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Abstract: This study proposes an intensive longitudinal functional model with multiple time-varying
scales and subject-specific random intercepts through mixed model equivalence that includes multiple
functional predictors, one or more scalar covariates, and one or more scalar covariates. An estimation
framework is proposed for estimating a time-varying coefficient function that is modeled as a linear
combination of time-invariant functions with time-varying coefficients. The model takes advantage
of the information structure of the penalty, while the estimation procedure utilizes the equivalence
between penalized least squares estimation and linear mixed models. A number of simulations
are conducted in order to empirically evaluate the process. In the simulation, it was observed that
mean square errors for functional coefficients decreased with increasing sample size and level of
association. Additionally, sample size had a greater impact on a smaller level of association, and level
of association also had a greater impact on a smaller sample size. These results provide empirical
evidence that ILFMM estimates of functional coefficients are close to the true functional estimate
(basically unchanged). In addition, the results indicated that the AIC could be used to guide the
choice of ridge weights. Moreover, when ridge weight ratios were sufficiently large, there was
minimal impact on estimation performance. Studying two time scales is important in a wide range of
fields, including physics, chemistry, biology, engineering, economics, and more. It allows researchers
to gain a better understanding of complex systems and processes that operate over different time
frames. Consequently, studying physical activities with two time scales is critical for advancing
our understanding of human performance and health and for developing effective strategies to
optimize physical activity and exercise programs. Therefore, the proposed model was applied to
analyze the physical activity data from the Active Schools Institute of the University of Northern
Colorado to determine what kind of time-structure patterns of activities could adequately describe
the relationship between daily total magnitude and kids’ daily and weekly physical activity.

Keywords: functional data analysis; intensive longitudinal data; functional penalized regression;
decomposition based penalty; generalized ridge regression; activity pattern; accelerometery

MSC: 62P99

1. Introduction

Functional Data Analysis (FDA) deals with the analysis and theory of data that are
in the form of functions, images and shapes, or more general objects [1,2]. The atom of
functional data is a function, where for each subject in a random sample one or several
functions are recorded. While the term “functional data analysis” was coined by [1,3],
the history of this area is much older and dates back to Greven et al. (2020) [4] and
Rao et al. (1950) [5]. There are several ways that the data can called functional. For
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instance, in archaeological studies the form of a three-dimensional image of each bone can
be presented as functional data [6].

FDA has many applications in areas such as biostatistics, environmental monitoring,
finance, and image analysis. For example, in biostatistics, FDA can be used to study the
patterns of gene expression over time or to model the progression of a disease. In finance,
FDA can be used to analyze the dynamics of financial markets over time, and to develop
models for predicting future stock prices or other financial variables [7].

The functional data comes in many forms; however, their definition is a based on
functions which are often smooth curves [8]. The smoothness is a characteristic that filter
the noises inside the raw data as efficiently as possible [9]. They are several approaches
for representing functional data in smoothing form: basis expansion, least-squares, and
roughness penalty. One of basis expansions is based on B-splines. In this approach, both
functional coefficient and functional predictor expand in the form of B-splines and thereafter
the regularized estimate of functional coefficient will be applied [10]. Müller (2005) [11]
expressed that the regression coefficient can be expressed in orthonormal basis determined
by the eigenfunctions of the covariance of functional regressor. Goldmsmith [12] in 2011,
combined both approaches introduced by Ramsay [10] and Müller [11]. This method has
been considered in this study for smoothness and it is called roughness penalty because it
penalizes fits that are too rough [13].

In many cases, data are observed longitudinally and collected over time. Longitudinal
data is epansion of a time series, which is a sequence of data points that are ordered based
on time, such that each data point corresponds to a specific moment in time [14]. Longitu-
dinal data analysis can provide more accurate estimates of the effects of interventions or
treatments over time [15] .The mixed-effects regression models have been used to study
the longitudinal data [16]. These models allow us to make subject-specific conclusions and
present statements about individuals changes, trends, or effects over time.

Sometimes in practice, the data has both characteristics of functional and longitudinal.
One of the case can be when the outcome is not functional; however, covariates are collected
functionally and longitudinally over one-time scale. People often use two approaches. One
is based on function models where functional covariates have been smoothed according to
roughness penalty and it is called Longitudinal Penalized Functional Regression (LPFR) [17].
The other one is built on according to principal component analysis for longitudinal
functional data [18]. One of the main disadvantage of both approaches is the functional
covariates are remained constant over time. But sometime in practice, we might have
situation where functional covariates and scalar outcome have been changed over time
which is considered in this study. Longitudinal functional models have not been studied
to incorporate longitudinal functional for multiple time scales; however; Kundu et al.
(2016) [19] published their work about the same data situation for one time-scale. Therefore,
this study is an extension of Kund’s work to incorporate multilevel longitudinal functional
covariates.

Studying two time scales is important in a wide range of fields, including physics,
chemistry, biology, engineering, economics, and more. It allows researchers to gain a
better understanding of complex systems and processes that operate over different time
frames [20].

One of the key benefits of studying two time scales is that it can help researchers
identify the underlying mechanisms that contribute to the behavior of a system. For
example, in physics, studying the behavior of particles over different time scales can
help researchers understand how those particles interact with each other and how their
interactions lead to the formation of larger structures.

In chemistry, studying chemical reactions over different time scales can help re-
searchers identify the intermediates and transition states that are involved in the reaction,
and help them design more efficient and effective reactions [21].

Studying two time scales can also help researchers design and optimize systems for
specific applications. For example, in engineering, studying the behavior of materials
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over different time scales can help researchers design materials with specific mechanical,
electrical, or chemical properties.

Overall, studying two time scales is critical for advancing our understanding of
complex systems and processes, and for developing new technologies and applications
that can improve our lives.

Studying physical activities with two time scales is important because it allows us to
understand how different processes operate at different timescales and how they interact
with each other. Physical activities involve a wide range of processes that occur at different
timescales, from short-term processes such as muscle activation and joint movements, to
longer-term processes such as training adaptations and recovery [22].

By studying physical activities with two time scales, researchers can better understand
the underlying mechanisms that contribute to performance and health outcomes [23]. For
example, studying the short-term and long-term effects of exercise on muscle function and
metabolism can help us understand how exercise training improves overall health and
athletic performance [24].

Furthermore, studying physical activities with two time scales can help inform the
development of effective training programs and interventions. By understanding how
different processes interact over time, we can design training programs that are optimized
for different goals, such as improving strength or endurance, and minimizing the risk of
injury or overtraining [25].

Overall, studying physical activities with two time scales is critical for advancing our
understanding of human performance and health and for developing effective strategies to
optimize physical activity and exercise programs [26].

The proposed model was appropriate to apply on the data collected by the Active
Schools Institute of the University of Northern Colorado. They were interested in the
associations between daily and weekly activity profile, as measured by accelerometers,
and academic and behavioral outcomes. To address these interests, students from one
primary school in a suburban area in the western United States wore accelerometers during
the school day for 5 consecutive days over 4 different weeks of the year. Corresponding
academic and behavioral data were also obtained.

The data collected from the Active Schools Institute assumed daily student activity
crossed within weeks. Due to nature of this data, establishing a multilevel mixed-effects
regression model, including demographics or teacher effects, and accelerometer wear-time
was essential. Hence, the proposed model was suited to apply on the physical activity
data set.

As a consequence, this article addresses the following questions:
According to Section 2, the following question has been addressed: How can we

represent a longitudinal functional regression model with time-varying regression functions
for multiple time scales when time components are crossed?

Under Section 2.3, the following question is addressed: How can the mean parameters
of the propsed model be estimated?

A response to this question can be found in Section 5: How can the model and
estimation be implemented in software?

A detailed answer to this question can be found in Section 3: How do the proposed
model compare to similar existing models with single time scales in terms of model MSE,
across sample sizes and levels of association?

2. Intensive Longitudinal Functional Model with Multiple Time Scales

The intensive longitudinal method represents sequences of repeated measurements
frequently recorded to characterize a separate change process for each subject [27].

Intensive longitudinal data refers to data that is collected repeatedly and frequently
over a relatively short period of time, often at a high frequency (e.g., several times a day).
This type of data is particularly useful for studying processes that unfold over time, such
as mood fluctuations, stress reactivity, or medication effects [27,28].
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Intensive longitudinal data can be collected using a variety of methods, including
ecological momentary assessment (EMA), experience sampling methods (ESM), ambulatory
monitoring, and diary or journal methods [29]. These methods typically involve asking
participants to report on their experiences, thoughts, and behaviors at multiple points
throughout the day, either through self-reports on electronic devices (such as smartphones
or smartwatches), or by filling out paper or online forms [30].

The analysis of intensive longitudinal data requires specialized statistical methods
that can capture the dynamic nature of the data, such as time-series analysis, multilevel
modeling, and dynamic systems modeling. These methods allow researchers to examine
how variables change over time, how they are related to each other, and how they are
influenced by external factors [31].

Intensive longitudinal data has been used in a variety of fields, including psychology,
medicine, and public health, to study phenomena such as mood disorders, substance use,
physical activity, and sleep patterns.

This study considers a longitudinal model where the time scales of functional predic-
tors cross. Additionally, the proposed model is suitable when data is collected frequently
over a short period of time, often at a high frequency (e.g., several times a day). As a conse-
quence, the proposed model may be referred to as an Intensive Longitudinal Functional
Model with Multiple Time Scales (ILFMM) [32].

A specific estimation process is also included in the ILFMM. Estimating parameters is
performed using a generalized ridge estimate. As a result of this estimation process, a linear
mixed model representation can be derived. By using a mixed model approach, tuning
parameters can be automatically selected. It is also possible to estimate parameters by fitting
a linear mixed model based on this linear mixed model representation. It is worthwhile
to note that the model presented has some advantages. There is no restriction on the time
course of regression functions. In addition, it is possible to incorporate the structure of the
regression function directly into the estimation process [19]. The approach described by
Kundu et al. (2016)[19] was extended here to incorporate longitudinal functional predictors
spanning multiple time scales.

2.1. Statistical Model of ILFMM

To represent a longitudinal functional regression model with time-varying regres-
sion functions for multiple time scales when time components are crossed, assume X
presents univariate predictors, Witw denotes a predictor function for the ith subject at
timepoint tw, and Ditd denotes a predictor function for the ith subject at timepoint td, where
i = {1, 2, . . . , N}, t = {t1, t2, . . . , tni}, and longitudinal-time points t can be decomposed in
terms of tw and td, where each tk (k = {1, 2, . . . , ni}) corresponds to one value each from
twk and tdk

. It is assumed that each observed predictor is sampled at the same p locations,
s1, . . . , sp ∈ Ω, and there are an equal number of observations per subject (i.e., ni are equal).

Let Witw :=
[
Witw(s1), · · · , Witw

(
sp
)]> and Ditd :=

[
Ditd(s1), · · · , Ditd

(
sp
)]> be the p× 1

vector of values sampled from the realized functions Witw and Ditd , respectively. Then, the
observed data have a form of

{yit; Xit; Witw ; Ditd},

where yit is a scalar outcome, Xit is a K × 1 column vector of measurements on K scalar
predictors, Witw is the sampled predictor from the ith subject corresponding to time tw,
and Ditd is the sampled predictor from the ith subject corresponding to time td. The
longitudinal functional linear model with the scalar outcome and functional predictor
along with multiple time scales could be written as

yit = X>it β +
∫

Ω
Witw(s)γ(tw, s)ds +

∫
Ω

Ditd(s)η(td, s)ds + z>it bi + εitwtd , (1)
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where γ ≡ γ(tw, s) are functional coefficients at time tw, η ≡ η(td, s) are functional coeffi-
cients at time td, bi is the vector of r random effects pertaining to subject i, and εitwtd denote
the subject-specific random effect and random error term, respectively.

Similar to a linear mixed model with time-related slope for longitudinal data, it is
assumed that γ and η can be decomposed into several time-invariant component functions
γ0, · · · , γW and γ0, · · · , γD as follows:

γ(tw, s) = γ0(s) + f1(t1)γ1(s) + . . . + fW(tW)γW(s), (2)

η(td, s) = η0(s) + g1(t1)η1(s) + . . . + gD(tD)ηD(s), (3)

where f1, . . . , fW and g1, . . . , gD are functions of tw and td, respectively. Additionally, γ
and η are functions of s. In general, γ(tw, s) and η(td, s) have three components: tw, td,
and s. The time component tw enters into γ through f1(t1), . . . , fW(tW) and the func-
tional component enters into γ(tw, s) through γ0(s), · · · , γW(s). Additionally, the time
component td enters into η(td, s) through g1(t1), . . . , gD(tD) and the functional component
enters into η(td, s) through η0(s), · · · , ηD(s). The model is flexible with any function of
tw and td with f (0) = 0 (e.g., f (tw) = tw or twet

w and f (td) = td or tdet
d). Additionally,

εitwtd ∼ N
(
0, σ2

ε

)
and bi is distributed as N

(
0, Σbi

)
. It is assumed that εitwtd and bi are inde-

pendent, εitwtd and εi′tw ′td
′ are independent whenever i 6= i′ or tw 6= tw

′ or td 6= td
′ or all,

and bi and bi′ are independent if i 6= i′.
In Model (1) X>it β is the standard fixed effect. In addition, Zitbi is the standard

multilevel random effect and
∫

Ω Witw(s)γ(tw, s)ds is the subject and time specific functional
effect corresponding to level w. Here

∫
Ω Ditd(s)η(td, s)ds is the subject and time specific

functional effect corresponding to level d. And both the variances and covariances across
time are assumed to be constant as Var

(
yitwtd

)
= σ2

b + σ2
ε and Cov

(
yitwtd , yit′wt′d

)
= σ2

b ,

where tw 6= t′w and td 6= t′d. This implies a compound symmetry assumption for the
variances and covariances.

Model (1) can be written based on Equations (2) and (3) as

yit = X>it β +
∫

Ω
Witw(s)(γ0(s) + f1(t1)γ1(s) + . . . + fW(tW)γW(s))ds

+
∫

Ω
Ditd(s)(η0(s) + g1(t1)η1(s) + . . . + gD(tD)ηD(s))ds

+ z>it bi + εitwtd . (4)

A primary goal in developing Model (4) is the estimation of β, γw =
[
γw(s1), . . . , γw

(
sp
)]>,

0 ≤ w ≤W, and ηd =
[
ηd(s1), . . . , ηd

(
sp
)]>, 0 ≤ d ≤ D.

2.2. Matrix Form of ILFMM

In the following an explanation will be given demonstrating how the proposed model
can be written in matrix form. For this purpose, the observed values and the design matrix
of fixed effect of Model (1) can be considered as:
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y =



y1t1
y1t2

...
y1tn1
y2t1

y2t2
...

y2tn2
...

yNt1

yNt2
...

yNtnN



∈ R∑N
i=1 ni×1, (5)

X =


X1t1 X1t2 . . . X1tn1
X2t1 X2t2 . . . X2tn2

...
... . . .

...
XNt1 XNt2 . . . XNtnN

 ∈M∑N
i=1 ni×k(R). (6)

It is important to point out that it is assumed there are an equal number of observations
per subject (i.e., ni are equal). In addition, the matrices of functional coefficients, W and D,
have the form

W =

W1
...

WN

 ∈M∑N
i=1 ni×(W+1)p(R) and D =

D1
...

DN

 ∈M∑N
i=1 ni×(D+1)p(R), (7)

where

Wi =


W>it1

f1(t1)W>it1
· · · fW(t1)W>it1

...
...

. . .
...

W>itni
f1(tni )W

>
itni

· · · fW(tni )W
>
iti

 (8)

and

Di =


D>it1

g1(t1)D>it1
· · · gD(t1)D>it1

...
...

. . .
...

D>itni
g1(tni )D

>
itni

· · · gD(tni )D
>
iti

. (9)

So Model (4) would be

Y = Xβ + Wγ + Dη+ Zb + ε, (10)

where β is the associated coefficient vector, γ =
[
γ>0 , γ>1 , · · · , γ>W

]> ∈ R(W+1)p×1 and

η =
[
η>0 , η>1 , · · · , η>D

]> ∈ R(D+1)p×1 are coefficient vectors of function predictors, b ∈ RrN×1

is a vector of random effects and Z ∈M∑N
i=1 ni×rN(R) is the corresponding design matrix.

In this framework, the estimation approach is an extension of generalized ridge
regression that takes the form of a penalty to the longitudinal setting in a manner that
allows the estimated regression functions γ(tw, s) and η(td, s) to vary with time.
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2.3. Estimation Based on the Mixed Model Representation

The goal of this section is to estimate parameters based on the matrix form of Model (4).
This model was described in Section 2.2 and it can be written as:

Y = Xβ + Wγ + Dη+ Zb + ε, (11)

where X, W, D, and Z are known matrices, β is an unobservable vector of fixed ef-
fects, γ and η are unobservable functional vectors of fixed effects of two time scales,
and b is an unobservable vector of random effects with E(b) = 0, Cov(b) = B, and
Cov(b, ε) = 0. Let Cov(ε) = R and E(ε) = 0, then Zb+ ε is distributed as N(0, V) because
E(Zb + ε) = E(ε) = 0 and Cov(Zb + ε) = ZBZ′ + R ≡ V. In addition, it is assumed that
B and R are known.

The well-known mixed model equation, developed by Henderson (1950) [33], can
be applied at this time. Henderson’s mixed model equation is similar in spirit to normal
equations, but the mixed model equation simultaneously provides Best Linear Unbiasted
Estimators (BLUEs) and Best Linear Unbiased Predictors (BLUPs) by estimating the vari-
ance component V.

Theorem 1. If
(
α̂′ b̂′

)
is a solution to the mixed model

Y = Cα + Zb + ε, (12)

where C = [X W D], α = (β
′

γ
′

η
′
), Cov(b) = B, and Cov(ε) = R, then Cα̂ is a BLUE

of Cα and simultaneously b̂ is a BLUP of b if B and R are known and also by estimating the
variance component V.

Theorem 1 demonstrates how the mixed Model (11) can provide BLUEs and BLUPs
simultaneously. Appendix A.1 includes the proof of the Theorem 1.

2.4. Roughness Penalties Estimate

In this section a roughness penalties estimate based on the matrix form of Model (4)
is discussed, which was described in Section 2.2. As mentioned, the mixed model can be
written as:

Y = Xβ + Wγ + Dη+ Zb + ε, (13)

where X, W, D, and Z are known matrices, β is an unobservable vector of fixed effects, γ
and η are unobservable functional vectors of fixed effects for two time scales, and b is an
unobservable vector of random effects with E(b) = 0, Cov(b) = B, and Cov(b, ε) = 0. Let
Cov(ε) = R and E(ε) = 0, then Zb + ε is distributed as N(0, V) (see Section 2.3).

It is also assumed that V is known.

Theorem 2. For each w = 0, . . . , W and d = 0, . . . , D, let Ld and Lw be penalty operators for ηw
and γd with τ2

w and λ2
d as the associated tuning parameters. A generalized ridge estimate associated

with Model (13) for minimizing β, γ, and η

‖y− Xβ−Wγ−Dη‖2
v−1 + τ2

0 ‖η0‖2
L>0 L0

+ · · ·+ τ2
W‖ηW‖2

L>WLW

+ λ2
0‖γ0‖2

L>0 L0
+ · · ·+ λ2

D‖γD‖2
L>DLD

, (14)

is obtained as β̂
η̂
γ̂

 =
(

C>V−1C−M
)−1

C>V−1y, (15)

where
C = [X W D], M = blockdiag

{
0,LΓ

>LΓ,LH
>LH

}
,
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LΓ = blockdiag {τ0L0, · · · , τWLW},

and
LH = blockdiag {γ0L0, · · · , γDLD}.

In Theorem 2, an expression for the generalized ridge estimate of Model (13) will be
derived. The results of both theorems illustrated that the ridge estimate is BLUP from an
equivalent mixed model; hence, the estimation procedure takes advantage of the equiva-
lence between penalized least-squares estimation and linear mixed model representation.
An Appendix A.2 contains the proof of the Theorem 2.

2.5. Selection of Time-Structure in γ(tw, s) and η(td, s)

In the proposed approach there is freedom to choose a time-structure for both γ(tw, s)
and η(td, s). The matter of selecting appropriate time-structure in γ(tw, s) and η(td, s) are
analogous, in essence, to that of selecting time structure in a linear mixed-effects model.

For example, selection of time-structure η1 + tdη2 or η1 + tdη1 + t2
dη2 or η1 + tdη1 +

t2
dη2 + t3

dη3 is similar to selection of variables in mutiple linear regression models based on
linear mixed-effects model.

When comparing different time structures, it is common to apply Akaike Informa-
tion Criterion (AIC). The formula −2l + 2p, where l refers to a Restricted, or a Residual
Maximum Likelihood (REML) estimation of mixed models and p refers to the number of pa-
rameters of the model, for information criterion (AIC) was used to determine time-structure
in γ(tw, s) and η(td, s).

2.6. Selection of a, b, c, and d for Decomposition Penalties

The set of values {1, 2, 3} for each of a, b, c, and d are considered in this study. Those
are treated as weights of a trade-off between preferred and non-preferred subspaces with
ab = constant and cd = constant.

Additionally, REML is used to estimate tuning parameters when b and d are considered
as fixed values and a grid search determines a and c values. These values are used to jointly
select the tuning parameters.

Then, the selected values of a and c can be applied to the preferred subspace. The
formula for information criterion (AIC) −2l + 2p creates values for a and c, where l refers
to a Restricted, or a Residual Maximum Likelihood (REML) estimation of mixed models
and p refers to the number of parameters of the model.

3. Simulation Steps

In this section, the process of simulating the proposed model is explored. Without
loss of generality, it was assumed that b = 1 and d = 1; however, a and c could be varied
on the set values of {1, 2, 3}. The largest values of a and c indicate there was much prior
information in the estimation process. The following was used to generate the response
data for 100 subjects by simulating functional covariates W in 4 time points (tw = 1, 2, 3, 4)
and functional covariates D in 5 time points (td = 1, 2, 3, 4, 5):

yit = β0 + β1t +
∫ 1

0
Witw(s)γ(s, tw)ds

+
∫ 1

0
Ditd(s)η(s, td)ds + bi + εitwtd , i = 1, · · · , 100, (16)

where γ(s, tw) = γ1(s)+ twγ2(s), η(s, td) = η1(s)+ tdη2(s). Functional covariates W and D
have the following form: W =

(
W1 W2

)
and D =

(
D1 D2

)
. Consequently, a rewritten

of Model (16) would be
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yit = β0 + β1t +
∫ 1

0
W1itw

(s)γ1(s)ds +
∫ 1

0
twW2itw

(s)γ2(s)ds

+
∫ 1

0
D1itd

(s)γ1(s)ds +
∫ 1

0
tdD2itd

(s)γ2(s)ds

+ bi + εitwtd , i = 1, · · · , 100. (17)

Functional covariates W were generated by considering three sets of sampling points:
wide, moderate, and narrow corresponding to one, five, and two bumps, respectively [19].

As an example, the first set of 100 columns in W was represented as follows:

a. We have recorded all of the observed values for the first subject at the first time point
in the first 100× 1 row of the W matrix.

b. As a result, all observation values for W at all time points and all subjects in each
following row have been arranged. This is so that each row represents an observation
value for W from a specific time point and subject. In accordance with y, the rows
were ordered by time and subject.

Having constructed the first set of 100 columns, we next proceeded to construct the
second set of 100 columns by multiplying the first 100 columns by tw.

Since it was impossible to generate the curves with functional form only by considering
discrete observations at different points of the domain interval, it was necessary to consider
some set of sampling points on the interval [0, 1] [19]. To simulate the true functional forms
of the curves, prior knowledge about the functional variable was applied. Due to this,
the observed value of W was calculated considering the degrees of curvature at the wide,
moderate, and narrow bumps [19]. White noise was added to the predictor functions to
account for the instrumental measurement noise [19].

Functional covariates D were generated by considering three sets of sampling points:
wide, moderate, and narrow corresponding to one, five, and two bumps respectively
as Hwide = {0.40}, Hmoderate = {0.10, 0.25, 0.65, 0.75, 0.80}, and Hnarrow = {0.50, 0.85}.
The first set of 100 columns in D were represented similar to process of presenting W as
discussed ealier. Consequently, the observed value of D was generated in the same way
as W .

The functional coefficients γ1, γ2 were generated according to [19] considering differ-
ent degrees of curvature at the wide, moderate, and narrow bumps. But η1, and η2 were gen-
erated as follows with bumps centered at Hη1 = {0.10, 0.45, 0.75}, and Hη2 = {0.25, 0.65},

η1(s) = ∑
h∈Hη1

aw(h) exp

[
−cw(h) ∗

(
s− h
100

)2
]

,

η2(s) = ∑
h∈Hηn

an(h) exp

[
−cn(h) ∗

(
s− h
100

)2
]

, ∀s ∈ [0, 1], (18)

where aw(h), cw(h), an(h), and cn(h) correspond to amplitude and degree of curvature
respectively. In fact, “bump” is the same as the “turning” of the polynomial graph. While
the proper term is local maximum, the term “bump” referred to the “turning” of func-
tional coefficients. The amplitude is the height from the centerline to the peak (dip) of
the polynomial, and it measures the height from highest to lowest points divided by two.
The amplitude values as 0.1, 0.4, 0.5, and 0.6 were considered to simulate functional co-
efficients [19]. Another term that played an important role in simulating was degree of
curvature. It was referred to the degree of a polynomial [34]. The amplitude and curvature
used to generate the functional coefficients η1, and η2 are specified in Table 1.
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Table 1. The amplitude and curvature parameters for η1 and η2.

h Amplitude
aw(h)

Curvature
cw(h)

Amplitude
am(h)

Curvature
cm(h)

5 0.15
15 0.15 500
30 −0.10 250
50
70 0.10 250
80 −0.15 1000
90
95

The second and third columns are parameters for η1, and the last two columns are for η2.

The model was applied to analyze the physical activities of kids with logitudonal
functional data with two-time scale. The results suggested that β0 = 0.06 and β1 = 0.4
were reasonable choices for fixed parameters in the simulation study. Having made these
choices the fixed effect, the random effect, and errors were generated and are shown in
Table 2.

Table 2. Choices for fixed effects, random effect, and errors in the simulation study.

Fixed Effect β0 0.06

Fixed Effect β1 0.04

Random Effect bi ∼ N (0, 0.052)

Errors εitwtd ∼ N (0, 0.022)

Throughout this simulation the following decomposition penalties, an extension of
Kundu et al. (2016) [19] for multiple time scales, were considered: b = 1 and d = 1 while a
and c were varied over 1, 2, and 3, also structured penalties were LQw = 10a(I − PQw) +
bPQw and LQd = 10c(I − PQd

)
+ dPQd . R 3.5.2 GUI 1.70 El Capitan build (7612) and RStudio

Version 1.1.383 were used to analyze the simulated data. The method discussed in this
section was implemented in the R package nlme via the lme function. The R code has
been uploaded to GitHub and it is viewable at https://github.com/Mostafa2020-bit/
PackageILFMM since November 2020.

About 100 data were generated for two different sample sizes(100 and 200) along with
two different R2 (0.6 and 0.9).

The primary interests were in the estimation of the functional coefficients and the
measurement of the squared distance between the fitted and the true value of y. Estimation
error was summarized in terms of the Mean Squared Errors (MSE) of the functional
coefficients. Also, the MSE of ỹ was obtained.

With respect to the MSE of both the functional covariates and the response, we inves-
tigated the effect of increasing the sample size and R2 on these values of MSE. If these
were increased, would MSE(γ1), MSE(γ2), MSE(η1), MSE(η2), and MSE(ỹ) decrease or
not? In this scenario, the following criteria were computed: MSE(γ1) = ‖γ1 − γ̃1‖2 =

∑
p
s=1

∫
Ω(γ1s − γ̃1s)

2ds, where γ̃1 is the estimate of γ1 and each observed predictor γ1 is
sampled at the same p locations, s1, . . . , sp ∈ Ω. Similarly, MSE(γ2), MSE(η1), MSE(η2)
were computed; however, the calculation of MSE(ỹ) was different because of its discrete

characteristics and it was computed as MSE(ỹ) = ‖y−ỹ‖2

N =
∑N

i=1 ∑
ni
j=1(yitj

−ỹitj
)2

N , where ỹ
denotes the model fitted values of the true y.

The MSE(γ1), MSE(γ2), MSE(η1), and MSE(η2) could provide empirical evidence
on whether the estimates are close to the corresponding true function or not.

To determine the effect of the decomposed penalty weights a, b, c, and d without loss
of generality, b and d were considered a fixed value of 1. Then a and c were increased up
to 3 on an exponential scale (i.e., {1, 2, 3}). The reason for this was to determine which

https://github.com/Mostafa2020-bit/PackageILFMM
https://github.com/Mostafa2020-bit/PackageILFMM
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combination of a, b, c, and d values would improve the estimation of γ1, γ2, η1, and η2. In
this manner, an evaluation of estimation performance would remain almost unchanged.

Decomposition penalty values were selected according to the −2l + 2p formula for
AIC. It was expected that minimized AIC for selected decomposition penalty values leads
to a minimized MSE for different sample sizes and R2s. AIC values were computed for
all combinations of a and c values. Consequently, the simulation parameters were a and c
values, the four sample sizes, and the four R2s.

4. Simulation Conclusions

The simulation study illustrated the potential advantage of an Intensive Longitudinal
Functional Model with Multiple time scales (ILFMM) estimate in exploiting an informed,
structured penalty. The simulation suggested that as the sample size and R2 increased, the
MSE for both functional coefficients and the fitted values decreased, Figure 1 and Table 3.

Figure 1. Average MSE of functional coefficients versus simulation cases (3-D plot).

Table 3. Averages MSE(γ1), MSE(γ2), MSE(η1), MSE(η2), and MSE(ỹ) for four cases of simulation.

Case N R2 MSE(γ1) MSE(γ2) MSE(η1) MSE(η2) MSE(ỹ)

Case 1 100 0.6 1.000522× 10−24 1.991303× 10−25 0.5035614 0.3827327 0.01625859

Case 2 100 0.9 2.912084× 10−25 1.343186× 10−24 0.5027712 0.3765218 0.01378987

Case 3 200 0.6 8.249432× 10−27 8.167412× 10−27 0.5286615 0.3614322 0.01240092

Case 4 200 0.9 3.903604× 10−27 6.183226× 10−27 0.5178613 0.3525342 0.01182925

Furthermore, sample size had a larger impact for smaller R2, and also R2 had a greater
impact for smaller sample size, Figure 2.
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Figure 2. Average MSE of functional coefficients versus simulation cases (2-D plot).

These results provided empirical evidence that the ILFMM estimates of functional
coefficients were close to the true functional estimate (basically unchanged). In other
words, the estimation of the functional coefficients rose to the level of the estimation of
true functions. These results suggested that AIC could guide the choice of ridge weights,
Figures 3 and 4.

The results for AIC are displayed graphically in Figure 3. It has been demonstrated,
when c = 3, AIC is minimized among all cases. Therefore, the choice of decomposition
penalties is a = 3, b = 1, c = 3, and d = 1. Also with sufficiently large values there was
minimal impact on the estimation performance.

Figure 3. Comparison of AIC for selection of c (a = 3, b = 1, d = 1).
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Figure 4. Average MSEs of MSE(ỹ) for the defined selection of ridge penalties.

In addition, the model with the selected ridge penalties had the lowest MSE values
of ỹ as compared to the model with the defined selection of ridge penalties, Figure 4 and
Table 3. These results implied that the model with the selected ridge penalties would
perform better than the model with the basic selection of ridge penalties.

Furthermore, for smaller sample sizes and R2s, the ILFMM estimate may oversmooth
the estimated regression function. However, by increasing the sample size to 200 or R2

to 0.9, it was observed that the average ILFMM estimate of the functional coefficients
approached the true functions.

All in all, the model with ridge penalties a = 3, b = 1, c = 3, and d = 1 appears to
perform better than the remaining models with other selections of the ridge penalties.

In the absence of a model with two time scales for comparison, it was decided to
evaluate the effect of sample size and R2 on MSE of functional coefficients, the fitted and
AIC values, which would indicate whether the patterns are consistent with those seen in
previous models.

Kundu’s approach was based on a single time scale. The results of the proposed
approach was lined up with consideration to a single time scale comparing AIC values [19]
(i.e., single versus multiple time scales).

Also, Kudu concluded the selected ridge penalties had the lowest MSE values as when
compared to the model with the basic selection. This demonstrated that the selected ridge
penalties were reasonable. In addition, when the sample size and R2 were increased, MSE
values were decreased. Furthermore, sample size had a larger impact for smaller R2, and
also R2 had a greater impact for smaller sample size [19].

5. Physical Activity Study Application

The proposed method could be implemented in a ILFMM() (i.e., Intensive Longitudinal
Functional Model with Multiple time scales) package in R. The author has written the
ILFMM() package for a longitudinal functional model with multiple time scales along
with scalar outcome, multiple functional predictors, one or more scalar covariates, and
subject-specific random intercepts through mixed model equivalence. This package also
works for a longitudinal functional model with a single time scale. The ILFMM() package
has been uploaded to GitHub and it is viewable at https://github.com/Mostafa2020-bit/
PackageILFMM sicne Novebmer 2020.

It is more common in the Physical Activity (PA) field to calculate the amount of PA a
child gets in a single day, rather than a week. So this might be why it has been difficult to
find information on weekly amounts of PA. Consequently, it is standard in PA projects to
get week data by taking the average of all weekdays [35,36].

https://github.com/Mostafa2020-bit/PackageILFMM
https://github.com/Mostafa2020-bit/PackageILFMM


Mathematics 2023, 11, 1973 14 of 22

Up until about five years ago most physical activity researchers only measured and
reported five days of activity at a time. Most reviews of handling accelerometer data focus
on the epochs, the device or the type of outcome reported (Moderate-to-Vigorous Physical
Activity (MVPA) or light PA) [37].

In PA field, the daily accelerometer-assessed time in MVPA over a week is usually
calculated as the mean of data over 7 days. For participants with less than 7 valid days of
data, the following formula is common to use for standardizing measurements to one week
for all participants [37]:

[(5×mean daily weekday MVPA time +2×mean daily weekend MVPA time )]/7.
The dataset was stored in a secure password-protected Super R machine server utilized

by IT at University of Northern Colorado for the Active Schools Institute. The author had
permission from the Active Schools Institute to access the dataset. The data used included
the five-second records from all students in school 1 for all weeks 1, 2, 3, and 4 over five
days of school time. The standard approach was used to get week data.

For all weeks the “Axis-1” measurements ranged approximately from 0 to 2647.0, with
a mean of 20.75, where “Axis-1” referred to the physical activities over x-axis coordinate.

For week 1, many observations were irrelevant (i.e., zeros recorded late in the evening),
so observations were truncated to consider only the time between 8:00 AM and 3:30 PM.
For example, by considering the first day of data collection the number of observations
were 1, 059, 840. Further limitation on the number of observations came from the restriction
of the hours from 8:00 AM to 3:30 PM on the first day. This resulted in a final data set of
496, 800 observations. This is around 5900 observations per student. This number is close
but a little high for 5-second observations. It would be anticipated that there would be 5400
observations per student (12 per minute, 60 min. per hour, 7.5 h). However, 8 students show
twice as many observations, suggesting that they have two days labeled as 9 November
2016. For all other weeks there was no such a problem.

For all weeks, the Stata default for time-stamps was New Year’s 1960. All official time
stamps showed dates around this time, but for analysis, dates were inherited from the
“Date” variable that the research team included.

Time stamps were translated in an unexpected way. For Day 1, all activity appeared
to begin at 1:00 AM for each student. We assumed this should have been 8:00 AM and
translated the time-stamps accordingly. For all other days, recording appeared to begin
at 5:00 PM, but all activity appeared to begin at midnight. We again assumed these times
should have been 8:00 AM and translated time-stamps accordingly. We then removed all
observations outside the hours of 8:00 AM through 3:30 PM. Plots of the five-second data
are usually “smoothed” to show the true patterns in the data. Smoothing is a method of
taking the data in “windows of time” to estimate means or regression trends. The size of
the window has a strong impact on the graphic produced but is subjective, and it is usually
determined by a span value.

In designing the matrix for weekly activities, 162,000 data points per subject were con-
sidered for each week. The researcher chose 162,000 data points because it was large enough
to capture physical activity patterns from 8:00 AM to 3:30 PM. This implies 684,000 obser-
vations per subject for four weeks (i.e., 162,000×4 = 684,000). And since 80 subjects were
considered, the total number of observations were 51,840,000. These design matrices are
graphically shown for 11 subjects in Figures 5 and 6. It provides us with information on the
overall patterns of physical activity on a daily and weekly basis.
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Illustration of Physical Activity for the First Column of Weekly Matrix Design

Figure 5. First column of weekly activity for 11 subjects over five days.
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Illustration of Physical Activity for the Second Column of Weekly Matrix Design

Figure 6. Second column of weekly activity for 11 subjects over five days.

For daily physical activity analysis, we chose 162,000 because it was large enough to
capture physical activity patterns every five seconds from 8:00 AM to 3:30 PM. This implies
3,240,000 observations per subject for five days across four weeks (i.e.,
162,000 × 5 × 4 = 3,240,000). And since 80 subjects were considered the total number of ob-
servations were 259,200,000. These design matrices are graphically shown in Figures 7 and 8.
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Illustration of Physical Activity for the First Column of Daily Matrix Design

Figure 7. First column of daily activity for 11 subjects across four weeks.
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Illustration of Physical Activity for the Second Column of Daily Matrix Design

Figure 8. Second column of daily activity for 11 subjects across four weeks.

The proposed model with two-time scales along with a = 3, b = 1, c = 3, and d = 1 as
ridge penalties was applied to real data as
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yitw = β0 + βpTeacherp +
∫ 1

0
Witw(s)γ(s, tw)ds +

∫ 1

0
Ditd(s)η(s, td)ds + bi + εitwtd , (19)

where γ(s, tw) = γ1(s) + twγ2(s), η(td, s) = η1(s) + tdη2(s) + t2
dη2(s) + t3

dη4(s),
i = 1, · · · , 100, and p = 1, 2, 3, 4, 5, 6. The expanded form of Model (19) would be

yitwtd = β0 + β2Teacher2 + β3Teacher3 + β4Teacher4

+ β5Teacher5 + β6Teacher6

+
∫ 1

0
W1itw

(s)γ1(s)ds +
∫ 1

0
twW2itw

(s)γ2(s)ds

+
∫ 1

0
D1itd

(s)η1(s)ds +
∫ 1

0
tdD2itd

(s)η2(s)ds +
∫ 1

0
t2
dD3itd

(s)η3(s)ds

+
∫ 1

0
t3
dD4itd

(s)η4(s)

+ bi + εitw . (20)

The ILFMM estimates were obtained as BLUP assuming εitwtd ∼ N
(
0, σ2

ε

)
and the

subject-specific random intercepts bi ∼ N
(
0, σ2

b
)
. The model was fitted into ILFMM() R

package and the estimates of σ2
ε and σ2

b were 0.000320 and 0.7281, respectively.
We compared models based on AIC values with a different selection of weight penal-

ties and time structures (linear, quadratic, and cubic). The results are summarized in
Table 4.

Table 4. Comparison of AIC for selection of ridge weights and time structures.

Model Time Structure for Days Time Structure for Weeks a c AIC

Model 1 η1(s) γ1(s) 1 1 2,096,978

Model 2 η1(s) γ1(s) + tγ2(s) 1 1 1,978,254

Model 3 η1(s) + tη2(s) γ1(s) 1 1 1,947,720

Model 4 η1(s) + tη2(s) γ1(s) + tγ2(s) 1 1 1,947,720

Model 5 η1(s) + tη2(s) + t2η3(s) γ1(s) 1 1 1,947,720

Model 6 η1(s) + tη2(s) + t2η3(s) γ1(s) + tγ2(s) 1 1 1,947,720

Model 7 η1(s) + tη2(s) + t2η3(s) + t3η4(s) γ1(s) 1 1 1,947,720

Model 8 η1(s) + tη2(s) + t2η3(s) + t3η4(s) γ1(s) + tγ2(s) 1 1 1,947,720

Model 9 η1(s) γ1(s) 3 3 1,789,975

Model 10 η1(s) γ1(s) + tγ2(s) 3 3 16,898,224

Model 11 η1(s) + tη2(s) γ1(s) 3 3 1,574,037

Model 12 η1(s) + tη2(s) γ1(s) + tγ2(s) 3 3 1,442,020

Model 13 η1(s) + tη2(s) + t2η3(s) γ1(s) 3 3 1,347,340

Model 14 η1(s) + tη2(s) + t2η3(s) γ1(s) + tγ2(s) 3 3 1,304,740

Model 15 η1(s) + tη2(s) + t2η3(s) + t3η4(s) γ1(s) 3 3 1,300,120

Model 16 η1(s) + tη2(s) + t2η3(s) + t3η4(s) γ1(s) + tγ2(s) 3 3 1,235,622

Based on the AIC, Model 16, with a cubic time structure for days and linear time
structure for weeks and weight penalties a = 3, b = 1, c = 3, and d = 1 appears to be better
than the other models.
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6. Discussion

The proposed intensive longitudinal functional model with multiple time-varying
scales with scalar outcome, multiple functional predictors, one or more scalar covariates,
and subject-specific random intercepts through mixed model equivalence has been defined.
There were three primary advantages of this framework. First, this model estimated a
time-dependent regression function. Second, it was also able to incorporate structural
information into the estimation process. And third, it was easily implemented through
linear mixed model equivalence.

One of the significant limitations of this study was the hardware needs for the organi-
zation and analysis of the data. Storage space to house the data, networking bandwidth
to transfer it to and from analytics systems, and computing resources to perform those
analytics were very time-consuming.

The physical activity data study results indicate that the proposed method is an appro-
priate one for the tested application. By using the proposed model, we could investigate
what kind of time-structure for activity patterns would adequately describe the relationship
between the subjects’ daily total magnitude and their weekly physical activities. Likewise,
it described this relationship for daily physical activities.

So, the interest of the Active Schools Institute has been addressed through the proposed
model. The proposed model concluded that the time structure of weekly activity was linear,
but for daily activity was cubic. This conclusion was reasonable because the general
patterns of movement throughout the day had more fluctuations than weekly movement.
The weekly movements showed more smoothed patterns. Also, several dips in data points
around the sedentary category for daily movement were observed. However, for weekly
movement, it appeared this sedentary behavior was changed (i.e., it is needed to consider
two separate definitions for sedentary behavior for weekly and daily activities). This
analysis also gives us a slightly better sense of how movement intensity changes over time
for both time scales.

The following are recommendations for future studies. One area of further investi-
gation is the effect of different time structures. In this study, a linear form for simulation
was considered; however, other forms of f (t), such as e(t) − 1 or log(t + 1) could be ex-
plored. A relative improvement in AIC due to the use of these complex structures would
be anticipated. For instance, it would be expected to have a minimal AIC associated with
γ(t, s) = γ0(s) + [e(t) − 1]γ1(s) in comparison to AIC for γ(t, s) = γ0(s) + tγ1(s).

In the proposed model, the ridge weights were set as b = d = 1 while a and c varied
on an exponential scale. Larger values of a and c indicated greater emphasis of prior
information on the estimation process. Future study could investigate other scales of ridge
weights to determine more accurately and quickly the estimation process.

A possible extension of this work could be to incorporate multiple functional pre-
dictors. For example, in PA projects, the physical activity and patterns might be studied
over an entire year. This implies there would be three-time scales: days, weeks, and years.
Consequently, an extension of the proposed approach would be needed.

Additionally, an interesting and powerful use of the framework underlying the pro-
posed model is when the response variable is binary. In this case when the response variable
is binary, different problems arise. Multicollinearity and high dimensionality prejudice
the estimation of the model and the interpretation of its parameters. This prejudice can be
overcome by using an intensive longitudinal multilevel functional logistic regression model
with principal component analysis. This study could be extended to any differentiable
Hilbert space for analyzing of image, spatial, and spatial-temporal data.
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Appendix A

Appendix A.1. Proof of Theorem 1

Proof. If α̂ is a solution to C′V−1Cα = C′V−1Y, then Cα̂ will be a BLUE of Cα. To imple-
ment this equation it is necessary to know a form for V−1. According to Proposition B.56
page 356 of [38], the inverse of V in terms of Z, B, and R is as follows:

V−1 = R−1 −R−1Z
[
B−1 + Z′R−1Z

]−1
Z′R−1.

If α̂ and b̂ are solutions, then the second row of the normal equation for the mixed
model Equation (12) gives

Z′R−1Cα̂ +
[
B−1 + C′R−1C

]
b̂ = Z′R−1Y (A1)

or
b̂ =

[
B−1 + Z′R−1Z

]−1
Z′R−1(Y−Cα̂). (A2)

The first row the normal equation of Equation (12) is

C′R−1Cα̂ + C′R−1Cb̂ = C′R−1Y. (A3)

Substituting for b̂ gives

C′R−1Cα̂ + C′R−1Z
[
B−1 + Z′R−1Z

]−1
Z′R−1(Y−Cα̂) = C′R−1Y (A4)

or

C′R−1Cα̂−C′R−1Z
[
B−1 + Z′R−1Z

]−1 Z′R−1Cα̂

= C′R−1Y−C′R−1Z
[
B−1 + Z′R−1Z

]−1Z′R−1Y,
(A5)

which is C′V−1Cα̂ = C′V−1Y. Therefore, α̂ is a generalized least squares solution and Cα̂
is a BLUE.
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Equation (A2) can be rewritten as follows:

b̂ =
(

B
[
B−1 + Z′R−1Z

]
− BZ′R−1Z

)[
B−1 + Z′R−1Z

]−1
Z′R−1(Y−Cα̂)

=

(
BZ′R−1 − BZ′R−1Z

[
B−1 + Z′R−1Z

]−1
Z′R−1

)
(Y−Cα̂)

= BZ′V−1(Y−Cα̂),

(A6)

which is the BLUP of b̂ of b.

Appendix A.2. Proof of Theorem 2

Proof. Let U =

β
γ
η

. By knowing that ‖a‖2
B = a>Ba Equation (14) can be written as

(y− Xβ−Wγ−Dη)>v−1(y− Xβ−Wγ−Dη) + U>MU

or

(y−CU>)>v−1(y−CU>) + U>MU.

Now, consider l = (y−CU>)>v−1(y−CU>) + U>MU. By taking the partial deriva-
tive with respect to U> the following would be true:

∂l
∂U>

= 2C>V−1(y−CU>) + 2MU>.

Set

∂l
∂U>

= 0.

Then, the following verdict becomes apparent:

2C>V−1(y−CU>) = −2MU>.

It implies that

C>V−1y−C>V−1CU> = −MU>

C>V−1y = C>V−1CU> −MU>

C>V−1y = (C>V−1C−M)U>.

So,

Û> = (C>V−1C−M)−1C>V−1y.

Consequently, a generalized ridge estimate of β, γ, and η can be obtainedβ̂
η̂
γ̂

 =
(

C>V−1C−M
)−1

C>V−1y. (A7)
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