Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = pencil hardness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3732 KiB  
Article
Near-Infrared Light-Induced Deep Curing of Thiol–Epoxy Networks Based on Upconversion Photochemistry
by Pin Yang, Yaoxin Huang, Xiaoxuan Liu and Zhiquan Li
Coatings 2025, 15(4), 494; https://doi.org/10.3390/coatings15040494 - 21 Apr 2025
Viewed by 674
Abstract
Thiol–epoxy photopolymerization offers exceptional advantages for high-performance protective coatings, yet efficiently curing thick formulations remains a significant challenge due to the limited penetration depth of conventional UV light. Herein, we report a novel near-infrared (NIR) light-activated photopolymerization system for deep-curing applications, strategically integrating [...] Read more.
Thiol–epoxy photopolymerization offers exceptional advantages for high-performance protective coatings, yet efficiently curing thick formulations remains a significant challenge due to the limited penetration depth of conventional UV light. Herein, we report a novel near-infrared (NIR) light-activated photopolymerization system for deep-curing applications, strategically integrating upconversion nanoparticles (UCNPs) as NIR-to-UV converters, isopropylthioxanthone (ITX) as a photosensitizer, and a liquid N-phenylglycine-based photobase generator (NPG-TBD) with enhanced resin solubility. Upon 980 nm NIR irradiation, photogenerated TBD efficiently catalyzes thiol–epoxy polymerization through an anionic mechanism, enabling uniform network formation with epoxy and thiol functional group conversions greater than 90% throughout samples exceeding 2.5 cm in thickness. The resulting coatings exhibit excellent mechanical properties including 3H pencil hardness, strong adhesion (0 grade), and good flexibility (2 mm), significantly outperforming conventional UV systems limited to approximately 1.5 mm. Additionally, the cured materials demonstrate multifunctional characteristics including distinctive upconversion luminescence and dual-responsive shape memory behavior. This approach addresses critical limitations in deep-photocuring technology while offering significant potential for applications in protective coatings for marine infrastructure, chemical storage facilities, and smart materials requiring both substantial barrier properties and programmable responsiveness. Full article
Show Figures

Figure 1

15 pages, 1766 KiB  
Article
Development of Renewable Polyester Resins for Coil Coatings Based on 2,5-Furandicarboxylic Acid
by Nataša Čuk, Danaja Štular, Martin Ocepek, Jaka Langerholc and Peter Venturini
Coatings 2025, 15(3), 350; https://doi.org/10.3390/coatings15030350 - 18 Mar 2025
Cited by 1 | Viewed by 757
Abstract
In this work, the development of FDCA-based polyester resins for coil coatings in industrial environment is presented. The goal of our research was to prepare industrial coatings made from renewable materials with the same performance as the standard coating. Resins with 1%–41% of [...] Read more.
In this work, the development of FDCA-based polyester resins for coil coatings in industrial environment is presented. The goal of our research was to prepare industrial coatings made from renewable materials with the same performance as the standard coating. Resins with 1%–41% of FDCA on polymer were synthesized and then used in a formulation for primer. Resins were characterized by the determination of non-volatile matter, acid value, hydroxyl value, glass transition temperature, and measurement of viscosity, color and molecular weight. Coatings were characterized by the determination of viscosity, density, non-volatile matter, adhesion, T-test, MEK test, reverse impact, and pencil hardness, as well as the measurement of gloss. FTIR measurements confirmed successful incorporation of FDCA into the polymer. The results showed that resins with up to 31% of FDCA on polymer can be used to prepare coil coating where the properties of resins comply with the requirements and are comparable to the properties of standard resin. Resins had non-volatile matter between 59.0 and 60.1%, an acid value up to 4.6 mg KOH/g, a hydroxyl value of 22.0–24.9 mg KOH/g and viscosity at 23 °C between 6100 and 7500 mPa.s. Nevertheless, with the increase in FDCA in the formulation, discoloration of the resin occurred and incompatibility with the solvents was observed, while up to 10 °C lower glass transition temperatures and up to 28% lower molecular weights of the resins were determined. For coatings prepared from FDCA-based resins, the properties improved or were comparable to the properties of coating prepared from standard resin. Adhesion improved with higher content of FDCA in the resin from 2 Gt to 0 Gt, while all coatings had gloss at 60° of 39%–41%, a reverse impact of 10 J and a pencil hardness of H/2H. T-bend test results varied between 2 T and 0.5 T and the results of the MEK test showed resistance > 100 DR. Full article
Show Figures

Figure 1

15 pages, 3461 KiB  
Article
Fabrication of Thermally Stable Heat-Shielding Coated Glass for Solar Glazing via Direct Calcination in Air
by Guangrui Zhang, Xiaoting Qin, Dinghui Wang, Jinqing Li, Wenlong Pan and Jian Yin
Coatings 2025, 15(2), 239; https://doi.org/10.3390/coatings15020239 - 17 Feb 2025
Viewed by 706
Abstract
The utilization of heat-shielding glazing technologies can efficiently promote carbon emission reductions and energy savings by decreasing solar irradiation into buildings. Although a variety of glazing technologies have been created for solar glazing, either the heat-shielding performance is low, the thermal stability is [...] Read more.
The utilization of heat-shielding glazing technologies can efficiently promote carbon emission reductions and energy savings by decreasing solar irradiation into buildings. Although a variety of glazing technologies have been created for solar glazing, either the heat-shielding performance is low, the thermal stability is poor, or the cost is high. Here, we report a thermally stable heat-shielding coated glass for solar glazing in a simple way via direct calcination of Ce and Sb co-doped SnO2 nanoparticles with polysilazane (PSZ) coatings in air. The resulting coated glass has transmittances of 4.7% at 250–380 nm, 59.3% at 380–780 nm, and 9.7% at 780–2500 nm; excellent environment stability under accelerated aging conditions over 350 h; and also a ca. 50-fold lower fixed cost than commercial low-E glass. Moreover, a coated glass with a high pencil hardness of 9H was also fabricated via further spraying and calcinating of a PSZ coating as the cover layer, which is also the hardest coated solar glaze to our knowledge. The high solar-shielding performance and unprecedented low cost of the Ce and Sb co-doped SnO2-coated glass, as well as the simplicity of its fabrication, exhibit great potential in energy-saving buildings and cars. Full article
Show Figures

Figure 1

15 pages, 3877 KiB  
Article
UV-Curable Optical-Silicone-Modified Coatings Prepared from CO2-Based Non-Isocyanate Polyurethane Diol
by Nana Sun, Hongyu Zhu, Shuxin Wang, Junyi Li, Guoqiao Lai and Xiongfa Yang
Coatings 2025, 15(2), 165; https://doi.org/10.3390/coatings15020165 - 2 Feb 2025
Viewed by 962
Abstract
Though polyurethanes (PUs) are widely used in people’s daily lives, traditional PUs are generally fabricated from toxic (poly)isocyanates. Furthermore, (poly)isocyanates are commonly industrially prepared from a seriously toxic and injurious chemical compound named phosgene, which is a dangerous gas that can cause lung [...] Read more.
Though polyurethanes (PUs) are widely used in people’s daily lives, traditional PUs are generally fabricated from toxic (poly)isocyanates. Furthermore, (poly)isocyanates are commonly industrially prepared from a seriously toxic and injurious chemical compound named phosgene, which is a dangerous gas that can cause lung irritation and eventually death. As is known to all, the consumption of carbon dioxide (CO2)-based raw materials in chemical reactions and productions will be conducive to reducing the greenhouse effect. In this paper, non-isocyanate polyurethane (NIPU) diol was fabricated through a polyaddition reaction from ethylenediamine and CO2-based ethylene carbonate, and then NIPU-based silicone-containing thiol hyperbranched polymers (NIPU-SiHPs) were synthesized from the NIPU diol. Finally, UV-curable optical-silicone-modified CO2-based coatings (UV-NIPUs) were fabricated from NIPU-SiHPs and pentaerythritol triacrylate by a UV-initiated thiol-ene click reaction without a UV initiator. The UV-NIPUs demonstrated high transparency over 90% (400–800 nm), good mechanical performance with tensile strength reaching 3.49 MPa, superior thermal stability with an initial decomposition temperature (Td5) in the range of 239.7–265.6 °C, moderate hydrophilicity with a water contact angle in the range of 42.6–62.1°, a high pencil hardness in the range of 5–9H, and good adhesive performance of grade 0. The results indicate that it is a promising green chemical strategy to fabricate CO2-based high-performance materials. Full article
Show Figures

Figure 1

13 pages, 3366 KiB  
Article
Improvement in the Damping Behavior of Hierarchical Carbon Fiber-Reinforced Plastic for Park Golf Club Faces
by Seoyeon Bae, Minhyeok Shin, Eunjung Kim, Sungbi Lee, Woong-Ryeol Yu, Cheol-Hee Ahn and Wonjin Na
Polymers 2025, 17(3), 264; https://doi.org/10.3390/polym17030264 - 21 Jan 2025
Viewed by 1157
Abstract
Park golf, introduced to Korea in 2000, has become a popular leisure activity, especially among older people. However, sudden shock between the ball and carbon fiber-reinforced plastic (CFRP) face can increase the risk of injuries, highlighting the need for enhanced damping material. However, [...] Read more.
Park golf, introduced to Korea in 2000, has become a popular leisure activity, especially among older people. However, sudden shock between the ball and carbon fiber-reinforced plastic (CFRP) face can increase the risk of injuries, highlighting the need for enhanced damping material. However, restitution and damping are critical properties of golf clubs and often exhibit a conflicting relationship; thus, a method is needed to address this challenge. Therefore, this study aimed to develop a CFRP with an enhanced restitution and damping ratio by incorporating carbon nanotubes and graphene oxide nanofillers into the existing CFRP face material. A drop test apparatus was set up to measure the coefficient of restitution, and the damping properties were evaluated using a pencil lead-breaking test. CNTs exhibited high rebound properties due to their stiffness and hardness. In contrast, GO provided a modest increase in rebound while demonstrating a superior damping ratio, attributed to its layered structure and high internal friction. Based on these results, the optimal nanofiller content was determined as GO 0.025 wt%, showing a minor improvement in rebound performance, a 1033% improvement in vibration damping, and an 84% improvement in acoustic damping. Notably, this finding implies the importance of nanomaterial shape and its interaction with the composite matrix. A double-masked user test with a prototype confirmed enhanced comfort and reduced vibration feedback. The low-vibration components developed in this study are expected to be applicable in future research for controlling the damping ratio under impact or vibrations, such as UAM and helicopters. Full article
Show Figures

Figure 1

17 pages, 3874 KiB  
Article
Effects of Different Polyols with Functions on the Properties of Polyester Polyol-Based Polyurethane Coatings
by Zhaoyang Zhang, Nannan Ni and Yahong Xu
Coatings 2025, 15(1), 61; https://doi.org/10.3390/coatings15010061 - 8 Jan 2025
Cited by 2 | Viewed by 1794
Abstract
Polyester-based polyurethane coatings were widely used in automotive, industrial, construction, and plastics industries due to their excellent mechanical properties, adhesion, and relatively outstanding oil and chemical resistance. In these coatings, the type and ratio of polyester and isocyanate curing agents influenced the cohesion [...] Read more.
Polyester-based polyurethane coatings were widely used in automotive, industrial, construction, and plastics industries due to their excellent mechanical properties, adhesion, and relatively outstanding oil and chemical resistance. In these coatings, the type and ratio of polyester and isocyanate curing agents influenced the cohesion energy, hydrogen bonding, crystallinity, crosslinking density, molecular weight, and morphology of the polyurethane at the microscopic level, thereby affecting the macroscopic mechanical properties, electrical performance, and environmental resistance of the material. However, there was limited systematic research on the effect of crosslinking density on the properties of polyester-based polyurethanes. In this study, an HTP-1 system was composed of neopentyl glycol (NPG) and phthalic anhydride (PA), and an HTP-2 system was composed of neopentyl glycol (NPG), hexahydrophthalic anhydride (HHPA), and adipic acid (AA). A series of polyesters (HTPs) were synthesized by adding polyols with different functional groups and adjusting their proportions in the system. The synthesized polyester was characterized using FT-IR, GPC, and DSC, and then cured with polyisocyanate curing agent N3390 to prepare the coating. The following properties of the films were evaluated: adhesion, impact resistance, pencil hardness, gloss, flexibility, oil resistance, and weather resistance. The results showed that in the HTP-1 system, the introduction of dipentaerythritol resulted in a polyester with a broad molecular weight distribution at high hydroxyl values, with a maximum PDI of 12.66 and a glass transition temperature (Tg) reaching 40.19 °C. The polyesters prepared by introducing three types of multifunctional polyols into the HTP-1 system exhibited good impact resistance, adhesion, and hardness. At low hydroxyl values, the coatings demonstrated good flexibility, but due to the lower crosslinking density, the oil resistance was poor. As the hydroxyl value increased, flexibility decreased, while oil resistance improved. In the HTP-2 system, coatings prepared with three different multifunctional polyols showed good impact resistance, flexibility, and hardness at low hydroxyl values but poor adhesion and oil resistance. As the hydroxyl value increased, adhesion improved from grade 1 to grade 0, and oil resistance improved for coatings prepared with trimethylolpropane and ditrimethylolpropane. However, the oil resistance of coatings prepared with dipentaerythritol decreased. Regarding weather resistance, the HTP-1-series resins primarily exhibited the cleavage of -CH2 groups, while the HTP-2-series resins showed the cleavage of C-N bonds. Overall, the HTP-2 series resins demonstrated better weather resistance. In the high-hydroxyl-value HTP-2 system, the incorporation of trimethylolpropane or ditrimethylolpropane has been shown to produce coatings that achieve a balance among mechanical properties, flexibility, and oil resistance. This finding provides valuable insights for the design and development of high-performance polyester-based polyurethane coatings. Full article
Show Figures

Figure 1

11 pages, 2147 KiB  
Article
Novel Glycidyl Carbamate Functional Epoxy Resin Using Hydroxyl-Terminated Polybutadiene
by Hae-Chan Kim, Sun-Jae Moon, Yong-Rok Kwon, Seok-kyu Moon, Dah-hee Kim and Dong-Hyun Kim
Polymers 2024, 16(22), 3107; https://doi.org/10.3390/polym16223107 - 5 Nov 2024
Viewed by 1493
Abstract
Herein, a novel glycidyl carbamate functional epoxy resin (GCE) is synthesized by the additional reaction of the isocyanate group of tolylene diisocyanate (TDI) with the hydroxyl group of hydroxyl-terminated polybutadiene (HTPB) and glycidol. The successful synthesis of the GCE is confirmed by FT-IR [...] Read more.
Herein, a novel glycidyl carbamate functional epoxy resin (GCE) is synthesized by the additional reaction of the isocyanate group of tolylene diisocyanate (TDI) with the hydroxyl group of hydroxyl-terminated polybutadiene (HTPB) and glycidol. The successful synthesis of the GCE is confirmed by FT-IR and 1H NMR spectroscopy. Furthermore, a dual-curing adhesive system is developed using acrylic acid and trimethylolpropane triacrylate with varying GCE contents, and its adhesive performance is assessed by testing adhesive strength, pencil hardness, and surface energy. As a result, the dual-cure adhesive containing 0.2 mol of GCE demonstrates an impressive adhesive strength of 11.1 MPa, a pencil hardness of B, and surface energy comparable to that of standard polycarbonate film. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymer Materials)
Show Figures

Figure 1

11 pages, 259 KiB  
Article
The Role of Malocclusion and Oral Parafunctions in Predicting Signs and Symptoms of Temporomandibular Disorders—A Cross-Sectional Study
by Luka Šimunović, Marina Lapter Varga, Dubravka Negovetić Vranić, Ivana Čuković-Bagić, Lana Bergman and Senka Meštrović
Dent. J. 2024, 12(7), 213; https://doi.org/10.3390/dj12070213 - 10 Jul 2024
Cited by 4 | Viewed by 2353
Abstract
Background: The aim of this study was to examine to what extent malocclusion and parafunctional habits contribute to the development of signs and symptoms associated with temporomandibular disorders (TMD) in schoolchildren with mixed dentition in Croatia in a sample of 338 children, aged [...] Read more.
Background: The aim of this study was to examine to what extent malocclusion and parafunctional habits contribute to the development of signs and symptoms associated with temporomandibular disorders (TMD) in schoolchildren with mixed dentition in Croatia in a sample of 338 children, aged 9 to 15 years. Methods: TMD signs and symptoms assessed by the clinician were joint function and pain, masticatory muscles tenderness, range of mandibular motion, and joint sounds. To evaluate subjective symptoms and parafunctions, children and parents were asked about the presence of headaches, jaw locking, temporomandibular joint (TMJ) sounds, pain during mouth opening, or bruxism, as well as parafunctions like biting pencils or nails, chewing hard candies or ice, daily gum chewing, opening bottles with teeth, engaging in jaw play, thumb-sucking, and clenching/grinding teeth. Results: At least one symptom of a TMD was pronounced in 142 participants (42.0%). The most commonly reported parafunction was pencil or nail biting, present in 25.1% of participants. Class II malocclusion increased the likelihood by 2.6 times, pencil or nail biting by 2.34 times, and clenching/grinding teeth by 8.9 times that the subject would exhibit at least one TMD symptom. Conclusions: Every child with mixed dentition should undergo a brief examination of the TMJ, especially in cases of Class II malocclusion, pencil or nail biting, and teeth clenching or grinding, as these have all been identified as significant risk factors that increase the likelihood of experiencing TMD symptoms. This highlights the need for proactive screening and assessment by healthcare providers to reduce the risk and prevalence of TMDs in affected children and ensure timely diagnosis and treatment. Full article
13 pages, 9385 KiB  
Article
Yttria-Stabilized Zirconia Composite Coating as Barrier to Reduce Hydrogen Permeation into Steel
by Jianmeng Wu, Jiaqi Xie, Mengyuan He, Jingyi Zhang and Songjie Li
Materials 2024, 17(12), 3017; https://doi.org/10.3390/ma17123017 - 20 Jun 2024
Viewed by 1785
Abstract
Hydrogen atoms can enter into metallic materials through penetration and diffusion, leading to the degradation of the mechanical properties of the materials, and the application of hydrogen barrier coatings is an effective means to alleviate this problem. Zirconia coatings (ZrO2) have [...] Read more.
Hydrogen atoms can enter into metallic materials through penetration and diffusion, leading to the degradation of the mechanical properties of the materials, and the application of hydrogen barrier coatings is an effective means to alleviate this problem. Zirconia coatings (ZrO2) have been widely studied as a common hydrogen barrier coating, but zirconia undergoes a crystalline transition with temperature change, which can lead to volumetric changes in the coating and thus cause problems such as cracking and peeling of the coating. In this work, ZrO2 coating was prepared on a Q235 matrix using a sol-gel method, while yttria-stabilized zirconia (YSZ) coatings with different contents of rare earth elements were prepared in order to alleviate a series of problems caused by the crystal form transformation of ZrO2. The coating performances were evaluated by the electrochemical hydrogen penetration test, pencil hardness test, scratch test, and high-temperature oxidation test. The results show that yttrium can improve the stability of the high-temperature phase of ZrO2, alleviating the cracking problem of the coating due to the volume change triggered by the crystalline transition; improve the consistency of the coating; and refine the grain size of the oxide. The performance of YSZ coating was strongly influenced by the yttria doping mass, and the coating with 10 wt% yttria doping had the best hydrogen barrier performance, the best antioxidant performance, and the largest adhesion. Compared with the matrix, the steady-state hydrogen current density of the YSZ coating decreased by 72.3%, the antioxidant performance was improved by 65.8%, and the ZrO2 coating hardness and adhesion levels were B and 4B, respectively, while YSZ coating hardness and adhesion were upgraded to 2H and 5B. With the further increase in yttrium doping mass, the hardness of the coating continued to improve, but the defects of the coating increased, resulting in a decrease in the hydrogen barrier performance, antioxidant performance, and adhesion. In this work, the various performances of ZrO2 coating were significantly improved by doping with the rare earth element, which provides a reference for further development and application of oxide coatings. Full article
Show Figures

Figure 1

15 pages, 3930 KiB  
Article
Effect of Acrylic Resin on the Protection Performance of Epoxy Coating for Magnesium Alloy
by Xinyu Liu, Yingjun Zhang, Yong Jiang, Mengyang Li, Jianjun Bai and Xiaorong Zhou
Coatings 2024, 14(5), 577; https://doi.org/10.3390/coatings14050577 - 6 May 2024
Viewed by 2500
Abstract
The low toughness of epoxy resin can influence its shielding performance against a corrosive medium and strength of adhesion to metal surfaces. Extensive efforts have been made to modify epoxy resin. In this research, acrylic resin was synthesized by the solution method, and [...] Read more.
The low toughness of epoxy resin can influence its shielding performance against a corrosive medium and strength of adhesion to metal surfaces. Extensive efforts have been made to modify epoxy resin. In this research, acrylic resin was synthesized by the solution method, and 1 wt.%, 2.5 wt.%, and 5 wt.% were added to epoxy resin (E44 brand) to prepare coatings on the surface of AZ31B magnesium alloy. The effects of acrylic resin on the mechanical and protective properties of epoxy coatings were investigated via experiments measuring impact resistance, flexibility, and adhesion as well as the electrochemical impedance technique. Compared with the pure epoxy coating, the adhesion between the coating and the substrate increases by 1.37 MPa after the addition of 2.5 wt.% acrylic resin. Meanwhile, the pencil hardness has a slight change from 5B to 6B, and the flexibility significantly improves. Therefore, the epoxy coating exhibits enhanced anticorrosive properties after the addition of 2.5 wt.% acrylic resin. Full article
(This article belongs to the Special Issue Advances in Corrosion-Resistant Coatings, 2nd Edition)
Show Figures

Figure 1

15 pages, 3502 KiB  
Article
Preparation of Bio-Based Polyurethane Coating from Citrullus colocynthis Seed Oil: Characterization and Corrosion Performance
by Ahmed S. Alshabebi, Maher M. Alrashed, Lahssen El Blidi and Sajjad Haider
Polymers 2024, 16(2), 214; https://doi.org/10.3390/polym16020214 - 11 Jan 2024
Cited by 8 | Viewed by 2772
Abstract
In this study, a new epoxidized oil from Citrullus colocynthis seed oil (CCSO) was obtained for a potential application in the formulation of polyurethane coatings. Initially, the fatty acid composition of CCSO was determined by gas chromatography–mass spectrometry (GC–MS). Subsequently, the epoxidation of [...] Read more.
In this study, a new epoxidized oil from Citrullus colocynthis seed oil (CCSO) was obtained for a potential application in the formulation of polyurethane coatings. Initially, the fatty acid composition of CCSO was determined by gas chromatography–mass spectrometry (GC–MS). Subsequently, the epoxidation of CCSO was performed with in situ generated peracetic acid, which was formed with hydrogen peroxide (30 wt.%) and glacial acetic acid and catalyzed with sulfuric acid. The reaction was continued at a molar ratio of 1.50:1.0 of hydrogen peroxide to double bond (H2O2:DB) for 6 h at a controlled temperature of 60 °C. The resulting epoxidized oil was then used to produce a bio-based polyol by hydroxylation. The molar ratio of epoxy groups to methanol and distilled water was maintained at 1:11:2, and the reaction was carried out for 2 h at a controlled temperature of 65 °C. The major functional groups of the epoxidized oil and its polyol were validated by Fourier-transform infrared (FT-IR) and proton nuclear magnetic resonance (1H NMR) spectroscopies. A polyurethane (PU) coating was produced from the synthesized polyol and 3HDI isocyanurate, keeping the molar ratio of NCO:OH at 1:1. The resulting PU coating was then applied to glass and aluminum panels (Al 1001). After the film was cured, the properties of the PU coating were evaluated using various techniques including pencil hardness, pendulum hardness, adhesion, gloss, chemical resistance, and EIS tests. The results show that the PU coating obtained from CCSO is a promising new raw material for coating applications. Full article
(This article belongs to the Special Issue Polymer Composites in Waste Recycling)
Show Figures

Graphical abstract

15 pages, 10077 KiB  
Article
Fabrication of Polyurethane/Laponite/Graphene Transparent Coatings with High Surface Hardness
by Tianqi Jiao, Linyi Shui, Ming Lin, Wenhao Huang and Guohua Chen
Coatings 2024, 14(1), 12; https://doi.org/10.3390/coatings14010012 - 21 Dec 2023
Cited by 2 | Viewed by 1649
Abstract
A polyurethane/Laponite/graphene transparent coating with high surface hardness, obtained by dispersing the Laponite–graphene oxide (Lap-GO) in polyurethane for UV reduction, is reported. Lap-GO improves the hardness of the coating, where Laponite is intercalated between graphene layers through electrostatic action, preventing the re-accumulation or [...] Read more.
A polyurethane/Laponite/graphene transparent coating with high surface hardness, obtained by dispersing the Laponite–graphene oxide (Lap-GO) in polyurethane for UV reduction, is reported. Lap-GO improves the hardness of the coating, where Laponite is intercalated between graphene layers through electrostatic action, preventing the re-accumulation or aggregation of graphene and ensuring the transparency of the coating. The analysis of pencil hardness and light transmittance shows that when the Lap-GO content is 0.05 wt‰ and the UV reduction is 10 min, the hardness of the coated pencil increases to 5H, and the light transmittance remains above 85%. Furthermore, the polyurethane/Laponite/graphene transparent coating also has excellent cold liquid resistance and meets specific usage standards. The prepared polyurethane/Laponite/graphene transparent coatings are promising for broad application prospects in cover and protective coatings. Full article
(This article belongs to the Special Issue 2D Materials-Based Thin Films and Coatings)
Show Figures

Figure 1

21 pages, 5211 KiB  
Article
Advanced Anticorrosive Graphene Oxide-Doped Organic-Inorganic Hybrid Nanocomposite Coating Derived from Leucaena leucocephala Oil
by Wejdan Al-otaibi, Naser M. Alandis, Yasser M. Al-Mohammad and Manawwer Alam
Polymers 2023, 15(22), 4390; https://doi.org/10.3390/polym15224390 - 12 Nov 2023
Cited by 7 | Viewed by 1722
Abstract
Metal corrosion poses a substantial economic challenge in a technologically advanced world. In this study, novel environmentally friendly anticorrosive graphene oxide (GO)-doped organic-inorganic hybrid polyurethane (LFAOIH@GO-PU) nanocomposite coatings were developed from Leucaena leucocephala oil (LLO). The formulation was produced by the amidation reaction [...] Read more.
Metal corrosion poses a substantial economic challenge in a technologically advanced world. In this study, novel environmentally friendly anticorrosive graphene oxide (GO)-doped organic-inorganic hybrid polyurethane (LFAOIH@GO-PU) nanocomposite coatings were developed from Leucaena leucocephala oil (LLO). The formulation was produced by the amidation reaction of LLO to form diol fatty amide followed by the reaction of tetraethoxysilane (TEOS) and a dispersion of GOx (X = 0.25, 0.50, and 0.75 wt%) along with the reaction of isophorane diisocyanate (IPDI) (25–40 wt%) to form LFAOIH@GOx-PU35 nanocomposites. The synthesized materials were characterized by Fourier transform infrared spectroscopy (FTIR); 1H, 13C, and 29Si nuclear magnetic resonance; and X-ray photoelectron spectroscopy. A detailed examination of LFAOIH@GO0.5-PU35 morphology was conducted using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. These studies revealed distinctive surface roughness features along with a contact angle of around 88 G.U preserving their structural integrity at temperatures of up to 235 °C with minimal loading of GO. Additionally, improved mechanical properties, including scratch hardness (3 kg), pencil hardness (5H), impact resistance, bending, gloss value (79), crosshatch adhesion, and thickness were evaluated with the dispersion of GO. Electrochemical corrosion studies, involving Nyquist, Bode, and Tafel plots, provided clear evidence of the outstanding anticorrosion performance of the coatings. Full article
(This article belongs to the Special Issue Progress in Polyurethane and Composites)
Show Figures

Graphical abstract

15 pages, 5464 KiB  
Article
A Comparative Study on the Properties of Rosin-Based Epoxy Resins with Different Flexible Chains
by Lianli Deng, Zehua Wang, Bailu Qu, Ying Liu, Wei Qiu and Shaohe Qi
Polymers 2023, 15(21), 4246; https://doi.org/10.3390/polym15214246 - 28 Oct 2023
Cited by 13 | Viewed by 2830
Abstract
This study aims to reveal the effects of flexible chain lengths on rosin-based epoxy resin’s properties. Two rosin-based epoxy monomers with varying chain lengths were synthesized: AR-EGDE (derived from ethylene glycol diglycidyl ether-modified acrylic acid rosin) and ARE (derived from acrylic acid rosin [...] Read more.
This study aims to reveal the effects of flexible chain lengths on rosin-based epoxy resin’s properties. Two rosin-based epoxy monomers with varying chain lengths were synthesized: AR-EGDE (derived from ethylene glycol diglycidyl ether-modified acrylic acid rosin) and ARE (derived from acrylic acid rosin and epichlorohydrin). Diethylenetriamine (DETA), triethylenetetramine (TETA), and tetraethylenepentamine (TEPA) with different flexible chain lengths were used as curing agents. The adhesion, impact, pencil hardness, flexibility, water and heat resistance, and weatherability of the epoxy resins were systematically examined. It was found that when the flexible chains of rosin-based epoxy monomers were grown from ARE to AR-EGDE, due to the increased space of rosin-based fused rings, the toughness, adhesion, and water resistance of the rosin-based epoxy resins were enhanced, while the pencil hardness and heat resistance decreased. However, when the flexible chains of curing agents were lengthened, the resin’s performance did not change significantly because the space between the fused rings changed little. This indicates that the properties of the rosin-based resins can only be altered when the introduced flexible chain increases the space between the fused rings. The study also compared rosin-based resins to E20, a commercial petroleum-based epoxy of the bisphenol A type. The rosin-based resins demonstrated superior adhesion, water resistance, and weatherability compared to the E20 resins, indicating the remarkable durability of the rosin-based resin. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials)
Show Figures

Figure 1

18 pages, 19764 KiB  
Article
Influence of Catalytic Infrared Radiation on the Protective Properties of Industrial Epoxy Primers
by Ivan Stojanović, Mirta Logar, Lovro Turkalj, Ivan Cindrić, Marin Kurtela and Hrvoje Franjić
Materials 2023, 16(19), 6551; https://doi.org/10.3390/ma16196551 - 4 Oct 2023
Cited by 2 | Viewed by 1845
Abstract
The application of organic coatings is a common way of protecting metal substrates against corrosion. To dry the coating faster, catalytic infrared radiation (IR) can be applied. This paper aims to assess the differences in the physical, chemical, and corrosion properties of primer [...] Read more.
The application of organic coatings is a common way of protecting metal substrates against corrosion. To dry the coating faster, catalytic infrared radiation (IR) can be applied. This paper aims to assess the differences in the physical, chemical, and corrosion properties of primer coatings dried with catalytic infrared radiation, compared to the same coatings dried under atmospheric conditions. Corrosion properties were characterized using humidity and a salt spray chamber, as well as electrochemical impedance spectroscopy (EIS), preceded by open circuit potential (OCP) measurement. Pencil hardness, cross-cut, and pull-off adhesion tests were used to compare the properties of examined primers before and after testing in the corrosion acceleration chambers. The microstructure and distribution of chemical composition were studied by scanning electron microscope (SEM) with energy-dispersive X-ray spectroscopy (EDX) together with Fourier-transform infrared spectroscopy (FTIR). Phase transitions in the coating were determined by differential scanning calorimeter (DSC). Infrared-dried primers achieved a higher curing degree. Therefore, their mechanical and corrosion properties are superior when compared to the same coatings dried under atmospheric conditions. Full article
Show Figures

Figure 1

Back to TopTop