Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = penalized weighted least square

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2123 KB  
Article
A Rapid Nondestructive Detection Method for Liquor Quality Analysis Using NIR Spectroscopy and Pattern Recognition
by Guiyu Zhang, Xianguo Tuo, Yingjie Peng, Xiaoping Li and Tingting Pang
Appl. Sci. 2024, 14(11), 4392; https://doi.org/10.3390/app14114392 - 22 May 2024
Cited by 6 | Viewed by 2274
Abstract
Liquor has a complex system with high dimensional components. The trace components in liquor are varied and have low content and complex coordination relationships. This study aimed to solve the problem of reliance on smell and taste. Based on the characteristics of near-infrared [...] Read more.
Liquor has a complex system with high dimensional components. The trace components in liquor are varied and have low content and complex coordination relationships. This study aimed to solve the problem of reliance on smell and taste. Based on the characteristics of near-infrared spectrum response to hydrogen-containing groups, qualitative analysis was carried out in combination with machine learning technology. Firstly, an iterative adaptive weighted penalized least squares algorithm with spectral peak discrimination was used for baseline correction to effectively retain useful information in the feature absorption peaks. Then, the convolution smoothing algorithm was used to filter the noise, and the spectral curve smoothness was adjusted using the convolution window width. The near-infrared spectrum has a high dimension. Monte Carlo random sampling combined with an improved competitive adaptive reweighting method was used to evaluate the importance of spectral sampling points. According to the importance coefficient, the dimension of the spectral data set was optimized by using an exponential attenuation function through an iterative operation, and the data set with the smallest root-mean-square error was taken as the characteristic spectrum. The nonlinear separability of characteristic spectra was further improved by kernel principal component analysis. Finally, a liquor quality recognition model based on principal component analysis was established by using the hierarchical multiclass support vector machine method. Our key findings revealed that the prediction accuracy of the model reached 96.87% when the number of principal components was 5–12, with more than 95% of the characteristic information retained. These results demonstrated that this rapid nondestructive testing method resolved the challenge posed by relying on subjective sensory evaluation for liquor analysis. The findings provide a reliable analytical approach for studying substances with high-dimensional component characteristics. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

24 pages, 2045 KB  
Article
Estimation of Multiresponse Multipredictor Nonparametric Regression Model Using Mixed Estimator
by Nur Chamidah, Budi Lestari, I Nyoman Budiantara and Dursun Aydin
Symmetry 2024, 16(4), 386; https://doi.org/10.3390/sym16040386 - 25 Mar 2024
Cited by 13 | Viewed by 2181
Abstract
In data analysis using a nonparametric regression approach, we are often faced with the problem of analyzing a set of data that has mixed patterns, namely, some of the data have a certain pattern and the rest of the data have a different [...] Read more.
In data analysis using a nonparametric regression approach, we are often faced with the problem of analyzing a set of data that has mixed patterns, namely, some of the data have a certain pattern and the rest of the data have a different pattern. To handle this kind of datum, we propose the use of a mixed estimator. In this study, we theoretically discuss a developed estimation method for a nonparametric regression model with two or more response variables and predictor variables, and there is a correlation between the response variables using a mixed estimator. The model is called the multiresponse multipredictor nonparametric regression (MMNR) model. The mixed estimator used for estimating the MMNR model is a mixed estimator of smoothing spline and Fourier series that is suitable for analyzing data with patterns that partly change at certain subintervals, and some others that follow a recurring pattern in a certain trend. Since in the MMNR model there is a correlation between responses, a symmetric weight matrix is involved in the estimation process of the MMNR model. To estimate the MMNR model, we apply the reproducing kernel Hilbert space (RKHS) method to penalized weighted least square (PWLS) optimization for estimating the regression function of the MMNR model, which consists of a smoothing spline component and a Fourier series component. A simulation study to show the performance of proposed method is also given. The obtained results are estimations of the smoothing spline component, Fourier series component, MMNR model, weight matrix, and consistency of estimated regression function. In conclusion, the estimation of the MMNR model using the mixed estimator is a combination of smoothing spline component and Fourier series component estimators. It depends on smoothing and oscillation parameters, and it has linear in observation and consistent properties. Full article
Show Figures

Figure 1

22 pages, 858 KB  
Article
Application of an Intensive Longitudinal Functional Model with Multiple Time Scales in Objectively Measured Children’s Physical Activity
by Mostafa Zahed, Trent Lalonde and Maryam Skafyan
Mathematics 2023, 11(8), 1973; https://doi.org/10.3390/math11081973 - 21 Apr 2023
Viewed by 2130
Abstract
This study proposes an intensive longitudinal functional model with multiple time-varying scales and subject-specific random intercepts through mixed model equivalence that includes multiple functional predictors, one or more scalar covariates, and one or more scalar covariates. An estimation framework is proposed for estimating [...] Read more.
This study proposes an intensive longitudinal functional model with multiple time-varying scales and subject-specific random intercepts through mixed model equivalence that includes multiple functional predictors, one or more scalar covariates, and one or more scalar covariates. An estimation framework is proposed for estimating a time-varying coefficient function that is modeled as a linear combination of time-invariant functions with time-varying coefficients. The model takes advantage of the information structure of the penalty, while the estimation procedure utilizes the equivalence between penalized least squares estimation and linear mixed models. A number of simulations are conducted in order to empirically evaluate the process. In the simulation, it was observed that mean square errors for functional coefficients decreased with increasing sample size and level of association. Additionally, sample size had a greater impact on a smaller level of association, and level of association also had a greater impact on a smaller sample size. These results provide empirical evidence that ILFMM estimates of functional coefficients are close to the true functional estimate (basically unchanged). In addition, the results indicated that the AIC could be used to guide the choice of ridge weights. Moreover, when ridge weight ratios were sufficiently large, there was minimal impact on estimation performance. Studying two time scales is important in a wide range of fields, including physics, chemistry, biology, engineering, economics, and more. It allows researchers to gain a better understanding of complex systems and processes that operate over different time frames. Consequently, studying physical activities with two time scales is critical for advancing our understanding of human performance and health and for developing effective strategies to optimize physical activity and exercise programs. Therefore, the proposed model was applied to analyze the physical activity data from the Active Schools Institute of the University of Northern Colorado to determine what kind of time-structure patterns of activities could adequately describe the relationship between daily total magnitude and kids’ daily and weekly physical activity. Full article
(This article belongs to the Special Issue New Advance in Operations Research and Analytics)
Show Figures

Figure 1

11 pages, 4556 KB  
Communication
Detection of Carbon Content from Pulverized Coal Using LIBS Coupled with DSC-PLS Method
by Congrong Guan, Tianyu Wu, Jiwen Chen and Ming Li
Chemosensors 2022, 10(11), 490; https://doi.org/10.3390/chemosensors10110490 - 17 Nov 2022
Cited by 5 | Viewed by 2837
Abstract
The dust from pulverized coal weakens the acquired signal and increases the analysis difficulty for the quantitative analysis of the carbon content of pulverized coal when using laser-induced breakdown spectroscopy (LIBS). Moreover, there is a serious matrix effect and a self-absorption phenomenon. To [...] Read more.
The dust from pulverized coal weakens the acquired signal and increases the analysis difficulty for the quantitative analysis of the carbon content of pulverized coal when using laser-induced breakdown spectroscopy (LIBS). Moreover, there is a serious matrix effect and a self-absorption phenomenon. To improve the analysis accuracy, the DSC-PLS (double spectral correction-partial-least-squares) method was proposed to predict the carbon content of pulverized coal. Initially, the LIBS signal was corrected twice using P-operation-assisted adaptive iterative-weighted penalized-least-squares (P-airPLS), plasma temperature compensation, and spectral normalization algorithms. The goodness of fit of the carbon element was improved from nonlinearity to above 0.948. The modified signal was then used to establish DCS-PLS models for predicting unknown samples. In comparison to the conventional PLS model, the DSC-PLS method proposed in this paper significantly improves the ability to predict carbon content. The prediction error of the developed method was dropped from an average of 4.66% to about 0.41%, with the goodness of fit R2 of around 0.991. Full article
(This article belongs to the Special Issue Chemometrics for Analytical Chemistry)
Show Figures

Figure 1

14 pages, 812 KB  
Article
Remote Heart Rate Estimation by Pulse Signal Reconstruction Based on Structural Sparse Representation
by Jie Han, Weihua Ou, Jiahao Xiong and Shihua Feng
Electronics 2022, 11(22), 3738; https://doi.org/10.3390/electronics11223738 - 15 Nov 2022
Cited by 11 | Viewed by 2909
Abstract
In recent years, the physiological measurement based on remote photoplethysmography has attracted wide attention, especially since the epidemic of COVID-19. Many researchers paid great efforts to improve the robustness of illumination and motion variation. Most of the existing methods divided the ROIs into [...] Read more.
In recent years, the physiological measurement based on remote photoplethysmography has attracted wide attention, especially since the epidemic of COVID-19. Many researchers paid great efforts to improve the robustness of illumination and motion variation. Most of the existing methods divided the ROIs into many sub-regions and extracted the heart rate separately, while ignoring the fact that the heart rates from different sub-regions are consistent. To address this problem, in this work, we propose a structural sparse representation method to reconstruct the pulse signals (SSR2RPS) from different sub-regions and estimate the heart rate. The structural sparse representation (SSR) method considers that the chrominance signals from different sub-regions should have a similar sparse representation on the combined dictionary. Specifically, we firstly eliminate the signal deviation trend using the adaptive iteratively re-weighted penalized least squares (Airpls) for each sub-region. Then, we conduct the sparse representation on the combined dictionary, which is constructed considering the pulsatility and periodicity of the heart rate. Finally, we obtain the reconstructed pulse signals from different sub-regions and estimate the heart rate with a power spectrum analysis. The experimental results on the public UBFC and COHFACE datasets demonstrate the significant improvement for the accuracy of the heart rate estimation under realistic conditions. Full article
Show Figures

Figure 1

22 pages, 3396 KB  
Article
Reproducing Kernel Hilbert Space Approach to Multiresponse Smoothing Spline Regression Function
by Budi Lestari, Nur Chamidah, Dursun Aydin and Ersin Yilmaz
Symmetry 2022, 14(11), 2227; https://doi.org/10.3390/sym14112227 - 23 Oct 2022
Cited by 20 | Viewed by 2466
Abstract
In statistical analyses, especially those using a multiresponse regression model approach, a mathematical model that describes a functional relationship between more than one response variables and one or more predictor variables is often involved. The relationship between these variables is expressed by a [...] Read more.
In statistical analyses, especially those using a multiresponse regression model approach, a mathematical model that describes a functional relationship between more than one response variables and one or more predictor variables is often involved. The relationship between these variables is expressed by a regression function. In the multiresponse nonparametric regression (MNR) model that is part of the multiresponse regression model, estimating the regression function becomes the main problem, as there is a correlation between the responses such that it is necessary to include a symmetric weight matrix into a penalized weighted least square (PWLS) optimization during the estimation process. This is, of course, very complicated mathematically. In this study, to estimate the regression function of the MNR model, we developed a PWLS optimization method for the MNR model proposed by a previous researcher, and used a reproducing kernel Hilbert space (RKHS) approach based on a smoothing spline to obtain the solution to the developed PWLS optimization. Additionally, we determined the symmetric weight matrix and optimal smoothing parameter, and investigated the consistency of the regression function estimator. We provide an illustration of the effects of the smoothing parameters for the estimation results using simulation data. In the future, the theory generated from this study can be developed within the scope of statistical inference, especially for the purpose of testing hypotheses involving multiresponse nonparametric regression models and multiresponse semiparametric regression models, and can be used to estimate the nonparametric component of a multiresponse semiparametric regression model used to model Indonesian toddlers’ standard growth charts. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

24 pages, 8601 KB  
Article
Reconstruction of Sentinel-2 Image Time Series Using Google Earth Engine
by Kaixiang Yang, Youming Luo, Mengyao Li, Shouyi Zhong, Qiang Liu and Xiuhong Li
Remote Sens. 2022, 14(17), 4395; https://doi.org/10.3390/rs14174395 - 4 Sep 2022
Cited by 28 | Viewed by 10605
Abstract
Sentinel-2 NDVI and surface reflectance time series have been widely used in various geoscience research, but the data is deteriorated or missing due to the cloud contamination, so it is necessary to reconstruct the Sentinel-2 NDVI and surface reflectance time series. At present, [...] Read more.
Sentinel-2 NDVI and surface reflectance time series have been widely used in various geoscience research, but the data is deteriorated or missing due to the cloud contamination, so it is necessary to reconstruct the Sentinel-2 NDVI and surface reflectance time series. At present, there are few studies on reconstructing the Sentinel-2 NDVI or surface reflectance time series, and these existing reconstruction methods have some shortcomings. We proposed a new method to reconstruct the Sentinel-2 NDVI and surface reflectance time series using the penalized least-square regression based on discrete cosine transform (DCT-PLS) method. This method iteratively identifies cloud-contaminated NDVI over NDVI time series from the Sentinel-2 surface reflectance data by adjusting the weights. The NDVI and surface reflectance time series are then reconstructed from cloud-free NDVI and surface reflectance using the adjusted weights as constraints. We have made some improvements to the DCT-PLS method. First, the traditional discrete cosine transformation (DCT) in the DCT-PLS method is matrix generated from discrete and equally spaced data, we reconfigured the DCT formulas to adapt for irregular interval time series, and optimized the control parameters N and s according to the typical vegetation samples in China. Second, the DCT-PLS method was deployed in the Google Earth Engine (GEE) platform for the efficiency and convenience of data users. We used the DCT-PLS method to reconstruct the Sentinel-2 NDVI time series and surface reflectance time series in the blue, green, red, and near infrared (NIR) bands in typical vegetation samples and the Zhangjiakou and Hangzhou study area. We found that this method performed better than the SG filter method in reconstructing the NDVI time series, and can identify and reconstruct the contaminated NDVI as well as surface reflectance with low root mean square error (RMSE) and high coefficient of determination (R2). However, in cases of a long range of cloud contamination, or above water surface, it may be necessary to increase the control parameter s for a more stable performance. The GEE code is freely available online and the link is in the conclusions of this article, researchers are welcome to use this method to generate cloudless Sentinel-2 NDVI and surface reflectance time series with 10 m spatial resolution, which is convenient for landcover classification and many other types of research. Full article
(This article belongs to the Special Issue Remote Sensing Image Denoising, Restoration and Reconstruction)
Show Figures

Figure 1

20 pages, 3199 KB  
Article
Comparative Study of Several Machine Learning Algorithms for Classification of Unifloral Honeys
by Fernando Mateo, Andrea Tarazona and Eva María Mateo
Foods 2021, 10(7), 1543; https://doi.org/10.3390/foods10071543 - 3 Jul 2021
Cited by 32 | Viewed by 5057
Abstract
Unifloral honeys are highly demanded by honey consumers, especially in Europe. To ensure that a honey belongs to a very appreciated botanical class, the classical methodology is palynological analysis to identify and count pollen grains. Highly trained personnel are needed to perform this [...] Read more.
Unifloral honeys are highly demanded by honey consumers, especially in Europe. To ensure that a honey belongs to a very appreciated botanical class, the classical methodology is palynological analysis to identify and count pollen grains. Highly trained personnel are needed to perform this task, which complicates the characterization of honey botanical origins. Organoleptic assessment of honey by expert personnel helps to confirm such classification. In this study, the ability of different machine learning (ML) algorithms to correctly classify seven types of Spanish honeys of single botanical origins (rosemary, citrus, lavender, sunflower, eucalyptus, heather and forest honeydew) was investigated comparatively. The botanical origin of the samples was ascertained by pollen analysis complemented with organoleptic assessment. Physicochemical parameters such as electrical conductivity, pH, water content, carbohydrates and color of unifloral honeys were used to build the dataset. The following ML algorithms were tested: penalized discriminant analysis (PDA), shrinkage discriminant analysis (SDA), high-dimensional discriminant analysis (HDDA), nearest shrunken centroids (PAM), partial least squares (PLS), C5.0 tree, extremely randomized trees (ET), weighted k-nearest neighbors (KKNN), artificial neural networks (ANN), random forest (RF), support vector machine (SVM) with linear and radial kernels and extreme gradient boosting trees (XGBoost). The ML models were optimized by repeated 10-fold cross-validation primarily on the basis of log loss or accuracy metrics, and their performance was compared on a test set in order to select the best predicting model. Built models using PDA produced the best results in terms of overall accuracy on the test set. ANN, ET, RF and XGBoost models also provided good results, while SVM proved to be the worst. Full article
Show Figures

Figure 1

22 pages, 1526 KB  
Article
The Curve Estimation of Combined Truncated Spline and Fourier Series Estimators for Multiresponse Nonparametric Regression
by Helida Nurcahayani, I Nyoman Budiantara and Ismaini Zain
Mathematics 2021, 9(10), 1141; https://doi.org/10.3390/math9101141 - 18 May 2021
Cited by 10 | Viewed by 3150
Abstract
Nonparametric regression becomes a potential solution if the parametric regression assumption is too restrictive while the regression curve is assumed to be known. In multivariable nonparametric regression, the pattern of each predictor variable’s relationship with the response variable is not always the same; [...] Read more.
Nonparametric regression becomes a potential solution if the parametric regression assumption is too restrictive while the regression curve is assumed to be known. In multivariable nonparametric regression, the pattern of each predictor variable’s relationship with the response variable is not always the same; thus, a combined estimator is recommended. In addition, regression modeling sometimes involves more than one response, i.e., multiresponse situations. Therefore, we propose a new estimation method of performing multiresponse nonparametric regression with a combined estimator. The objective is to estimate the regression curve using combined truncated spline and Fourier series estimators for multiresponse nonparametric regression. The regression curve estimation of the proposed model is obtained via two-stage estimation: (1) penalized weighted least square and (2) weighted least square. Simulation data with sample size variation and different error variance were applied, where the best model satisfied the result through a large sample with small variance. Additionally, the application of the regression curve estimation to a real dataset of human development index indicators in East Java Province, Indonesia, showed that the proposed model had better performance than uncombined estimators. Moreover, an adequate coefficient of determination of the best model indicated that the proposed model successfully explained the data variation. Full article
(This article belongs to the Section D1: Probability and Statistics)
Show Figures

Figure 1

Back to TopTop