzed quantitatively and qualitatively. The convergence of the numerical method was demonstrated. The flow and thermal effects results, entropy generation rate, and Bejan number revealed fascinating manifestations that have profound implications in the design of thermo-mechanical systems. In particular, the thermal analysis results are pertinent to optimal system designs that achieve efficient energy utilization. Full article
(This article belongs to the Special Issue Research on Heat Transfer Analysis in Fluid Dynamics)
Show Figures

Figure 1

15 pages, 3321 KiB  
Article
Antifungal Activity and Multi-Target Mechanism of Action of Methylaervine on Candida albicans
by Jinyi Liu, Luyao Wang, Yifan Sun, Yingyan Xiong, Runchu Li, Meixia Sui, Zhenzhen Gao, Wei Wang, Hao Sun and Jiangkun Dai
Molecules 2024, 29(18), 4303; https://doi.org/10.3390/molecules29184303 - 11 Sep 2024
Cited by 4 | Viewed by 2224
Abstract
The discovery of a lead compound against Candida albicans is urgently needed because of the lack of clinically available antifungal drugs and the increase in drug resistance. Herein, a β-carboline alkaloid methylaervine (MET) exhibited potential activity against C. albicans (MIC = 16–128 [...] Read more.
The discovery of a lead compound against Candida albicans is urgently needed because of the lack of clinically available antifungal drugs and the increase in drug resistance. Herein, a β-carboline alkaloid methylaervine (MET) exhibited potential activity against C. albicans (MIC = 16–128 μg/mL), no hemolytic toxicity, and a low tendency to induce drug resistance. An antifungal mechanism study indicated that MET effectively inhibited the biofilm formation and disrupted the mature biofilm. Moreover, filamentation formation and spore germination were also weakened. The electron microscopy analysis revealed that MET could damage the cell structure, including the cell wall, membrane, and cytoplasm. In particular, the permeability and integrity of the cell membrane were destroyed. When it entered the fungi cell, it interfered with the redox homeostasis and DNA function. Overall, MET can inhibit the growth of C. albicans from multiple channels, such as biofilm, filamentation, cell structure, and intracellular targets, which are difficult to mutate at the same time to generate drug resistance. This work provides a promising lead compound for the creation of new antifungal agents against C. albicans. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

17 pages, 2154 KiB  
Review
Plasmodesmata Function and Callose Deposition in Plant Disease Defense
by Jingsheng Chen, Xiaofeng Xu, Wei Liu, Ziyang Feng, Quan Chen, You Zhou, Miao Sun, Liping Gan, Tiange Zhou and Yuanhu Xuan
Plants 2024, 13(16), 2242; https://doi.org/10.3390/plants13162242 - 13 Aug 2024
Cited by 4 | Viewed by 3549
Abstract
Callose, found in the cell walls of higher plants such as β-1,3-glucan with β-1,6 branches, is pivotal for both plant development and responses to biotic and abiotic stressors. Plasmodesmata (PD), membranous channels linking the cytoplasm, plasma membrane, and endoplasmic reticulum of adjacent cells, [...] Read more.
Callose, found in the cell walls of higher plants such as β-1,3-glucan with β-1,6 branches, is pivotal for both plant development and responses to biotic and abiotic stressors. Plasmodesmata (PD), membranous channels linking the cytoplasm, plasma membrane, and endoplasmic reticulum of adjacent cells, facilitate molecular transport, crucial for developmental and physiological processes. The regulation of both the structural and transport functions of PD is intricate. The accumulation of callose in the PD neck is particularly significant for the regulation of PD permeability. This callose deposition, occurring at a specific site of pathogenic incursion, decelerates the invasion and proliferation of pathogens by reducing the PD pore size. Scholarly investigations over the past two decades have illuminated pathogen-induced callose deposition and the ensuing PD regulation. This gradual understanding reveals the complex regulatory interactions governing defense-related callose accumulation and protein-mediated PD regulation, underscoring its role in plant defense. This review systematically outlines callose accumulation mechanisms and enzymatic regulation in plant defense and discusses PD’s varied participation against viral, fungal, and bacterial infestations. It scrutinizes callose-induced structural changes in PD, highlighting their implications for plant immunity. This review emphasizes dynamic callose calibration in PD constrictions and elucidates the implications and potential challenges of this intricate defense mechanism, integral to the plant’s immune system. Full article
(This article belongs to the Special Issue Plant Pathology and Epidemiology for Grain, Pulses, and Cereal Crops)
Show Figures

Figure 1

13 pages, 4739 KiB  
Article
Construction Technology and Service Performance of Waterproof Curtain for Foundation Pit in Large-Particle Pebble Gravel Layer of Yangtze River Floodplain
by Wen Xu, Bo Liu and Jin Wu
Appl. Sci. 2024, 14(13), 5962; https://doi.org/10.3390/app14135962 - 8 Jul 2024
Cited by 2 | Viewed by 1221
Abstract
A foundation pit is constructed in the floodplain of Yangtze River, and a deep and thick layer of large-particle pebble gravel exists below the base slab, thus forming a connected supply channel with the adjacent Yangtze River. The large water volume, high water [...] Read more.
A foundation pit is constructed in the floodplain of Yangtze River, and a deep and thick layer of large-particle pebble gravel exists below the base slab, thus forming a connected supply channel with the adjacent Yangtze River. The large water volume, high water pressure, and strong permeability of this layer bring great risks to the foundation pit construction. In view of the fact that conventional waterproof curtain construction technologies such as the deep mixing column and high-pressure jet grouting column cannot meet the engineering requirements under these kinds of geological and environmental conditions, a new waterproof curtain construction technology that combines the trenching technology of the diaphragm wall with the TRD (Trench cutting Remixing Deep wall) technology is proposed, i.e., the trenching-and-replacing-style TRD technology, as well as the construction process of this technology, is presented. After the waterproof curtain is built using the proposed technology, the strength, integrity, uniformity, and service performance of the waterproof curtain wall are tested and evaluated by the comprehensive methods of coring, borehole television imaging, resistivity CT, and a group well pumping test. The results show that the proposed technology overcomes the adverse effects of underlying large-particle pebble gravel layer, and the waterproof curtain built by it effectively cuts off the hydraulic connection inside and outside the pit. The technical proposal can provide useful references for similar projects. Full article
(This article belongs to the Special Issue Foundation Treatment in Civil Engineering)
Show Figures

Figure 1

15 pages, 3601 KiB  
Article
A Heterogeneous Viscosity Flow Model for Liquid Transport through Nanopores Considering Pore Size and Wettability
by Yilin Chang, Yapu Zhang, Zhongkun Niu, Xinliang Chen, Meng Du and Zhengming Yang
Molecules 2024, 29(13), 3176; https://doi.org/10.3390/molecules29133176 - 3 Jul 2024
Viewed by 1129
Abstract
The confinement effect in micro- and nanopores gives rise to distinct flow characteristics in fluids. Clarifying the fluid migration pattern in confined space is crucial for understanding and explaining the abnormal flow phenomena in unconventional reservoirs. In this study, flow characteristics of water [...] Read more.
The confinement effect in micro- and nanopores gives rise to distinct flow characteristics in fluids. Clarifying the fluid migration pattern in confined space is crucial for understanding and explaining the abnormal flow phenomena in unconventional reservoirs. In this study, flow characteristics of water and oil in alumina nanochannels were investigated with diameters ranging from 21 nm to 120 nm, and a heterogeneous viscosity flow model considering boundary fluid was proposed. Compared with the prediction of the HP equation, both types of fluids exhibit significant flow suppression in nanochannels. As the channel size decreases, the deviation degree increases. The fluid viscosity of the boundary region displays an upward trend as the channel size decreases and the influence of the interaction between the liquid and solid walls intensifies. The thickness of the boundary region gradually decreases with increasing pressure and eventually reaches a stable value, which is primarily determined by the strength of the interaction between the liquid and solid surfaces. Both the pore size and wettability are essential factors that affect the fluid flow. When the space scale is extremely small, the impact of wettability becomes more pronounced. Finally, the application of the heterogeneous flow model for permeability evaluation has yielded favorable fitting results. The model is of great significance for studying the fluid flow behavior in unconventional reservoirs. Full article
Show Figures

Figure 1

13 pages, 11313 KiB  
Article
Deletion of Transient Receptor Channel Vanilloid 4 Aggravates CaCl2-Induced Abdominal Aortic Aneurysm and Vascular Calcification: A Histological Study
by Isehaq Al-Huseini, Maryam Al-Ismaili, Ammar Boudaka and Srinivasa Rao Sirasanagandla
Appl. Sci. 2024, 14(6), 2566; https://doi.org/10.3390/app14062566 - 19 Mar 2024
Viewed by 1175
Abstract
Vascular calcification is calcium deposition occurring in the wall of blood vessels, leading to mechanical stress and rupture due to a loss of elasticity and the hardening of the vessel wall. The role of the Transient Receptor Channel Vanilloid 4 (TRPV4), a Ca [...] Read more.
Vascular calcification is calcium deposition occurring in the wall of blood vessels, leading to mechanical stress and rupture due to a loss of elasticity and the hardening of the vessel wall. The role of the Transient Receptor Channel Vanilloid 4 (TRPV4), a Ca2+-permeable cation channel, in the progression of vascular calcification is poorly explored. In this study, we investigated the role of TRPV4 in vascular calcification and the development of abdominal aortic aneurysm (AAA). Experimental mice were randomly divided into four groups: wild-type (WT) sham operated group, WT CaCl2-induced aortic injury, TRPV4-KO sham operated group, and TRPV4-KO CaCl2-induced aortic injury. The TRPV4-knockout (TRPV4-KO) mice and wild-type (WT) mice were subjected to the CaCl2-induced abdominal aortic injury. In histopathological analysis, the aorta of the TRPV4-KO mice showed extensive calcification in the tunica media with a significant increase in the outer diameter (p < 0.0001), luminal area (p < 0.05), and internal circumference (p < 0.05) after CaCl2 injury when compared to WT mice. Additionally, the tunica media of the TRPV4-KO mice aorta showed extensive damage with apparent elongation and disruption of the elastic lamella. These results indicate a protective function of TRPV4 against vascular calcification and the progression of AAA after CaCl2 injury. Full article
Show Figures

Figure 1

20 pages, 4121 KiB  
Article
Simplified Calculation Method for Active Anti-Floating of Elliptical Basements by Relief Wells
by Guanyong Luo, Fei Yang, Haoxi Li, Hong Pan and Hong Cao
Appl. Sci. 2023, 13(23), 12647; https://doi.org/10.3390/app132312647 - 24 Nov 2023
Cited by 3 | Viewed by 1540
Abstract
Currently, there are two main types of anti-floating methods for underground structures; one is the passive anti-floating method represented by anti-draft piles, the other is the active anti-floating method which focuses on interceptor-discharge pressure-reducing (IDPR). In the design of an IDPR anti-floating system, [...] Read more.
Currently, there are two main types of anti-floating methods for underground structures; one is the passive anti-floating method represented by anti-draft piles, the other is the active anti-floating method which focuses on interceptor-discharge pressure-reducing (IDPR). In the design of an IDPR anti-floating system, the relief well system situated within the cut-off wall serves as the primary drainage channel. The determination of the seepage field distribution within the multi-well system is vital for the overall design. For the seepage field analysis of the IDPR anti-floating multi-well system, currently numerical analysis is usually used, and there is a lack of simplified analysis methods. The simplified analysis methods already available are based on the uniform distribution of wells in circular pits, while the conversion of non-circular pits into circular pits produce large errors, which are not conducive to promoting the use of the method. To address this, we propose a simplified calculation approach suitable for multi-well systems (arbitrary layout) within elliptical pits. The analytical solution of non-uniformly distributed wells in circular pits is deduced through the principle of superposition. Then, the ellipse is mapped into a circle by using conformal mapping. The resistance coefficient method is adopted, and the internal and external seepage fields are connected in series to obtain the total flow rate, as well as the distribution of the seepage field. This is based on the consideration of the permeability of the waterproof curtains and the bypassing seepage. According to the verification of the calculation example, the results of the simplified algorithm are similar to the results of the finite element method, which proves the accuracy of the method; at the same time, when applied to the actual engineering, the obtained calculation results coincide with the measured data, which proves the practicability and reliability of the method. The simplified method can provide an effective way to design an IDPR anti-floating system. Full article
(This article belongs to the Special Issue Advanced Research on Tunnel Slope Stability and Land Subsidence)
Show Figures

Figure 1

13 pages, 4357 KiB  
Article
Cellular-Level Analysis of Retinal Blood Vessel Walls Based on Phase Gradient Images
by Mircea Mujat, Konstantina Sampani, Ankit H. Patel, Jennifer K. Sun and Nicusor Iftimia
Diagnostics 2023, 13(22), 3399; https://doi.org/10.3390/diagnostics13223399 - 8 Nov 2023
Cited by 8 | Viewed by 1821
Abstract
Diseases such as diabetes affect the retinal vasculature and the health of the neural retina, leading to vision problems. We describe here an imaging method and analysis procedure that enables characterization of the retinal vessel walls with cellular-level resolution, potentially providing markers for [...] Read more.
Diseases such as diabetes affect the retinal vasculature and the health of the neural retina, leading to vision problems. We describe here an imaging method and analysis procedure that enables characterization of the retinal vessel walls with cellular-level resolution, potentially providing markers for eye diseases. Adaptive optics scanning laser ophthalmoscopy is used with a modified detection scheme to include four simultaneous offset aperture channels. The magnitude of the phase gradient derived from these offset images is used to visualize the structural characteristics of the vessels. The average standard deviation image provides motion contrast and enables segmentation of the vessel lumen. Segmentation of blood vessel walls provides quantitative measures of geometrical characteristics of the vessel walls, including vessel and lumen diameters, wall thickness, and wall-to-lumen ratio. Retinal diseases may affect the structural integrity of the vessel walls, their elasticity, their permeability, and their geometrical characteristics. The ability to measure these changes is valuable for understanding the vascular effects of retinal diseases, monitoring disease progression, and drug testing. In addition, loss of structural integrity of the blood vessel wall may result in microaneurysms, a hallmark lesion of diabetic retinopathy, which may rupture or leak and further create vision impairment. Early identification of such structural abnormalities may open new treatment avenues for disease management and vision preservation. Functional testing of retinal circuitry through high-resolution measurement of vasodilation as a response to controlled light stimulation of the retina (neurovascular coupling) is another application of our method and can provide an unbiased evaluation of one’s vision and enable early detection of retinal diseases and monitoring treatment results. Full article
(This article belongs to the Section Biomedical Optics)
Show Figures

Figure 1

19 pages, 4310 KiB  
Article
An Experimental Investigation on Dike Stabilization against Floods
by Sohail Iqbal and Norio Tanaka
Geosciences 2023, 13(10), 307; https://doi.org/10.3390/geosciences13100307 - 13 Oct 2023
Cited by 8 | Viewed by 3667
Abstract
A flood protection dike blends seamlessly with natural surroundings. These dikes stand as vital shields, mitigating the catastrophic effects of floods and preserving both communities and ecosystems. Their design not only aids in controlling water flow but also ensures minimal disruption to the [...] Read more.
A flood protection dike blends seamlessly with natural surroundings. These dikes stand as vital shields, mitigating the catastrophic effects of floods and preserving both communities and ecosystems. Their design not only aids in controlling water flow but also ensures minimal disruption to the local environment and its biodiversity. The present study used a uniform cohesionless sand with d50 = 0.9 mm to investigate the local scour process near a single combined dike (permeable and impermeable), replicating a flooding scenario. The experiments revealed that the maximum scour depth is likely to occur at the upstream edge of the dike, resembling a local scour observed around a scaled-down emerged dike in an open channel. The scour hole downstream of the dike gets shallower as it gets smaller, as do the horseshoe vortices that surround it. Additionally, by combining different pile shapes, the flow surrounding the dike was changed to reduce horseshoe vortices, resulting in scour length and depth reductions of 48% at the nose and 45% and 65% at the upstream and downstream dike–wall junction, respectively. Contrarily, the deposition height downstream of the dike had a reciprocal effect on permeability, which can severely harm the riverbank defense system. The combined dike demonstrates their ability to mitigate scour by reducing the flow swirls formed around the dike. The suggested solutions can slow down the rapid deterioration and shield the dike and other river training infrastructure from scour-caused failures. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

20 pages, 16034 KiB  
Article
Study on the Coupling Effect of Stress Field and Gas Field in Surrounding Rock of Stope and Gas Migration Law
by Shizhe Li and Zhaofeng Wang
Energies 2023, 16(18), 6672; https://doi.org/10.3390/en16186672 - 18 Sep 2023
Cited by 5 | Viewed by 1200
Abstract
In the process of working face mining, the permeability of the coal seam and the crack evolution characteristics of overlying strata are very important for efficient gas drainage. In this study, the distribution characteristics of the stress field and crack field in the [...] Read more.
In the process of working face mining, the permeability of the coal seam and the crack evolution characteristics of overlying strata are very important for efficient gas drainage. In this study, the distribution characteristics of the stress field and crack field in the working face and their relations are analyzed mainly by 3DEC numerical simulation. Furthermore, combined with the on-site measurement of coal seam stress, gas pressure, and gas seepage in front of the working face and the gas seepage in overlying strata before and after mining, the coupling effect of stress field and gas field and the law of gas migration and distribution in the working face are deeply explored. The results show that the changing trend of gas seepage and gas pressure is controlled by the stress change of the working face, and with the increase of stress, gas pressure and gas seepage also increase. The peak position of gas pressure is the farthest from the coal wall, about 22.5~25 m, followed by the peak of stress and gas seepage. When the permeability of coal and rock mass increases, the gas seepage increases and the gas pressure decreases. The coal seam stress and gas seepage in the working face and gas seepage in the overlying strata fracture zone along the tailgate side are generally greater than those on the headgate side, but the gas pressure is the opposite. Mining cracks and strata separation provide a good channel and space for gas migration and accumulation. Along the strike and tendency of the working face, gas is mainly concentrated in the overlying strata crack space above the separation zone and the roof and overlying strata crack space on the side of the tailgate, respectively. Based on this, the directional borehole gas drainage technology and borehole layout scheme in the fractured zone are put forward, which effectively reduce the gas concentration in the working face by 30~36%. Full article
Show Figures

Figure 1

18 pages, 2433 KiB  
Article
The Effects of Thermal Memory on a Transient MHD Buoyancy-Driven Flow in a Rectangular Channel with Permeable Walls: A Free Convection Flow with a Fractional Thermal Flux
by Nehad Ali Shah, Bander Almutairi, Dumitru Vieru and Ahmed A. El-Deeb
Fractal Fract. 2023, 7(9), 664; https://doi.org/10.3390/fractalfract7090664 - 1 Sep 2023
Viewed by 1168
Abstract
This study investigates the effects of magnetic induction, ion slip and Hall current on the flow of linear viscous fluids in a rectangular buoyant channel. In a hydro-magnetic flow scenario with permeable and conducting walls, one wall has a temperature variation that changes [...] Read more.
This study investigates the effects of magnetic induction, ion slip and Hall current on the flow of linear viscous fluids in a rectangular buoyant channel. In a hydro-magnetic flow scenario with permeable and conducting walls, one wall has a temperature variation that changes over time, while the other wall keeps a constant temperature; the research focuses on this situation. Asymmetric wall heating and suction/injection effects are also examined in the study. Using the Laplace transform, analytical solutions in the Laplace domain for temperature, velocity and induced magnetic field have been determined. The Stehfest approach has been used to find numerical solutions in the real domain by reversing Laplace transforms. The generalized thermal process makes use of an original fractional constitutive equation, in which the thermal flux is influenced by the history of temperature gradients, which has an impact on both the thermal process and the fluid’s hydro-magnetic behavior. The influence of thermal memory on heat transfer, fluid movement and magnetic induction was highlighted by comparing the solutions of the fractional model with the classic one based on Fourier’s law. Full article
Show Figures

Figure 1

15 pages, 5059 KiB  
Article
Performance Evaluation and Action Mechanism Analysis of a Controllable Release Nanocapsule Profile Control and Displacement Agent
by Fang Shi, Jingchun Wu, Zhongcheng Li, Bo Zhao, Jian Li, Shenglan Tang and Weizhi Tuo
Polymers 2023, 15(3), 609; https://doi.org/10.3390/polym15030609 - 24 Jan 2023
Cited by 5 | Viewed by 2338
Abstract
With the acceleration in oilfield developments, reservoir advantage channels have been gradually developed. This has led to ineffective circulation in the oilfield injection system and a significant decrease in production. The profile control and displacement technology of low-permeability and heterogeneous reservoirs are in [...] Read more.
With the acceleration in oilfield developments, reservoir advantage channels have been gradually developed. This has led to ineffective circulation in the oilfield injection system and a significant decrease in production. The profile control and displacement technology of low-permeability and heterogeneous reservoirs are in urgent need of updating. In this paper, an intelligent profile control and displacement agent is proposed. The controlled release mechanism and profile control and displacement mechanism is clarified by physical simulation experiments. The profile control agent is a nanocapsule with environmental response and controlled release. The structure of the capsule is a core–shell structure, which is composed of an amphiphilic copolymer AP-g-PNIPAAM and Janus functional particles. The surface chemical stability of the micro/nanocapsule is analyzed by a potentiometric method. The study shows that a temperature at 45 °C causes a potential change in the micro/nanocapsule, indicating that the micro/nanocapsule has a slow release at this temperature. When the temperature is in the range of 40 to 45 °C, the absorbance greatly increases; therefore, it is considered that the capsule wall LCST is about 45 °C. Heating causes the surface contraction of the capsule wall to intensify, the micropores in the capsule wall to increase, the release amount to increase and the release rate per unit time to increase. The release time increases proportionally with the increase in capsule wall thickness. When the release time is the same, an alkaline or acidic environment can improve the release rate of the nanocapsule. The effect of profile control and flooding is evaluated through different differential core models. The research shows that the controlled release micro/nanocapsule has a good environmental response and the internal components can be effectively controlled by adjusting the temperature or pH value. This research has shown that the nanocapsules have good application prospects in low-permeability heterogeneous reservoirs. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

29 pages, 13692 KiB  
Article
Peristalsis of Nanofluids via an Inclined Asymmetric Channel with Hall Effects and Entropy Generation Analysis
by Abdulwahed Muaybid A. Alrashdi
Mathematics 2023, 11(2), 458; https://doi.org/10.3390/math11020458 - 15 Jan 2023
Cited by 4 | Viewed by 1895
Abstract
This study deals with the entropy investigation of the peristalsis of a water–copper nanofluid through an asymmetric inclined channel. The asymmetric channel is anticipated to be filled with a uniform permeable medium, with a constant magnetic field impinging on the wall of the [...] Read more.
This study deals with the entropy investigation of the peristalsis of a water–copper nanofluid through an asymmetric inclined channel. The asymmetric channel is anticipated to be filled with a uniform permeable medium, with a constant magnetic field impinging on the wall of the channel. The physical effects, such as Hall current, mixed convection, Ohmic heating, and heat generation/annihilation, are also considered. Mathematical modeling from the given physical description is formulated while employing the “long wavelength, low Reynolds number” approximations. Analytical and numerical procedures allow for the determination of flow behavior in the resulting system, the results of which are presented in the form of tables and graphs, in order to facilitate the physical analysis. The results indicate that the growth of nanoparticle volume fraction corresponds to a reduction in temperature, entropy generation, velocity, and pressure gradient. The enhanced Hall and Brinkman parameters reduce the entropy generation and temperature for such flows, whereas the enhanced permeability parameter reduces the velocity and pressure gradient considerably. Furthermore, a comparison of the heat transfer rates for the two results, for different physical parameters, indicates that these results agree well. The significance of the underlying study lies in the fact that it analyzes the peristalsis of a non-Newtonian nanofluid, where the rheological characteristics of the fluid are predicted using the Carreau-Yasuda model and by considering the various physical effects. Full article
Show Figures

Figure 1

Back to TopTop