Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,108)

Search Parameters:
Keywords = performance deterioration mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2734 KB  
Article
Effect of CaO/SiO2 and MgO/Al2O3 on the Metallurgical Properties of Low Boron-Bearing High-Alumina Slag
by Ye Sun, Zuoliang Zhang, Chunlei Wu and Zhenggen Liu
Inorganics 2025, 13(11), 346; https://doi.org/10.3390/inorganics13110346 - 24 Oct 2025
Viewed by 145
Abstract
For optimizing the operational efficiency and productivity within blast furnace processes, a profound understanding of the viscous flow characteristics of CaO–SiO2–MgO–Al2O3–B2O3 slag systems is of paramount importance. In this study, we conducted a comprehensive [...] Read more.
For optimizing the operational efficiency and productivity within blast furnace processes, a profound understanding of the viscous flow characteristics of CaO–SiO2–MgO–Al2O3–B2O3 slag systems is of paramount importance. In this study, we conducted a comprehensive investigation into the influence of the CaO/SiO2 and MgO/Al2O3 ratios on the viscosity, break point temperature (TBr), and activation energy (Eη) of low boron-bearing high-alumina slag. Concurrently, we elucidated the underlying mechanisms through which these ratios affect the viscous behavior of the slag by employing a combination of analytical techniques, including X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and thermodynamic modeling using the Factsage software. The experimental findings reveal that, as the CaO/SiO2 ratio increases from 1.10 to 1.30, the slag viscosity at 1773 K decreases from 0.316 Pa·s to 0.227 Pa·s, while both the TBr and Eη exhibit an upward trend, rising from 1534 K and 117.01 kJ·mol−1 to 1583 K and 182.86 kJ·mol−1, respectively. Conversely, an elevation in the MgO/Al2O3 ratio from 0.40 to 0.65 results in a reduction in slag viscosity at 1773 K from 0.290 Pa·s to 0.208 Pa·s, accompanied by a decrease in TBr from 1567 K to 1542 K. The observed deterioration in slag flow properties can be attributed to an enhanced polymerization degree of complex viscous structural units within the slag matrix. Ultimately, our study identifies that an optimal viscous performance of the slag is achieved when the CaO/SiO2 ratio is maintained at 1.25 and the MgO/Al2O3 ratio is maintained at 0.55, providing valuable insights for the rational design and control of blast furnace slag systems. Full article
(This article belongs to the Special Issue Mixed Metal Oxides, 3rd Edition)
Show Figures

Figure 1

21 pages, 5467 KB  
Article
Study on Seismic Behavior of Earthquake-Damaged Joints Retrofitted with CFRP in Hybrid Reinforced Concrete–Steel Frames
by Xiaotong Ma, Tianxiang Guo, Yuxiao Xing, Ruize Qin, Huan Long, Chao Bao, Fusheng Cao and Ruixiao Hong
Materials 2025, 18(21), 4857; https://doi.org/10.3390/ma18214857 - 23 Oct 2025
Viewed by 233
Abstract
Mixed structures with lightweight steel added stories are particularly vulnerable to damage and failure at the joints during seismic events. To evaluate the secondary seismic behavior of the joints in lightweight steel added stories after seismic damage repair, a low-cycle load test was [...] Read more.
Mixed structures with lightweight steel added stories are particularly vulnerable to damage and failure at the joints during seismic events. To evaluate the secondary seismic behavior of the joints in lightweight steel added stories after seismic damage repair, a low-cycle load test was conducted in this study. Following the initial damage, carbon fiber-reinforced polymer (CFRP) was applied for reinforcement, along with epoxy resin for the repair of concrete cracks. The experimental analysis focused on the structural deformation, failure characteristics, and energy dissipation capacity in both the original and repaired joint states. On the basis of the experimental findings, finite element analysis was carried out to examine the influence of varying CFRP layer configurations on the seismic performance of the repaired joints. The results revealed a significant change in the damage pattern of the repaired specimen, shifting from secondary surface damage to significant concrete deterioration localized at the bottom of the column. The failure mechanism was characterized by the CFRP-induced tensile forces acting on the concrete at the column base, following considerable deformation at the beam’s end. When compared to the original joint, the repaired joints exhibited markedly improved performance, with a 33% increase in horizontal ultimate strength and an 85% increase in energy dissipation capacity at failure. Additionally, the rotation angle between the beams and columns was effectively controlled. Joints repaired with two layers of CFRP demonstrated superior performance in contrast to those with a single layer. However, once the repaired joints met the required strength, further increasing the number of CFRP layers had a minimal influence on the mechanical properties of the joints. The proposed CFRP-based seismic retrofit method, which accounts for the strength degradation of concrete in damaged joints due to earthquake-induced damage, has proven to be both feasible and straightforward, offering an easily implementable solution to improve the seismic behavior of structures. Full article
Show Figures

Figure 1

21 pages, 2799 KB  
Article
Molecular Insights into the Kinetic Aging Mechanisms of SBS-Modified Asphalt
by Yunjing Nie, Ye Bai, Fang Liu, Pengfei Li and Zhidong Zhou
Materials 2025, 18(21), 4821; https://doi.org/10.3390/ma18214821 - 22 Oct 2025
Viewed by 243
Abstract
The aging of SBS-modified asphalt (SBSMA) is a kinetic process that significantly deteriorates pavement performance and shortens service life. Although previous studies have explored the evolution of SBSMA during aging, the underlying kinetic mechanisms remain unclear. In this study, SBSMA samples were subjected [...] Read more.
The aging of SBS-modified asphalt (SBSMA) is a kinetic process that significantly deteriorates pavement performance and shortens service life. Although previous studies have explored the evolution of SBSMA during aging, the underlying kinetic mechanisms remain unclear. In this study, SBSMA samples were subjected to varying degrees of aging to simulate the kinetic aging process. Changes in four components and chemical functional groups were characterized, supporting the construction of molecular models at different aging stages. Molecular dynamics simulations indicate that the oxidation rate of SBSMA and degradation rate of SBS molecular chains are significantly higher in the initial aging stage than later, leading to a pronounced increase in cohesive energy density and solubility parameters, along with a decrease in surface free energy, fractional free volume, and binding energies, predominantly occurring during the first aging stage. Aging also shortens intermolecular distance between asphaltene molecules while increasing the distances between asphaltene–resin and asphaltene–SBS. The adsorption competition between asphaltene and SBS for lightweight components intensifies initially, whereas asphaltene exhibits stronger adsorption in the later aging stage. Furthermore, the diffusion coefficients of asphaltene and SBS increase rapidly initially then slow, causing a corresponding rapid initial decline followed by decrease in resin, aromatic, and saturate components. Full article
(This article belongs to the Special Issue Road and Rail Construction Materials: Development and Prospects)
Show Figures

Figure 1

22 pages, 8704 KB  
Article
Cement-Based Grouting Materials Modified with GO/NS Hybrids
by Longfei Lu, Guoxiang Yang, Yan Ai, Jingkai Qu, Jinrui Duan, Kun Yang and Wenbin Sun
Materials 2025, 18(21), 4820; https://doi.org/10.3390/ma18214820 - 22 Oct 2025
Viewed by 307
Abstract
This study systematically investigates the effects of individual and combined incorporation of graphene oxide (GO) and nano-silica sol (NS) on the macroscopic properties and microstructure of cement-based grouting materials, with emphasis on their synergistic mechanisms. A series of macroscopic tests including setting time, [...] Read more.
This study systematically investigates the effects of individual and combined incorporation of graphene oxide (GO) and nano-silica sol (NS) on the macroscopic properties and microstructure of cement-based grouting materials, with emphasis on their synergistic mechanisms. A series of macroscopic tests including setting time, fluidity, bleeding rate, and mechanical strength were conducted, complemented by multi-scale microstructural characterization techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), mercury intrusion porosimetry (MIP), and Fourier-transform infrared spectroscopy (FTIR). The results demonstrate that both NS and GO effectively reduce setting time and bleeding rate while enhancing mechanical strength; however, NS exhibits a more pronounced adverse effect on fluidity compared to GO. The hybrid system displays a distinct transition from synergy to antagonism: under low-dosage co-incorporation (2 wt% NS + 0.01 wt% GO), the flexural and compressive strengths increased by 13.5% and 45.5%, respectively, relative to the reference group. Microscopic analysis revealed that the synergistic interaction between the pozzolanic effect of NS and the templating effect of GO under this condition optimizes hydrate morphology and pore structure, leading to enhanced performance. Conversely, excessive dosage of either component induces agglomeration, resulting in microstructural deterioration and performance degradation. This study establishes optimal dosage ranges and combination principles for NS and GO in cement-based materials, providing a theoretical foundation for designing high-workability and high-strength cementitious composites. Full article
Show Figures

Figure 1

28 pages, 7150 KB  
Article
Distress-Level Prediction of Pavement Deterioration with Causal Analysis and Uncertainty Quantification
by Yifan Sun, Qian Gao, Feng Li and Yuchuan Du
Appl. Sci. 2025, 15(20), 11250; https://doi.org/10.3390/app152011250 - 21 Oct 2025
Viewed by 318
Abstract
Pavement performance prediction serves as a core basis for maintenance decision-making. Although numerous studies have been conducted, most focus on road segments and aggregate indicators such as IRI and PCI, with limited attention to the daily deterioration of individual distresses. Subject to the [...] Read more.
Pavement performance prediction serves as a core basis for maintenance decision-making. Although numerous studies have been conducted, most focus on road segments and aggregate indicators such as IRI and PCI, with limited attention to the daily deterioration of individual distresses. Subject to the combined influence of multiple factors, pavement distress deterioration exhibits pronounced nonlinear and time-lag characteristics, making distress-level predictions prone to disturbances and highly uncertain. To address this challenge, this study investigates the distress-level deterioration of three representative distresses—transverse cracks, alligator cracks, and potholes—with causal analysis and uncertainty quantification. Based on two years of high-frequency road inspection data, a continuous tracking dataset comprising 164 distress sites and 9038 records was established using a three-step matching algorithm. Convergent cross mapping was applied to quantify the causal strength and lag days of environmental factors, which were subsequently embedded into an encoder–decoder framework to construct a BayesLSTM model. Monte Carlo Dropout was employed to approximate Bayesian inference, enabling probabilistic characterization of predictive uncertainty and the construction of prediction intervals. Results indicate that integrating causal and time-lag characteristics improves the model’s capacity to identify key drivers and anticipate deterioration inflection points. The proposed BayesLSTM achieved high predictive accuracy across all three distress types, with a prediction interval coverage of 100%, thereby enhancing the reliability of prediction by providing both deterministic results and interval estimates. These findings facilitate the identification of high-risk distresses and their underlying mechanisms, offering support for rational allocation of maintenance resources. Full article
(This article belongs to the Special Issue New Technology for Road Surface Detection, 2nd Edition)
Show Figures

Figure 1

29 pages, 9027 KB  
Article
Microstructural Mechanisms of Concrete Degradation Under Different Coal Gangue Sand Replacement Ratios
by Yukai Cai, Wenhua Zha, Tao Xu, Chao Ji and Yaozong Li
Materials 2025, 18(20), 4787; https://doi.org/10.3390/ma18204787 - 20 Oct 2025
Viewed by 284
Abstract
Coal gangue manufactured sand (CGS), a sustainable substitute for natural sand, offers both resource and environmental benefits; however, the micro-mechanisms underlying performance deterioration at different replacement levels remain unclear. In this study, cube specimens with 25%, 50%, 75%, and 100% CGS were tested [...] Read more.
Coal gangue manufactured sand (CGS), a sustainable substitute for natural sand, offers both resource and environmental benefits; however, the micro-mechanisms underlying performance deterioration at different replacement levels remain unclear. In this study, cube specimens with 25%, 50%, 75%, and 100% CGS were tested in uniaxial compression, and the results were integrated with PFC2D discrete-element simulations and SEM observations to establish an energy–force-chain–crack coupling framework. Experiments and simulations showed close agreement in peak stress, peak strain, and overall curve shape (errors generally <5%). With increasing replacement, the interfacial transition zone (ITZ) evolves from a dense three-phase ITZ (NS–CGS–CA; natural sand–CGS–coarse aggregate) to a degraded two-phase ITZ (CGS–CA), accompanied by more pores and microcracks; the proportion of Adhesive cracks decreases while Cohesive (intra-particle) cracks increase. Concurrently, continuous force-chain networks deteriorate into localized short-chain clusters; the peak and fraction of strain-energy decrease, whereas frictional/damping dissipation rises—together driving a macroscopic transition from ductile to brittle behavior. At 28 d, SEM images and DEM evolution of cracks/force chains/energy exhibit strong consistency, further confirming that low replacement (25% and 50%) favors stable load-transfer paths and suppresses early cracking, whereas high replacement (75% and 100%)—through ITZ degradation and force-chain instability—induces more concentrated cracking and higher energy dissipation, thereby diminishing mechanical performance. Full article
Show Figures

Figure 1

24 pages, 4301 KB  
Article
Control Deficits and Compensatory Mechanisms in Individuals with Chronic Ankle Instability During Dual-Task Stair-to-Ground Transition
by Yilin Zhong, Xuanzhen Cen, Xiaopan Hu, Datao Xu, Lei Tu, Monèm Jemni, Gusztáv Fekete, Dong Sun and Yang Song
Bioengineering 2025, 12(10), 1120; https://doi.org/10.3390/bioengineering12101120 - 19 Oct 2025
Viewed by 336
Abstract
(1) Background: Chronic ankle instability (CAI), a common outcome of ankle sprains, involves recurrent sprains, balance deficits, and gait impairments linked to both peripheral and central neuromuscular dysfunction. Dual-task (DT) demands further aggravate postural control, especially during stair descent, a major source of [...] Read more.
(1) Background: Chronic ankle instability (CAI), a common outcome of ankle sprains, involves recurrent sprains, balance deficits, and gait impairments linked to both peripheral and central neuromuscular dysfunction. Dual-task (DT) demands further aggravate postural control, especially during stair descent, a major source of fall-related injuries. Yet the biomechanical mechanisms of stair-to-ground transition in CAI under dual-task conditions remain poorly understood. (2) Methods: Sixty individuals with CAI and age- and sex-matched controls performed stair-to-ground transitions under single- and dual-task conditions. Spatiotemporal gait parameters, center of pressure (COP) metrics, ankle inversion angle, and relative joint work contributions (Ankle%, Knee%, Hip%) were obtained using 3D motion capture, a force plate, and musculoskeletal modeling. Correlation and regression analyses assessed the relationships between ankle contributions, postural stability, and proximal joint compensations. (3) Results: Compared with the controls, the CAI group demonstrated marked control deficits during the single task (ST), characterized by reduced gait speed, increased step width, elevated mediolateral COP root mean square (COP-ml RMS), and abnormal ankle inversion and joint kinematics; these impairments were exacerbated under DT conditions. Individuals with CAI exhibited a significantly reduced ankle plantarflexion moment and energy contribution (Ankle%), accompanied by compensatory increases in knee and hip contributions. Regression analyses indicated that Ankle% significantly predicted COP-ml RMS and gait speed (GS), highlighting the pivotal role of ankle function in maintaining dynamic stability. Furthermore, CAI participants adopted a “posture-first” strategy under DT, with concurrent deterioration in gait and cognitive performance, reflecting strong reliance on attentional resources. (4) Conclusions: CAI involves global control deficits, including distal insufficiency, proximal compensation, and an inefficient energy distribution, which intensify under dual-task conditions. As the ankle is central to lower-limb kinetics, its dysfunction induces widespread instability. Rehabilitation should therefore target coordinated lower-limb training and progressive dual-task integration to improve motor control and dynamic stability. Full article
Show Figures

Figure 1

18 pages, 2210 KB  
Review
Muscle-Bone Crosstalk and Metabolic Dysregulation in Children and Young People Affected with Type 1 Diabetes: Mechanisms and Clinical Implications
by Rossella Vitale, Giovanna Linguiti, Vanja Granberg, Crescenza Lattanzio, Paola Giordano and Maria Felicia Faienza
Cells 2025, 14(20), 1611; https://doi.org/10.3390/cells14201611 - 16 Oct 2025
Viewed by 301
Abstract
Pediatric type 1 diabetes (T1D) disrupts musculoskeletal development during critical windows of growth, puberty, and peak bone mass accrual. Beyond classic micro- and macrovascular complications, accumulating evidence shows a dual burden of diabetic bone disease—reduced bone mineral density, microarchitectural deterioration, and higher fracture [...] Read more.
Pediatric type 1 diabetes (T1D) disrupts musculoskeletal development during critical windows of growth, puberty, and peak bone mass accrual. Beyond classic micro- and macrovascular complications, accumulating evidence shows a dual burden of diabetic bone disease—reduced bone mineral density, microarchitectural deterioration, and higher fracture risk—and diabetic myopathy, characterized by loss of muscle mass, diminished strength, and metabolic dysfunction. Mechanistically, chronic hyperglycemia, absolute or functional insulin deficiency, and glycemic variability converge to suppress PI3K–AKT–mTOR signaling, activate FoxO-driven atrogenes (atrogin-1, MuRF1), and impair satellite-cell biology; advanced glycation end-products (AGEs) and RAGE signaling stiffen extracellular matrix and promote low-grade inflammation (IL-6, TNF-α/IKK/NF-κB), while oxidative stress and mitochondrial dysfunction further compromise the bone–muscle unit. In vitro, ex vivo, and human studies consistently link these pathways to lower BMD and trabecular/cortical quality, reduced muscle performance, and increased fractures—associations magnified by poor metabolic control and longer disease duration. Prevention prioritizes tight, stable glycemia, daily physical activity with weight-bearing and progressive resistance training, and optimized nutrition (adequate protein, calcium, vitamin D). Treatment is individualized: supervised exercise-based rehabilitation (including neuromuscular and flexibility training) is the cornerstone of skeletal muscle health. This review provides a comprehensive analysis of the mechanisms underlying the impact of type 1 diabetes on musculoskeletal system. It critically appraises evidence from in vitro studies, animal models, and clinical research in children, it also explores the effects of prevention and treatment. Full article
Show Figures

Figure 1

15 pages, 11023 KB  
Article
Aging Analysis of HTV Silicone Rubber Under Coupled Corona Discharge, Humidity and Cyclic Thermal Conditions
by Ming Lu, Shiyin Zeng, Chao Gao, Yuelin Liu, Xinyi Yan, Zehui Liu and Guanjun Zhang
Electronics 2025, 14(20), 4071; https://doi.org/10.3390/electronics14204071 - 16 Oct 2025
Viewed by 314
Abstract
High-temperature vulcanized silicone rubber (HTV-SR), widely used in composite insulators, experiences performance degradation when subjected to combined stresses such as corona discharge, humidity and temperature fluctuations. This degradation poses significant risks to the reliability of power grid operation. To investigate the aging behavior [...] Read more.
High-temperature vulcanized silicone rubber (HTV-SR), widely used in composite insulators, experiences performance degradation when subjected to combined stresses such as corona discharge, humidity and temperature fluctuations. This degradation poses significant risks to the reliability of power grid operation. To investigate the aging behavior and mechanisms of HTV-SR under the combined influences of corona, moisture and thermal cycling, a series of multi-factor accelerated aging tests are conducted. Comprehensive characterizations of surface morphology, structural, mechanical and electrical properties are performed before and after aging. The results reveal that corona discharge induces molecular chain scission and promotes oxidative crosslinking, leading to surface degradation. Increased humidity accelerates water diffusion and hydrolysis, enhancing crosslink density but reducing material flexibility, thereby further deteriorating structural integrity and electrical performance. Compared with constant temperature aging, thermal cycling introduces repetitive thermal stress, which significantly aggravates filler migration and leads to more severe mechanical and dielectric degradation. These findings elucidate the multi-scale degradation mechanisms of HTV-SR under the coupling effects of corona discharge, humidity and temperature cycling, providing theoretical support for the design of corona- and humidity-resistant silicone rubber for composite insulator applications. Full article
(This article belongs to the Special Issue Polyphase Insulation and Discharge in High-Voltage Technology)
Show Figures

Figure 1

24 pages, 3341 KB  
Article
Experimental Study on the Evolution of Mechanical Properties and Their Mechanisms in a HTPB Propellant Under Fatigue Loading
by Feiyang Feng, Xiong Chen, Jinsheng Xu, Yi Zeng, Wei Huang and Junchao Dong
Polymers 2025, 17(20), 2756; https://doi.org/10.3390/polym17202756 - 15 Oct 2025
Viewed by 348
Abstract
In this study, we explored the evolution of mechanical properties in hydroxyl-terminated polybutadiene (HTPB) propellants under fatigue loading by performing fatigue tests with varying maximum stresses and cycle numbers, followed by uniaxial tensile tests on post-fatigue specimens. Residual elongation was used as a [...] Read more.
In this study, we explored the evolution of mechanical properties in hydroxyl-terminated polybutadiene (HTPB) propellants under fatigue loading by performing fatigue tests with varying maximum stresses and cycle numbers, followed by uniaxial tensile tests on post-fatigue specimens. Residual elongation was used as a key parameter to characterize mechanical behavior, while scanning electron microscopy (SEM) provided insights into the mesostructural morphological changes that occur under different loading conditions, revealing the mechanisms responsible for variations in mechanical properties. The results show that, as the number of loading cycles increases, residual elongation decreases, with three distinct phases of decline—slow change, gradual decline, and rapid deterioration—depending on the stress levels. SEM analysis identified damage mechanisms such as “dewetting” and particle fragmentation at the mesostructural level, which compromise the material’s structural integrity, leading to reduced residual elongation. A novel aspect of this study is the application of Williams–Landel–Ferry (WLF) theory to construct a master curve describing residual elongation decay. This approach enabled the development of a generalized model to predict the material’s degradation under fatigue loading, with experimental validation of the fitted evolution model, offering a new and effective method for assessing the long-term performance of HTPB propellants. Full article
Show Figures

Figure 1

35 pages, 5860 KB  
Review
Preparation Technology, Reactivity and Applications of Nano-Aluminum in Explosives and Propellants: A Review
by Huili Guo, Weipeng Zhang and Weiqiang Pang
Nanomaterials 2025, 15(20), 1564; https://doi.org/10.3390/nano15201564 - 14 Oct 2025
Viewed by 205
Abstract
Aluminum powder is the most commonly used metal fuel in the industry of explosives and propellants. The research progress in preparation technology, reactivity and application of nano-aluminum in explosives and propellants is systematically reviewed in this paper. The preparation technology of nano-aluminum powder [...] Read more.
Aluminum powder is the most commonly used metal fuel in the industry of explosives and propellants. The research progress in preparation technology, reactivity and application of nano-aluminum in explosives and propellants is systematically reviewed in this paper. The preparation technology of nano-aluminum powder includes mechanical pulverization technology (such as the ball milling method and ultrasonic ablation method, etc.), evaporation condensation technology (such as the laser induction composite heating method, high-frequency induction method, arc method, pulsed laser ablation method, resistance heating condensation method, gas-phase pyrolysis method, wire explosion pulverization method, etc.), chemical reduction technology (such as the solid-phase reduction method, solution reduction method, etc.) and the ionic liquid electrodeposition method, each of which has its own advantages. Some new preparation methods have emerged, providing important reference value for the large-scale production of high-purity, high-quality nano-aluminum powder. The reactivity differences between nano-aluminum powder and micro-aluminum powder are compared in the thesis. It is clear that the reactivity of nano-aluminum powder is much higher than that of micro-aluminum powder in terms of ignition performance, combustion performance and reaction completeness, and it has a stronger influence on the detonation performance of mixed explosives and the combustion performance of propellants. Nano-aluminum powder is highly prone to oxidation, which seriously affects its application efficiency. In addition, when aluminum powder oxidizes or burns, a surface oxide layer will be formed, which hinders the continued reaction of internal aluminum powder. In addition, nano-aluminum powder may deteriorate the preparation process of explosives or propellants. To improve these shortcomings, appropriate coating or modification treatment is required. The application of nano-aluminum powder in mixed explosives can improve many properties of mixed explosives, such as detonation velocity, detonation heat, peak value of shock wave overpressure, etc. Applying nano-aluminum powder to propellants can significantly increase the burning rate and improve the properties of combustion products. It is pointed out that the high reactivity of nano-aluminum powder makes the preparation and storage of high-purity nano-aluminum powder extremely difficult. It is recommended to increase research on the preparation and storage technology of high-purity nano-aluminum powder. Full article
Show Figures

Figure 1

18 pages, 1145 KB  
Article
A Systematic Approach for Selection of Fit-for-Purpose Low-Carbon Concrete for Various Bridge Elements to Reduce the Net Embodied Carbon of a Bridge Project
by Harish Kumar Srivastava, Vanissorn Vimonsatit and Simon Martin Clark
Infrastructures 2025, 10(10), 274; https://doi.org/10.3390/infrastructures10100274 - 13 Oct 2025
Viewed by 483
Abstract
Australia consumes approximately 29 million m3 of concrete each year with an estimated embodied carbon (EC) of 12 Mt CO2e. High consumption of concrete makes it critical for successful decarbonization to support the achievement of ‘Net Zero 2050’ objectives of [...] Read more.
Australia consumes approximately 29 million m3 of concrete each year with an estimated embodied carbon (EC) of 12 Mt CO2e. High consumption of concrete makes it critical for successful decarbonization to support the achievement of ‘Net Zero 2050’ objectives of the Australian construction industry. Portland cement (PC) constitutes only 12–15% of the concrete mix but is responsible for approximately 90% of concrete’s EC. This necessitates reducing the PC in concrete with supplementary cementitious materials (SCMs) or using alternative binders such as geopolymer concrete. Concrete mixes including a combination of PC and SCMs as a binder have lower embodied carbon (EC) than those with only PC and are termed as low-carbon concrete (LCC). SCM addition to a concrete mix not only reduces EC but also enhances its mechanical and durability properties. Fly ash (FA) and granulated ground blast furnace slag (GGBFS) are the most used SCMs in Australia. It is noted that other SCMs such as limestone, metakaolin or calcinated clay, Delithiated Beta Spodumene (DBS) or lithium slag, etc., are being trialed. This technical paper presents a methodology that enables selecting LCCs with various degrees of SCMs for various elements of bridge structure without compromising their functional performance. The proposed methodology includes controls that need to be applied during the design/selection process of LCC, from material quality control to concrete mix design to EC evaluation for every element of a bridge, to minimize the overall carbon footprint of a bridge. Typical properties of LCC with FA and GGBFS as binary and ternary blends are also included for preliminary design of a fit-for-purpose LCC. An example for a bridge located in the B2 exposure classification zone (exposed to both carbonation on chloride ingress deterioration mechanisms) has also been included to test the methodology, which demonstrates that EC of the bridge may be reduced by up to 53% by use of the proposed methodology. Full article
(This article belongs to the Special Issue Sustainable Bridge Engineering)
Show Figures

Figure 1

18 pages, 2376 KB  
Article
Experimental Studies on Diesel Deterioration: Accelerated Oxidation in a Reaction Vessel and Thermogravimetric Analysis
by Nan Li, Mingchang Wang, Pengpeng Li, Shuping Che, Xingyu Liang, Yinhui Che, Jia Yan and Yongdi He
Energies 2025, 18(20), 5365; https://doi.org/10.3390/en18205365 - 11 Oct 2025
Viewed by 241
Abstract
Accelerated oxidation experiments on Chinese 0# diesel fuel were performed with a self-designed aging reactor system. Five experimental conditions covering pressures ranging from atmospheric pressure to 0.8 MPa, temperatures ranging from room temperature (25 °C) to 80 °C, and their synergistic effects were [...] Read more.
Accelerated oxidation experiments on Chinese 0# diesel fuel were performed with a self-designed aging reactor system. Five experimental conditions covering pressures ranging from atmospheric pressure to 0.8 MPa, temperatures ranging from room temperature (25 °C) to 80 °C, and their synergistic effects were adopted to simulate the long-term oxidation of diesel fuel. The extent of deterioration was evaluated based on the measurement of three key indicators, i.e., oxidation stability, wear scar diameter, and viscosity. Thermogravimetric analysis (TGA) tests were performed, and the measured thermogravimetric (TG) curves and derivative thermogravimetric (DTG) curves were used to evaluate the effects of reactor material, heating rate, bath gas, and reactive gas on the deterioration and vaporization processes of diesel fuel. Based on a comparison of the deterioration indicators of diesel fuel collected from the accelerated oxidation experiments and oil depots serving actual operating emergency diesel generators (EDGs), a rapid assessment method of real-time diesel deterioration was explored. Based on the experimental observations, the affecting mechanisms of the increases in temperature and oxygen partial pressure were discussed. Two test methods of accelerated oxidation, with the respective conditions of 0.8 MPa/80 °C and atmospheric pressure/80 °C, were proposed, which could effectively compress the time needed for long-term storage simulations (e.g., 200 h lab aging equals three years of actual operation). The optional temperature and pressure windows for acceleration oxidation were confirmed (40–80 °C/0.3–0.8 MPa). These results are valuable for the further understanding of the processes of deterioration and vaporization of diesel fuel. Full article
Show Figures

Figure 1

27 pages, 610 KB  
Review
Sleep Deprivation and Its Impact on Insulin Resistance
by Margarida C. Pinheiro, Henrique E. Costa, Melissa Mariana and Elisa Cairrao
Endocrines 2025, 6(4), 49; https://doi.org/10.3390/endocrines6040049 - 11 Oct 2025
Viewed by 948
Abstract
Background/Objectives: Adequate sleep has a fundamental role in human health, mainly in cognitive and physiological functions. However, the daily demands of modern society have led to a constant pursuit of better living conditions, requiring more active hours at the expense of sleeping [...] Read more.
Background/Objectives: Adequate sleep has a fundamental role in human health, mainly in cognitive and physiological functions. However, the daily demands of modern society have led to a constant pursuit of better living conditions, requiring more active hours at the expense of sleeping hours. This sleep deprivation has been associated with human health deterioration, namely an increase in Diabetes Mellitus incidence. This metabolic disease is a chronic pathology that imposes a big burden on health systems and is associated with the rise in insulin resistance. In this sense, the aim of this review is to analyze the relation between sleep deprivation and insulin resistance, emphasizing the metabolic parameters and hormones that may be involved in the subjacent mechanism. Methods: A literature review of the last 10 years was performed with specific terms related to “sleep deprivation” and “insulin resistance”. Results: Overall, the studies analyzed showed a decrease in insulin sensitivity in cases of sleep deprivation, even with different study protocols. In addition, an association between sleep deprivation and increased non-esterified fatty acids was also noticeable; however, other parameters such as cortisol, metanephrines, and normetanephrines showed no consistent results among the studies. Conclusions: This review allowed us to confirm the relationship between sleep deprivation and insulin resistance; however, despite the difficulties to monitor sleep, more research is needed to understand the related mechanisms that have not yet been clarified. Full article
Show Figures

Graphical abstract

19 pages, 4640 KB  
Article
Preparation of Aluminum Matrix Composites Reinforced with Hybrid MAX–MXene Particles for Enhancing Mechanical Properties and Tribological Performance
by Zipeng Li, Qinghua Li, Junda You, Fuguo Li, Guo Yu, Wen Zhang and Zikun Liang
J. Compos. Sci. 2025, 9(10), 552; https://doi.org/10.3390/jcs9100552 - 10 Oct 2025
Viewed by 518
Abstract
This study presents a novel methodology for the fabrication of aluminum matrix composites (AMCs) reinforced with a hybrid of MAX phase (Ti3AlC2) and MXene (Ti3C2Tx) particles via vacuum hot-pressing sintering, aiming to enhance [...] Read more.
This study presents a novel methodology for the fabrication of aluminum matrix composites (AMCs) reinforced with a hybrid of MAX phase (Ti3AlC2) and MXene (Ti3C2Tx) particles via vacuum hot-pressing sintering, aiming to enhance the mechanical properties and tribological performance of aluminum matrix composites. The hybrid-reinforced aluminum matrix composites were fabricated with Ti3AlC2/Ti3C2Tx reinforcements at a 1:1 mass ratio, incorporating reinforcement contents of 5 wt.%, 15 wt.%, and 25 wt.%, respectively. The optimized vacuum hot press sintering process was as follows: firstly, a cold press pressure of 20 MPa was applied to the composite powder, and then hot press sintering was carried out by means of segmental pressurization with a sintering pressure of 20 MPa, a temperature of 500 °C, and a heat preservation of 1 h before cooling in the furnace. It was found by micro-morphological characterization and mechanical property testing that with the increase of Ti3AlC2/Ti3C2Tx reinforcement content (5 wt.%→15 wt.%), the micro-hardness of the composites (31.9→76.1 HV0.2), compressive strength (41.7→151.9 MPa), and tribological properties (friction coefficient 0.68→0.50) were significantly improved; however, when the content of reinforcement exceeded 15 wt.%, the deterioration of properties triggered by the increase in pore defects and particle agglomeration leads instead to a decrease in compressive strength (by 12.3%), apparent modulus of elasticity (specimen’s compressive specific stiffness, by 9.8%) and frictional stability (coefficient of friction recovered to 0.62). The 15 wt.% hybrid reinforcement composites demonstrated optimal strength-toughness synergies, exhibiting a 361.6% increase in yield strength and a 597.1% increase in apparent modulus of elasticity compared to pure aluminum. Furthermore, the friction coefficient exhibited a 26.47% reduction in comparison to pure aluminum, thereby substantiating enhanced tribological performance. The observed enhancements are attributed to the synergistic effects of the MAX and MXene phases, where MXene improves interfacial wettability and densification, while MAX particles enhance overall strength through diffusion reinforcement. Full article
(This article belongs to the Section Metal Composites)
Show Figures

Graphical abstract

Back to TopTop