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Abstract: In recent years, the physiological measurement based on remote photoplethysmography
has attracted wide attention, especially since the epidemic of COVID-19. Many researchers paid great
efforts to improve the robustness of illumination and motion variation. Most of the existing methods
divided the ROIs into many sub-regions and extracted the heart rate separately, while ignoring the fact
that the heart rates from different sub-regions are consistent. To address this problem, in this work,
we propose a structural sparse representation method to reconstruct the pulse signals (SSR2RPS) from
different sub-regions and estimate the heart rate. The structural sparse representation (SSR) method
considers that the chrominance signals from different sub-regions should have a similar sparse
representation on the combined dictionary. Specifically, we firstly eliminate the signal deviation trend
using the adaptive iteratively re-weighted penalized least squares (Airpls) for each sub-region. Then,
we conduct the sparse representation on the combined dictionary, which is constructed considering
the pulsatility and periodicity of the heart rate. Finally, we obtain the reconstructed pulse signals from
different sub-regions and estimate the heart rate with a power spectrum analysis. The experimental
results on the public UBFC and COHFACE datasets demonstrate the significant improvement for the
accuracy of the heart rate estimation under realistic conditions.

Keywords: heart rate estimation; pulse signal reconstruction; remote photoplethysmography;
structural sparse representation; signal processing; health monitoring

1. Introduction

Traditionally, the heart rate is usually measured with electrocardiography (ECG) [1]
or photoplethysmography (PPG) [2]. Although the ECG and PPG measurements can ef-
fectively measure the heart rate, they are an invasive and contact-based measurement [3],
in which dedicated skin-contact devices are used, and they cause discomfort and incon-
venience for subjects. Recently, with the COVID-19 pandemic, a remote physiological
measurement based on remote photoplethysmography (rPPG) has gained tremendous
interest, which has many advantages compared to the traditional approaches [4,5]. rPPG is
able to work only with an accessible camera, such as a smartphone camera, and is also able
to achieve non-contact monitoring. In addition, the rPPG technique can conduct a real-time
physiological estimation [6], monitor the health of post-operative patients in the ward [7],
and monitor the health of drivers on the road.

The principle of the rPPG measurement is the fact that the optical absorption of a local
tissue varies periodically with the blood volume due to the human heartbeat and leads
to the subtle color variation, which can be recorded with a camera. The heart rate can be
estimated by mining the subtle color variation from the videos. The common framework of
the heart rate estimation based on the rPPG technology mainly includes three steps: divide
the selection of the regions of interest (ROIs) to obtain the RGB channel signal, normalize
the color channels, and calculate the heart rate. The challenge for this task is that the subtle
optical absorption variation (not visible to the human eyes) can be easily affected by noises,
such as head movements, lighting variations, and device noises.
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To address those problems, the researchers have proposed lots of methods, which can
be categorized into two kinds. The first one is the traditional methods, which considered
the optical absorption and skin reflection model, such as the plane-orthogonal-to-skin
(POS) method [8] and chrominance signal extraction method (CHROM) [9]. However,
these methods do not always hold in handling complicated scenes, such as a large head
movement or a dim lighting condition. In addition, samples of existing datasets are usually
too complex to be modeled with multiple simple mathematical models. In recent years, due
to the success breakthroughs of deep learning in various computer vision tasks, many deep
neural networks for remote physiological signals prediction have been proposed through
learning a network mapping from different manual representations of face videos [10,11].
The main efforts have been made to adequately model the spatial and temporal information
(dynamics) presented in the facial videos. The key challenge of an rPPG-based physiological
measurement is how to effectively extract the physiological information and suppress the
adverse effects of the non-physiological information.

The existing approaches can be roughly classified into two categories, the end-to-
end approaches [10,12,13] and two-step approaches [14,15], according to the network
architecture. The end-to-end network should read the motion information from the input
video frames, discriminate the different motion sources, and synthesize the heart rate signal.
In the two-step approaches, the input video is first pre-processed and then the heart rate
signal is extracted using deep learning methods. However, a lack of sufficient data and
the regularity of these strong noises are also the main obstacles. Most of these studies
focus on how to remove a motion, such as a head rotation and facial expressions, because
any kind of motion on the ROIs will disturb the raw rPPG signal. Compared to the deep
learning-based methods, the traditional methods directly estimate the heart rate without
labels and are more explainable. Considering the difficulty of data acquisition in a real
application, we study this problem under the unsupervised setting.

In the study, we find the fact that the chrominance signals from different sub-regions
have a similar variation, as shown in Figure 1. We extract the raw chrominance signals
from 14 different sub-regions over 280 frames, which are highly similar, although some
differences are caused by the movement or illumination variations.
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Figure 1. The raw chrominance signals from 14 different sub-regions, which are highly similar.

Motivated by this observation, in this work, we propose a new method named
SSR2RPS via the SSR based on the fact that the heart rates from different sub-regions
are consistent, as shown in Figure 2. Specifically, we divide the continuous face video
sequence into multiple ROIs by using a face detection model, followed by the calculation
of the chrominance feature of each sub-region. Then, we utilize the Airpls algorithm to
eliminate the trend variations. Furthermore, we conduct the sparse representation on the
hand-crafted dictionary, which is constructed considering the pulsatility and periodicity
of the heart rate. Next, we obtained the reconstructed heart rate signals by averaging the
reconstructed signals from different sub-regions. Finally, the heart rates are obtained by a
frequency analysis.
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Figure 2. The overall framework of SSR2RPS. As shown in the figure, it includes the ROI segmenta-
tions, extraction of chrominance signal, de-trending for the chrominance signal, sparse decomposition,
and estimation of heart rate averaged over all sub-regions.

Concretely, our contributions can be summarized as follows:

• Based on the observation, we adopt the Airpls algorithm to eliminate the trend
variation. The experimental results show the superiority of de-trending for the heart
rate estimation.

• We find the fact that the heart rates from different sub-regions are consistent and
propose the SSR by constraining the consistency of the sparse representation for
different sub-regions.

• The experimental results on the two benchmark datasets show that SSR2RPS signifi-
cantly outperforms the state-of-the-art methods.

The remainder of this paper is structured as follows. The related work of rPPG is
briefly reviewed in Section 2. The proposed method is described in detail in Section 3. Then,
the experimental details and results are shown in Section 4. Finally, in Section 5, we draw
our conclusions.

2. Related Works
2.1. Video-Based rPPG Measurement

The rPPG techniques aim to recover the blood volume change in the skin that are
synchronous with the heart rate from the subtle color variations captured by a camera.
Since Verkruysse et al. [16] evaluated the possibility of measuring the heart rate remotely
from facial videos, many researchers have proposed different methods to recover the
physiological data. Some works relied on the skin optical reflection model by projecting all
RGB skin pixels channels into a more refined subspace, mitigating motion artifacts [9,17].
These approaches treat the raw traces as a pure signal but do not consider the physiological
and optical principles of the imaging process. To address this issue, the skin reflection
model is established, which quantitatively models the incident light, specular and diffusion
reflection of the skin, and camera quantization noise. Based on this model, several pulse
extraction algorithms are proposed [9,18,19]. The role of a differentiable local group of local
transformations was introduced by Pilz et al. [20]; they emphasized the point of view on
the unsupervised learning of invariant features. To extend the utilization of rPPG sensors,
Lee et al. [6] proposed an algorithm that estimates the heart rate, which can be performed
in real time using vision and robot manipulation algorithms.

In recent years, deep learning methods based on a CNN [10,21,22] were developed
to overcome such limitations, and they have shown they effectively capture a minor color
variation if sufficient training data are available. Disentangled representations were used
to separate non-physiological signals from the pulse signals [12]. To recover more detailed
rPPG signals for the challenge on remote physiological signal sensing (RePSS), Hu et al. [23]
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proposed an end-to-end efficient framework, which measured the average heart rate and
estimated the corresponding blood volume–pulse curves simultaneously. Kang et al. [11]
proposed a two-stream Transformer model; one stream followed the pulse signal in the
facial area while the other figured out the perturbation signal from the surrounding region
such that the difference in the two channels leads to an adaptive noise cancellation. Then,
Gao et al. [24] proposed a new remote heart estimation algorithm using a signal-quality
attention mechanism and long short-term memory networks. From the relevant research,
heart rate estimation models based on deep learning methods achieve high accuracy
rates [25]. However, deep learning methods have lots of disadvantages, such as high
complexity, poor results across datasets [26], and difficulty in interpretation. In addition,
deep learning methods usually require large amounts of data for training, and there are not
enough public datasets in this field. For SSR2RPS, we do not require too much data to train
the model parameters.

2.2. Sparse Representation

Given the signal y ∈ Rn×1 and over-complete dictionary D ∈ Rn×m with m� n, the
sparse representation can be formulated following optimization based on the assumption
that the signal y can be sparsely represented by only a few atoms from dictionary D:

x̂ = arg min
x
‖y−Dx‖2

2 + λ‖x‖0 (1)

Many algorithms have been proposed to solve Equation (1). In 1993, Mallat et al. [27]
proposed a greedy algorithm, i.e., matching pursuit, which iteratively computes the best
match according to the signal’s structures. Subsequently, Pati et al. [28] proposed the
orthogonal matching pursuit (OMP) algorithm based on the MP algorithm, which has a
faster convergence rate compared to the MP algorithm. In later studies, the researchers
have also proposed various other matching algorithms in order to improve the OMP
algorithm [29].

As an efficient signal representation framework, the sparse representation is also utilized
to solve the heart rate estimation based on PPG or rPPG. For example, Zhang et al. [30]
proposed to jointly estimate the spectra of PPG signals and simultaneous acceleration
signals using a multi-measurement vector model in sparse signal recovery. Due to the
sparsity constraint of the spectral coefficients, the spectral peaks of the motion artifacts
in the PPG spectrum can be identified and removed. Based on the sparsity in the Fourier
domain, Magdalena et al. [5] modeled the rPPG matrix signal as the superposition of a low-
rank matrix containing a heart rate signal and noise matrix. However, it mainly focused
on the sparsity in the Fourier domain with a Fourier transform, which might effectively
represent the heart rate signals. Liu et al. [31] proposed to construct an original pulse
using the chrominance signals of multiple facial sub-regions and employed the disturbance-
adaptive orthogonal matching pursuit (DAOMP) algorithm to recover the underlying pulse
matrix corrupted by facial instability. However, they considered the sub-regions separately
and only with a cosine basis, which was not enough to represent the heart rate signal.
Different from the above works, we propose the SSR in the time domain based on the
consistency with the combined dictionary.

3. Framework

The proposed framework is presented in Figure 2, which includes five steps. The first
step is to detect the key points of the face and divide the ROIs into sub-regions, followed
by the extraction of the raw chrominance signal. Then, we eliminate the baseline and
evaluate the signal quality. Furthermore, we conduct sparse decomposition and reconstruct
the pulse signals. Finally, we calculate the average heart rate signal and use the power
spectrum analysis (PSA) to calculate the heart rate.
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3.1. Face Key Points Detection and ROI Segmentation

The rPPG algorithm based on face videos requires to find the face region and select
the ROIs. In the past, the Viola–Jones algorithm [32] was used to select the ROIs, which
usually includes the boundary background, except the face area. It was demonstrated that
the forehead and cheek area contain rich physiological signals [33]. For example [34], the
forehead and cheek regions were chosen as ROIs using single or additional coordinates
within the facial region. In this work, we use the insightface [35] face detection model to
locate key points, and the forehead and cheek areas are selected as ROIs, which are divided
into r (p× p pixels) sub-regions.

3.2. Extraction of Chrominance Signal

The chrominance signal is extracted from each ROI to construct the raw pulse signals.
Specifically, given the RGB signals [Rn, Gn, Bn] for each sub-region, we first calculate the
combination of different channel signals using the formulation defined in Equation (2), i.e.,
calculate the two signals Xs and Ys, and then we perform band-passed filter for Xs and Ys
to obtain the band-passed filtered versions of signals X f and Y f , respectively.

Xs = 3Rn − 2Gn

Ys = 1.5Rn + Gn − 1.5Bn
(2)

Finally, the chrominance signal S is calculated with S = X f − α ∗ Y f , where α =
σ(X f )

σ(Y f )
,

σ denotes the standard deviation. Details about the approach of the chrominance signal
extraction can be found in [9].

3.3. De-Trending Filter

The raw chrominance signal, as shown in Figure 3 with blue curve, is non-stationary,
which is often interfered by illumination variation and motion variations. In order to
eliminate the interferences, the Airpls method is adopted. Specifically, for the raw chromi-
nance signals S = [s1, s2, · · · , sr] ∈ Rl×r, l denotes frames of the input video, and r denotes
sub-regions. We suppose Z = [z1, z2, · · · , zr] ∈ Rl×r is the fitted baseline. The i-th column
si represents the chrominance signal of the i-th sub-region, and zi represents the fitted
baseline of the chrominance signal of the corresponding sub-region. De-trending filter can
be obtained by solving following optimization problem:

ẑi = arg min
zi

(si − zi)
TW(si − zi) + λ‖444zi‖2 (3)

where W = diag(w1, w2, · · · , wl), and λ is the smoothing parameter,444 is the smooth matrix
as below:

444 =


−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 ∈ Rl×l (4)

The first term (si − zi)
TW(si − zi) denotes the fidelity between the raw chrominance

signal si and the fitted baseline zi; the second term ‖444zi‖2 denotes the smoothness of the
fitted baseline zi.

By calculating partial derivative of Equation (3) for zi and setting it to 0, we obtain
the closed solution ẑi = (W + λ444 T444)−1Wsi. More details, please refer to reference [36].
Then, the corrected chrominance signal is obtained by ŝi = si − ẑi, as shown in Figure 3
with green curve. Finally, we obtain the corrected chrominance signals Ŝ = [ŝ1, ŝ2, . . . , ŝr].
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Figure 3. The de-trending filter of chrominance signal. The blue curve is the chrominance signal, the
green curve is the corrected signal, and the red curve is the fitted baseline.

Considering the uneven illumination of the subject’s face and other factors, which will
lead to some sub-regions inaccurately capturing the heart rate signals, in order to solve this
problem, we choose sub-regions containing richer heart rate signals, which can calculate
the signal-to-noise ratio (SNR) of the chrominance signal. We calculate the SNR in a similar
way to [9], as shown in Equation (5), where PSC denotes the power spectrum curve of the
chrominance signal in frequency domain. The numerator is defined as the power in the
range 6 HZ either side of the first (p1) and second (p2) harmonics of the power spectrum
of the pulse signal, as shown in Figure 4. The denominator is the power of the rest in the
range 0 to 240 HZ.

SNR =

∫
p1 PSC +

∫
p2 PSC∫

p PSC−
∫

p1 PSC−
∫

p2 PSC
(5)

p1p2
p

Figure 4. Calculating the SNR: the ratio of the signal power spectrum in the region surrounding
maximum and second largest peak divided by the rest of signal power spectrum.
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We calculate the SNR of each chrominance signal and the average SNR of the overall
chrominance signal separately. We select the chrominance signal of higher SNR than
overall average SNR to construct high-quality chrominance signals Ŝh = [Ŝh1 , Ŝh2 , . . . , Ŝhr′

],
with r < r′.

3.4. Reconstruction of the Heart Rate Signals

Considering the chrominance signals from different sub-regions have similar sparse
representation on the hand-crafted dictionary, we propose a structural sparse representation
method to reconstruct the pulse signals from different sub-regions. Usually, the high-quality
chrominance signals Ŝh can be modeled as the combination of the pulse signals and the

noise signals, i.e., Ŝh = Ŝpulse
h + Ŝnoise

h . SSR aims to reconstruct the pulse signals matrix

(P = D · X̂) as an approximation of the ideal pulse matrix Ŝpulse
h .

It is well known that the rPPG signal is periodic and has pulsatility [37]. Therefore, we
construct the dictionary with the combination of cosine dictionary and wavelet dictionary.
Specifically, the cosine dictionary is expressed as Dcos

i = cos(2π ∗ kiL/ fr), where ki denotes
the i-th frequency component, the interval between ki and ki+1 is 1

60 HZ, L is the length of
the generated signal sequence, and fr denotes the video frame rate. The wavelet dictionary
is constructed to approximate the pulsatility of the heart rate signal, i.e., the wavelet
dictionary is expressed as Dwave

j = waveletdict(short3, Nb, j, b) , where short3 denotes the
wavelet family, Nb denotes the number of generated points, j denotes the level vector, and
b denotes the conversion factor. The composition of the combined dictionary is defined as
D =

[
Dcos

i , Dwave
j

]
.

We can find an SSR X̂ = [x̂1, x̂2, . . . , x̂r′ ] in the combined dictionary. Due to the similar
characteristics, the sparse representations of the reconstructed pulse signals of the same
subject will share the same dictionary atoms. In this work, we provide the l2,1-norm
regularization term to achieve this purpose. The objective function can be expressed as:

X̂ = arg min
X

∥∥Ŝh −D · X
∥∥

2 + µ‖X‖2,1 (6)

The first term aims to reconstruct the pulse signals, and µ is the penalty parameter.
The l2,1-norm of X is defined as ‖X‖2,1 = ∑n

i=1

√
∑m

j=1 x2
i,j = ∑n

i=1
∥∥xi
∥∥

2. Considering the
fast convergence of the method, we use the alternating direction method of multipliers
(ADMM) algorithm [38] to solve this problem.

3.5. Heart Rate Signal Calculation

The heart rate signal estimation can be expressed as the average of the reconstructed
pulse signals p, i.e.,

p =
∑r′

i=1 pi
r′

(7)

where r′ denotes the number of sub-regions with high-quality chrominance signal. The power
spectral density distribution of the heart rate signal is calculated by using [39] method. We use
the frequency with the maximum power response as the heart rate frequency fHR, the average
heart rate estimation from the input video is calculated as HRvideo = 60× fHR bpm.

3.6. Algorithm

The aforementioned framework for heart rate estimation is summarized in Algorithm 1.
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Algorithm 1 Remote Heart Rate Estimation by Pulse Signal Reconstruction Based on
Structural Sparse Representation.

Input: A video sequence with l frames. D: combined dictionary. µ: 0.5.
1: Face key point detection and split r ROIs.
2: Apply CHROM algorithm to extract chrominance signals S.
3: Apply Airpls algorithm to remove the baseline and obtain the corrected chrominance

signals Ŝ.
4: Calculate SNR by Equation (5) and select high-quality chrominance signals.
5: Construct the pulse signals Ŝh.
6: Solve the sparse coefficient matrix X̂ by Equation (6).
7: Reconstruct the pulse signals by P = D · X̂.
8: Apply Equation (7) to average the pulse signals overall sub-regions.
9: Apply PSA method to find the frequency fHR corresponding the highest power compo-

nent.
10: Calculate the heart rate HRvideo = 60× fHR.
Output: HRvideo

4. Experimental Results

In this section, we introduce the experimental results which are tested on two public
datasets, namely UBFC [40] and COHFACE [41]. The remainder of this section is structured
as follows. Section 4.1 introduces the two public datasets and evaluation metrics. Section 4.2
shows the experimental results of SSR2RPS with several state-of-the-art methods. In
Section 4.3, we describe the effect of the baseline elimination. Section 4.4 shows the
parameters setting of SSR2RPS.

4.1. Datasets and Evaluation Metrics

The UBFC dataset [40] consists of 42 videos from 42 subjects, each video sequence
with a resolution of 640 × 480 and a sampling rate of 30 HZ, in an uncompressed 8-bit
RGB format. The referenced PPG signals are obtained by using a CMS50E transilluminated
pulse oximeter. To compute the ground-truth heart rate for each video sequence, we use
the PPG signal.

The COHFACE dataset [41] includes 40 subjects, 12 female and 28 male, whose average
age is 35. Each subject contains four videos which are about one minute, two videos under
the condition of the well-controlled lighting and two videos under the condition of ambient
light. All subjects are required not to move or speak during the recording, and each video
is recorded at a frequency of 20 HZ with a resolution of 640 × 480 pixels.

In order to evaluate the performance of SSR2RPS and compare it with several state-
of-the-art methods, we consider four commonly used metrics in the literature on remote
heart rate analysis. Specifically, we define He(i) = Hi

gt − Hi
pred, i.e., the error between the

predicted heart rate Hi
pred and the ground-truth heart rate Hi

gt for the i-th video sequence.

We calculate the mean error (ME = ∑n
i=1(He(i))

N ), mean absolute error (MAE = ∑n
i=1|He(i)|

N ),

root mean squared error (RMSE =

√
∑n

i=1(He(i))
2

N ), and Pearson correlation coefficient (ρ)

between signals Hgt =
{

H1
gt, H2

gt, . . . , Hi
gt

}
and Hpred =

{
H1

pred, H2
pred, . . . , Hi

pred

}
.

4.2. Comparison of Methods

In this section, we compare the proposed method with several state-of-the-art methods
for averaging the heart rate prediction. Specifically, we analyze six well-known rPPG meth-
ods: ICA [42] and PCA [43] are used as the blind source separation methods, CHROM [9]
and POS [8] are used as the skin reflection model methods, DAOMP [31] is used as the
sparse representation method, and LGI [20] is used as the feature transform method.
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4.2.1. Performance on UBFC Dataset

In order to validate the effectiveness of SSR2RPS, we compare SSR2RPS with other
state-of-art methods, and the results are shown in Table 1. To fairly compare other methods
for the remote heart rate estimation, we perform the same pre-processing as SSR2RPS on
the input face video. We split each video into 1200 frames to estimate the average heart
rate. The results for ICA and PCA are far worse than CHROM, POS, DAOMP, and LGI, as
the latter methods strengthen the motion robustness of rPPG. Moreover, SSR2RPS achieves
better results as ME = 1.70, MAE = 2.57, RMSE = 4.69, and ρ = 0.97. In addition, it can
be found that the predicted heart rate Hpred of SSR2RPS has a strong correlation with the
ground-truth heart rate Hgt, as shown in Figure 5. The reason why SSR2RPS shows the
best results is that SSR2RPS is able to select atoms which are closer to the ground-truth
heart rate for reconstructing the pulse signals.
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Figure 5. The ground-truth heart rate compared to the predicted heart rate of our method on the
UBFC dataset. (a) Histogram of the Hpred and the Hgt. (b) Scatter plot comparing the Hpred and the
Hgt on the UBFC dataset.
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Table 1. Average heart rate prediction: comparison among different methods on UBFC dataset (best
performance in bold).

Methods ME(bpm) MAE (bpm) RMSE (bpm) ρ

CHROM [9] 5.92 6.37 9.10 0.91
ICA [42] 24.83 26.78 32.59 0.37
PCA [43] 12.46 18.36 22.32 0.31
POS [8] 6.37 6.52 10.52 0.86

DAOMP [31] 6.68 7.34 14.50 0.87
LGI [20] 9.23 10.29 16.61 0.65

SSR2RPS 1.70 2.57 4.69 0.97

4.2.2. Performance on COHFACE Dataset

We perform similar experiments on the more challenging sequences of the COHFACE
dataset to test the effectiveness of SSR2RPS. We split the video into 1200 frames and set
the maximum iterations to 50. Notably, the performance improvement is most significant
under good conditions, with better experimental conditions as shown in Table 2. Compared
to other state-of-the-art methods, SSR2RPS shows a better performance in all conditions.
In addition, from Figure 6, it can be seen that the predicted heart rate Hpred has a stronger
correlation with the ground-truth heart rate Hgt. We removed the effect of instability of the
light on the heart rate estimation, so the results of SSR2RPS outperform other methods.

Table 2. Average heart rate prediction: comparison among different methods on different conditions
of the COHFACE dataset (best performance in bold).

Methods Good Condition 0 Good Condition 1
ME (bpm) MAE (bpm) RMSE (bpm) ρ ME (bpm) MAE (bpm) RMSE (bpm) ρ

CHROM [9] 5.67 6.37 8.43 0.87 4.35 5.93 8.68 0.87
ICA [42] 11.99 16.48 26.05 0.36 12.99 17.48 29.54 0.30

PCA [43] 3.97 12.33 14.37 0.45 4.18 7.42 9.38 0.43
POS [8] 4.77 7.36 11.76 0.69 5.63 8.36 13.82 0.76

DAOMP [31] 3.65 5.20 9.58 0.89 3.77 6.37 11.26 0.83
LGI [20] 8.29 12.46 13.64 0.62 7.87 11.74 14.54 0.63

SSR2RPS 3.25 3.43 4.11 0.91 3.53 3.54 4.63 0.90

Methods Nature Condition 2 Nature Condition 3
ME (bpm) MAE (bpm) RMSE (bpm) ρ ME (bpm) MAE (bpm) RMSE (bpm) ρ

CHROM [9] 4.65 6.80 7.00 0.77 3.65 6.70 10.26 0.84
ICA [42] 9.99 14.48 20.19 0.24 12.04 17.48 23.54 0.22
PCA [43] 12.24 17.33 23.37 0.28 9.97 15.33 17.37 0.22
POS [8] 6.63 11.36 18.82 0.70 7.13 9.36 16.82 0.74

DAOMP [31] 3.77 7.34 13.63 0.76 3.07 7.84 12.02 0.79
LGI [20] 6.31 10.97 13.23 0.59 7.13 11.72 14.17 0.68

SSR2RPS 4.27 4.68 5.31 0.88 4.26 4.75 5.76 0.85

4.3. Effect of Baseline Elimination

We evaluate the performance of the Airpls de-trending with other elimination baseline
methods, such as the linear de-trending and polynomial de-trending methods. For the
polynomial de-trending method, we set the fourth order and the fifth order, respectively.
The results are shown in Table 3. It is evidently observed that the Airpls de-trending shows
the best result for the MAE is the lowest. For the Airpls de-trending, we conclude that it is
able to remove the linear baseline and also the irregular baseline. Thus, more kinds of drift
trends are eliminated. Among all the methods, the Airpls de-trending achieves the lowest
MAE of the averaging heart rate estimation.
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Figure 6. Scatter plot comparing the ground-truth Hgt and the predicted Hpred on COHFACE dataset.
The dark blue points indicate the average heart rate estimation under good conditions, and the light
blue points indicate the average heart rate estimation under nature conditions.

Table 3. Performance of heart rate estimation on UBFC dataset shows the superiority of the baseline
elimination (best performance in bold).

Methods ME (bpm) MAE (bpm) RMSE (bpm) ρ

No elimination of trends 4.08 4.56 9.16 0.88
Linear de-trending 4.87 5.32 10.28 0.86

Fourth-order polynomial de-trending 3.27 3.73 7.02 0.93
Fifth-order polynomial de-trending 3.41 3.79 7.00 0.93

Airpls de-trending 1.70 2.57 4.69 0.97

4.4. Parameter Setting

In this section, we present the parameter settings and discuss the effect of different
parameters on the results. SSR2RPS includes four parameters: the sub-regions size (p× p),
smoothing parameter λ, penalty parameter µ, and video length l. We conduct the ex-
periment on the UBFC dataset with all the subjects. Figure 7 illustrates the effect of the
parameters on the results. The values of the four parameters are explored on all the testing
samples and are determined according to the best experimental results. The overlarge
facial sub-region will lead to ignored heart rate signals and also affect the flexibility of
the heart rate signals’ reconstruction. Different values of λ are illustrated in Figure 7b,
from which we found that the best performance is achieved when λ = 0.1. It can be found
that the acceptable values of µ ranged from 0.1 to 1.5, as the fidelity of the reconstructed
pulse signals failed to meet the requirements given an excessively small µ, whereas the
reconstructed pulse signals might be affected by noise if the value of µ is higher than 1.5.
Then, in order to explore the performance of SSR2RPS at different video length l, we set l
to 300, 600, 900, and 1200 frames, respectively. Figure 7d shows that the MAE decreases
significantly when the video length is longer than 600. The reason for the stability of the
MAE when the video length exceeds 600 is that the longer video length is able to provide
more sufficient information for the proposed method to reconstruct the heart rate signals.
As the analysis above illustrates, we set p× p = 20× 20, λ = 0.1, µ = 0.5, and l = 1200.
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Figure 7. The parameterization of SSR2RPS. (a) Size of the sub-region. (b) Smoothing parameter of
baseline elimination. (c) Penalty coefficient of SSR. (d) Video length.

5. Conclusions

In this paper, we present a new method for the remote heart rate estimation using
SSR2RPS. The proposed method advances the literature with two innovations: eliminate the
trend variations and an SSR to reconstruct pulse signals. Eliminating the trend variations
aims to remove the noise which is recorded during a video capture. The SSR to reconstruct
the pulse signals is used to select several atoms that are closer to the ground truth in the
combined dictionary. As far as we know, it is the first work applying a structural sparse
representation to reconstruct the pulse signals in the combined dictionary. We evaluate our
framework on two public datasets and compare with other state-of-the-art methods. The
results show that the performance of SSR2RPS is better than other methods for the heart
rate estimation.
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