Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (201)

Search Parameters:
Keywords = pedestrian route

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3559 KiB  
Article
Advancing Online Road Safety Education: A Gamified Approach for Secondary School Students in Belgium
by Imran Nawaz, Ariane Cuenen, Geert Wets, Roeland Paul and Davy Janssens
Appl. Sci. 2025, 15(15), 8557; https://doi.org/10.3390/app15158557 (registering DOI) - 1 Aug 2025
Viewed by 182
Abstract
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 [...] Read more.
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 years) in Belgium. The program incorporates gamified e-learning modules containing, among others, podcasts, interactive 360° visuals, and virtual reality (VR), to enhance traffic knowledge, situation awareness, risk detection, and risk management. This study was conducted across several cities and municipalities within Belgium. More than 600 students from school years 3 to 6 completed the platform and of these more than 200 students filled in a comprehensive questionnaire providing detailed feedback on platform usability, preferences, and behavioral risk assessments. The results revealed shortcomings in traffic knowledge and skills, particularly among older students. Gender-based analysis indicated no significant performance differences overall, though females performed better in risk management and males in risk detection. Furthermore, students from cities outperformed those from municipalities. Feedback on the R2S platform indicated high usability and engagement, with VR-based simulations receiving the most positive reception. In addition, it was highlighted that secondary school students are high-risk groups for distraction and red-light violations as cyclists and pedestrians. This study demonstrates the importance of gamified, technology-enhanced road safety education while underscoring the need for module-specific improvements and regional customization. The findings support the broader application of e-learning methodologies for sustainable, behavior-oriented traffic safety education targeting adolescents. Full article
(This article belongs to the Special Issue Technology Enhanced and Mobile Learning: Innovations and Applications)
Show Figures

Figure 1

26 pages, 6036 KiB  
Article
Beyond Static Estimates: Dynamic Simulation of Fire–Evacuation Interaction in Historical Districts
by Zhi Yue, Zhe Ma, Di Yao, Yue He, Linglong Gu and Shizhong Jing
Appl. Sci. 2025, 15(12), 6813; https://doi.org/10.3390/app15126813 - 17 Jun 2025
Viewed by 238
Abstract
Historical districts face pressing disaster preparedness challenges due to their special spatial properties—risks compounded by static approaches that overlook dynamic fire–pedestrian interactions. This study employs an agent-based model (ABM) for fire simulations and AnyLogic pedestrian dynamics to address these gaps in Dukezong Ancient [...] Read more.
Historical districts face pressing disaster preparedness challenges due to their special spatial properties—risks compounded by static approaches that overlook dynamic fire–pedestrian interactions. This study employs an agent-based model (ABM) for fire simulations and AnyLogic pedestrian dynamics to address these gaps in Dukezong Ancient Town, Yunnan Province, China, considering diverse ignition points, seasonal temperatures, and wind conditions. Dynamic simulations of 16 scenarios reveal critical spatial impacts: within 30 min, ≥28% of streets became impassable, with central ignition points causing faster obstructions. Static models underestimate evacuation durations by up to 135%, neglecting early stage congestions and detours caused by high-temperature zones. Congestions are concentrated along main east–west arterial roads, worsening with longer warning distances. A mismatch between evacuation flows and shelter capacity is found. Thus, a three-stage interaction simplification is derived: localized detours (0–10 min), congestion-driven delays on critical roads (11–30 min), and prolonged structural damage afterward. This study challenges static approaches by highlighting the “fast alert-fast congestion” paradox, where rapid alerts overwhelm narrow pathways. Solutions prioritize multi-route guidance systems, optimized shelter access points, and real-time information dissemination to reduce bottlenecks without costly infrastructure changes. This study advances disaster modeling by bridging disaster development with dynamic evacuation, offering a replicable framework for similar environments. Full article
Show Figures

Figure 1

27 pages, 9452 KiB  
Article
A BIM-GIS Framework Integrated with CCTV Analytics for Urban Walkability Assessment
by Mingzhu Wang, Peter Kok-Yiu Wong and Jack C. P. Cheng
Sensors 2025, 25(12), 3637; https://doi.org/10.3390/s25123637 - 10 Jun 2025
Viewed by 495
Abstract
This study proposes a novel framework integrating Building Information Modeling (BIM) and Geographic Information Systems (GIS) with real-time crowd analytics from Closed-Circuit Television (CCTV) for quantitative walkability assessment. The framework extends open data standards (IFC and CityGML) to model infrastructural and pedestrian flow [...] Read more.
This study proposes a novel framework integrating Building Information Modeling (BIM) and Geographic Information Systems (GIS) with real-time crowd analytics from Closed-Circuit Television (CCTV) for quantitative walkability assessment. The framework extends open data standards (IFC and CityGML) to model infrastructural and pedestrian flow attributes comprehensively. A walkability scoring mechanism quantifies route quality based on accessibility, efficiency, and physical comfort, differentiating among pedestrian groups, such as individuals sensitive to weather conditions or carrying belongings. Implemented at the Hong Kong University of Science and Technology (HKUST), results indicate that the framework effectively captures variations in walkability scores due to directional differences (uphill vs. downhill), crowd conditions, and operational constraints like facility closures. Statistical tests confirm significant differences in walking costs across these scenarios with variations of up to 30%, demonstrating the framework’s robustness and practical utility for real-time, human-centric urban infrastructure planning. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

17 pages, 5321 KiB  
Article
Addressing Increased Temperatures in Cities: Determination of Pedestrian Routes with Thermal Comfort in Barranquilla, Colombia
by Hernando José Bolívar-Anillo, Shersy Vega Benites, Giovanna Reyes Almeida, Samuel de Jesús Ortega Llanos, Valentina Taba-Charris, Keyla Andrea Acuña-Ruiz, Byron Standly Reales Vargas, Paula Fernanda Chapuel Aguillón, Hernando Sánchez Moreno, María Auxiliadora Iglesias-Navas and Giorgio Anfuso
Sustainability 2025, 17(11), 5211; https://doi.org/10.3390/su17115211 - 5 Jun 2025
Viewed by 568
Abstract
Thermal stress due to high temperatures has different negative effects on citizens as it generates a decrease in physical capacity and causes cardiovascular and respiratory alterations, which is especially true for pedestrians. In this paper, using a drone, routes for pedestrians with the [...] Read more.
Thermal stress due to high temperatures has different negative effects on citizens as it generates a decrease in physical capacity and causes cardiovascular and respiratory alterations, which is especially true for pedestrians. In this paper, using a drone, routes for pedestrians with the best thermal comfort were traced between the different headquarters of the Simón Bolívar University (Barranquilla, Colombia). Maps were created for three time intervals, from 10 a.m. to 1 p.m., from 1 to 2 p.m. and from 2 to 3 p.m., and variations in temperature and relative humidity of both natural and artificial shadow areas were identified. The routes with the best thermal comfort were those with natural shade that presented ca. 3 °C less than the unshaded areas. The predominant trees’ genera in most of the traced pedestrian routes were Arecaceae (palm), Tabebuia (purple oak), Mangifera (mango), and Delonix (red acacia). Some of them lose their leaves between March and June, which gives rise to an increase in the temperature along those routes. The developed cell phone application allows for the selection of walking environments with the best thermal comfort, favoring the mobility of the pedestrians along the considered area. Full article
Show Figures

Figure 1

21 pages, 5822 KiB  
Article
The Walkability Evaluation and Optimization Strategies of Metro Station Areas Taking Shanghai as an Example
by Xiaoyan Chen, Zhengyan Shi and Yanzhe Hu
Buildings 2025, 15(10), 1746; https://doi.org/10.3390/buildings15101746 - 21 May 2025
Viewed by 535
Abstract
Improving the pedestrian environment around metro stations and enhancing walkability are important for the daily travel and life quality of passengers. By reviewing existing studies, we summarized nine walkability elements and eventually refined them into 18 quantifiable research indicators. Walkability elements such as [...] Read more.
Improving the pedestrian environment around metro stations and enhancing walkability are important for the daily travel and life quality of passengers. By reviewing existing studies, we summarized nine walkability elements and eventually refined them into 18 quantifiable research indicators. Walkability elements such as street enclosure, number of lanes, and tree canopy coverage were quantified through field surveys and passenger perception data. A stepwise regression analysis identified key influencing factors for nine walkability dimensions. Based on the correlation coefficients, factor assignments, and constants, a composite walkability index formula was established to evaluate pedestrian routes near four Shanghai metro stations. The results show that the proportion of sidewalks covered by a tree canopy, the number of lanes, street enclosures, and the transparency of the ground-floor building facade are the most important factors affecting the walkability of the pedestrian environment. In this study, we calculated the scores of each road section, compared the walking facilities and walking distance of different stations, and finally proposed relevant strategies for improving the walking environment. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

35 pages, 20819 KiB  
Article
Exploring the Gobi Wall: Archaeology of a Large-Scale Medieval Frontier System in the Mongolian Desert
by Dan Golan, Gideon Shelach-Lavi, Chunag Amartuvshin, Zhidong Zhang, Ido Wachtel, Jingchao Chen, Gantumur Angaragdulguun, Itay Lubel, Dor Heimberg, Mark Cavanagh, Micka Ullman and William Honeychurch
Land 2025, 14(5), 1087; https://doi.org/10.3390/land14051087 - 16 May 2025
Viewed by 3966
Abstract
The Gobi Wall is a 321 km-long structure made of earth, stone, and wood, located in the Gobi highland desert of Mongolia. It is the least understood section of the medieval wall system that extends from China into Mongolia. This study aims to [...] Read more.
The Gobi Wall is a 321 km-long structure made of earth, stone, and wood, located in the Gobi highland desert of Mongolia. It is the least understood section of the medieval wall system that extends from China into Mongolia. This study aims to determine its builders, purpose, and chronology. Additionally, we seek to better understand the ecological implications of constructing such an extensive system of walls, trenches, garrisons, and fortresses in the remote and harsh environment of the Gobi Desert. Our field expedition combined remote sensing, pedestrian surveys, and targeted excavations at key sites. The results indicate that the garrison walls and main long wall were primarily constructed using rammed earth, with wood and stone reinforcements. Excavations of garrisons uncovered evidence of long-term occupation, including artifacts spanning from 2nd c. BCE to 19th c. CE. According to our findings, the main construction and usage phase of the wall and its associated structures occurred throughout the Xi Xia dynasty (1038–1227 CE), a period characterized by advanced frontier defense systems and significant geopolitical shifts. This study challenges the perception of such structures as being purely defensive, revealing the Gobi Wall’s multifunctional role as an imperial tool for demarcating boundaries, managing populations and resources, and consolidating territorial control. Furthermore, our spatial and ecological analysis demonstrates that the distribution of local resources, such as water and wood, was critical in determining the route of the wall and the placement of associated garrisons and forts. Other geographic factors, including the location of mountain passes and the spread of sand dunes, were strategically utilized to enhance the effectiveness of the wall system. The results of this study reshape our understanding of medieval Inner Asian imperial infrastructure and its lasting impact on geopolitical landscapes. By integrating historical and archeological evidence with geographical analysis of the locations of garrisons and fortifications, we underscore the Xi Xia kingdom’s strategic emphasis on regulating trade, securing transportation routes, and monitoring frontier movement. Full article
(This article belongs to the Special Issue Archaeological Landscape and Settlement II)
Show Figures

Figure 1

36 pages, 10731 KiB  
Article
Enhancing Airport Traffic Flow: Intelligent System Based on VLC, Rerouting Techniques, and Adaptive Reward Learning
by Manuela Vieira, Manuel Augusto Vieira, Gonçalo Galvão, Paula Louro, Alessandro Fantoni, Pedro Vieira and Mário Véstias
Sensors 2025, 25(9), 2842; https://doi.org/10.3390/s25092842 - 30 Apr 2025
Viewed by 589
Abstract
Airports are complex environments where efficient localization and intelligent traffic management are essential for ensuring smooth navigation and operational efficiency for both pedestrians and Autonomous Guided Vehicles (AGVs). This study presents an Artificial Intelligence (AI)-driven airport traffic management system that integrates Visible Light [...] Read more.
Airports are complex environments where efficient localization and intelligent traffic management are essential for ensuring smooth navigation and operational efficiency for both pedestrians and Autonomous Guided Vehicles (AGVs). This study presents an Artificial Intelligence (AI)-driven airport traffic management system that integrates Visible Light Communication (VLC), rerouting techniques, and adaptive reward mechanisms to optimize traffic flow, reduce congestion, and enhance safety. VLC-enabled luminaires serve as transmission points for location-specific guidance, forming a hybrid mesh network based on tetrachromatic LEDs with On-Off Keying (OOK) modulation and SiC optical receivers. AI agents, driven by Deep Reinforcement Learning (DRL), continuously analyze traffic conditions, apply adaptive rewards to improve decision-making, and dynamically reroute agents to balance traffic loads and avoid bottlenecks. Traffic states are encoded and processed through Q-learning algorithms, enabling intelligent phase activation and responsive control strategies. Simulation results confirm that the proposed system enables more balanced green time allocation, with reductions of up to 43% in vehicle-prioritized phases (e.g., Phase 1 at C1) to accommodate pedestrian flows. These adjustments lead to improved route planning, reduced halting times, and enhanced coordination between AGVs and pedestrian traffic across multiple intersections. Additionally, traffic flow responsiveness is preserved, with critical clearance phases maintaining stability or showing slight increases despite pedestrian prioritization. Simulation results confirm improved route planning, reduced halting times, and enhanced coordination between AGVs and pedestrian flows. The system also enables accurate indoor localization without relying on a Global Positioning System (GPS), supporting seamless movement and operational optimization. By combining VLC, adaptive AI models, and rerouting strategies, the proposed approach contributes to safer, more efficient, and human-centered airport mobility. Full article
Show Figures

Figure 1

16 pages, 10876 KiB  
Article
Study on Collision Avoidance Behavior in the Social Force-Based Pedestrian–Vehicle Interaction Simulation Model at Unsignalized Intersections
by Xuwei Wang, Tingting Liu and Zhen Liu
Appl. Sci. 2025, 15(9), 4885; https://doi.org/10.3390/app15094885 - 28 Apr 2025
Cited by 1 | Viewed by 670
Abstract
Modeling pedestrian–vehicle interaction behaviors not only helps better predict the intentions and actions of traffic participants but also contributes to generating more realistic pedestrian trajectories for testing autonomous vehicles. Most existing pedestrian–vehicle interaction models use repulsive forces toward target directions to avoid collisions. [...] Read more.
Modeling pedestrian–vehicle interaction behaviors not only helps better predict the intentions and actions of traffic participants but also contributes to generating more realistic pedestrian trajectories for testing autonomous vehicles. Most existing pedestrian–vehicle interaction models use repulsive forces toward target directions to avoid collisions. However, pedestrian agents in these models lack the ability to plan avoidance routes based on their positions when facing conflicting vehicles, leading to poor simulation effects at unsignalized intersections. By analyzing the crossing trajectories of pedestrians at unsignalized intersections through video data, we observed that when participants reject a current vehicle gap, they may tend to move toward the vehicle’s rear to start crossing the traffic flow earlier, thereby obtaining a safer opportunity to cross the road. In contrast, most previous pedestrian–vehicle interaction models only simulated pedestrians’ avoidance by moving away from vehicles. In response, we propose a pedestrian–vehicle interaction model incorporating pedestrian avoidance tendencies, which is based on the social force framework. Our improvements include refining the vehicle’s influence on pedestrians in lateral and longitudinal dimensions. The pedestrian agents in this model can make appropriate crossing decisions and select collision avoidance paths according to traffic conditions. This model can simulate pedestrian–vehicle interaction scenarios at unsignalized intersections and can be extended to pedestrian safety testing for autonomous vehicles. Full article
Show Figures

Figure 1

24 pages, 4382 KiB  
Article
Research on Pedestrian Avoidance Behavior for School Section Based on Improved BP Neural Network and XGboost Algorithm
by Guiliang Lu and Mingwei Liu
Appl. Sci. 2025, 15(9), 4724; https://doi.org/10.3390/app15094724 - 24 Apr 2025
Viewed by 377
Abstract
As society evolves and technology advances, increasing transportation demands have heightened safety risks near schools and on mixed-traffic roads. While traditional studies on pedestrian evasive behavior have mainly focused on general traffic environments and used image-based features to predict trajectories, few have specifically [...] Read more.
As society evolves and technology advances, increasing transportation demands have heightened safety risks near schools and on mixed-traffic roads. While traditional studies on pedestrian evasive behavior have mainly focused on general traffic environments and used image-based features to predict trajectories, few have specifically addressed the behavior of pedestrians in school zones. This study fills that gap by analyzing pedestrian evasive actions near school zones in Pudong New Area, Shanghai, using real-time video data. In contrast to previous approaches, our research leverages key traffic variables—such as vehicle speed, pedestrian proximity, and traffic density—to predict whether pedestrians will engage in evasive behavior. We independently apply three predictive models: the traditional BP (Backpropagation) neural network, an improved GA-BP(genetic algorithm–backpropagation) neural network, and the XGBoost (Extreme Gradient Boosting) ensemble learning method. Our findings show that the improved GA-BP model outperforms the others, achieving an accuracy of over 79%. Furthermore, this study identifies crucial traffic factors influencing pedestrian behavior, offering valuable insights for road safety decision-making in school zones. This research demonstrates the potential of advanced predictive models for forecasting pedestrian evasive behavior. It enhances safety in school zones by highlighting the key traffic variables affecting pedestrians. Full article
Show Figures

Figure 1

22 pages, 2758 KiB  
Article
Pedestrian Perceptions of Sidewalk Paving Attributes: Insights from a Pilot Study in Braga
by Fernando Fonseca, Alexandra Rodrigues and Hugo Silva
Infrastructures 2025, 10(4), 79; https://doi.org/10.3390/infrastructures10040079 - 30 Mar 2025
Cited by 2 | Viewed by 1126
Abstract
The influence of sidewalk paving materials on pedestrian safety and comfort remains an underexplored topic within the walkability literature. This pilot study aims to address this gap by evaluating the role of five surface-related attributes—roughness, friction, texture, heat retention, and maintenance—through a qualitative [...] Read more.
The influence of sidewalk paving materials on pedestrian safety and comfort remains an underexplored topic within the walkability literature. This pilot study aims to address this gap by evaluating the role of five surface-related attributes—roughness, friction, texture, heat retention, and maintenance—through a qualitative approach complemented by a simplified quantitative evaluation. The study was conducted along a pedestrian route in Braga, Portugal, where pedestrian perceptions were collected via a questionnaire and compared with objective measurements obtained at seven testing points with different paving materials. The results indicate a strong preference for concrete and mortar pavements due to their slip-resistant surfaces, smoothness, and overall regularity. Quantitative tests confirmed that these materials exhibited the highest slip resistance and surface regularity, reinforcing the general alignment between pedestrian perceptions and measured performance. Participants rated paving attributes higher than others, such as sidewalk width or obstacle-free paths. Notable demographic differences also emerged: women rated sidewalk attributes more highly than men, seniors preferred traditional stone pavements more, and adults favored concrete. These findings highlight the importance of integrating surface-related sidewalk attributes into walkability assessments and urban design strategies to promote safer, more comfortable, and more inclusive pedestrian environments. Full article
Show Figures

Figure 1

14 pages, 3475 KiB  
Article
The Correlation Between Crime Frequency and Urban Spatial Hierarchy in Busan
by Yao Lu, Shan Gao, Tingting Hong, Zhe Cao, Heangwoo Lee, Eunkil Cho and Xiaolong Zhao
Buildings 2025, 15(7), 1010; https://doi.org/10.3390/buildings15071010 - 21 Mar 2025
Cited by 1 | Viewed by 1006
Abstract
This study examined the relationship between urban spatial hierarchy and crime rates in Busan using space syntax. This research study investigated the correlation between crime frequency and Busan’s urban space structure. The findings are as follows. Crime concentrated in areas near downtown Busan. [...] Read more.
This study examined the relationship between urban spatial hierarchy and crime rates in Busan using space syntax. This research study investigated the correlation between crime frequency and Busan’s urban space structure. The findings are as follows. Crime concentrated in areas near downtown Busan. High-control and globally integrated areas showed a strong link between city center crimes and spatial usage patterns and pedestrian routes. A weak positive correlation was found between Busan’s urban spatial hierarchy and crime frequency, indicating that urban spatial hierarchy influences crime patterns. However, the regression model’s independent variables had low explanatory power for the dependent variable, suggesting external factors influence crime occurrence beyond urban spatial hierarchy. This study provides an empirical analysis of the relationship between crime incidence and urban spatial structure in Busan, serving as essential data for future crime prevention policies. Full article
(This article belongs to the Special Issue Advances in Urban Planning and Design for Urban Safety and Operations)
Show Figures

Figure 1

20 pages, 16826 KiB  
Article
Leveraging a Cooler, Healthier, and Decarbonized School Commute: City-Scale Estimation and Implications for Nanjing, China
by Lifei Wang, Ziqun Lin, Zhen Xu and Lingyun Han
ISPRS Int. J. Geo-Inf. 2025, 14(3), 114; https://doi.org/10.3390/ijgi14030114 - 5 Mar 2025
Viewed by 899
Abstract
An important aspect of a well-designed urban form is supporting active school travel by adolescents, as it has positive effects on physical activity, healthy lifestyles, and reducing vehicle-related carbon emissions. To achieve this, it is necessary to provide sufficient shading and fewer detours [...] Read more.
An important aspect of a well-designed urban form is supporting active school travel by adolescents, as it has positive effects on physical activity, healthy lifestyles, and reducing vehicle-related carbon emissions. To achieve this, it is necessary to provide sufficient shading and fewer detours on home–school routes, especially in an era of frequent heatwaves. Analyzing the school travel environment at the city scale is essential for identifying practical solutions and informing comprehensive urban policy-making. This study proposes a framework for investigating, assessing, and intervening in home–school routes in Nanjing, China, emphasizing a dual assessment of commuting routes based on the pedestrian detour ratio and shading ratio. This work reveals that approximately 34% of middle school households in Nanjing face challenges in walking to and from school, with only 24.18% of walking routes offering fewer detours and sufficient shade. We advocate reengineering urban forms by reducing barriers to facilitate shortcuts, thereby providing school-age students with better access to cooler and healthier environments, aiming to promote walking and reduce car dependence. The findings may encourage more families to engage in active commuting and serve as a lever to drive school decarbonization and combat climate warming. Our work, with transferability to other cities, can assist urban designers in piloting urban (re)form incrementally and pragmatically to promote sustainable urban agendas. Full article
(This article belongs to the Special Issue HealthScape: Intersections of Health, Environment, and GIS&T)
Show Figures

Figure 1

22 pages, 11956 KiB  
Article
Retrofit-Oriented Large Parks’ Walking-Shed Evaluation—A Case Study of Rizhao, China
by Zhen Yin, Lifei Wang and Zhen Xu
Land 2025, 14(3), 498; https://doi.org/10.3390/land14030498 - 27 Feb 2025
Viewed by 742
Abstract
Large parks play a key role in the identity of urban public spaces and as destinations for residents’ urban walks, with the social benefits they provide being irreplaceable by other types of green spaces. This study examines the accessibility of large urban parks [...] Read more.
Large parks play a key role in the identity of urban public spaces and as destinations for residents’ urban walks, with the social benefits they provide being irreplaceable by other types of green spaces. This study examines the accessibility of large urban parks in Rizhao, China, focusing on spatial distribution, service equity, and optimization strategies. Using GIS-based walking route proximity analysis, the study identifies significant accessibility gaps in high-density urban areas. Rizhao is a typical coastal tourist city, selected as the study area due to its low level of urbanization and the underutilization of its natural resources. This study uses online map data to evaluate the service efficiency and supply–demand heterogeneity of large parks from multiple perspectives, proposing targeted, practical, and micro-intervention-based spatial measures based on typical case analysis. The results show that 70.52% of the population in the study area is served by park entrances within a 1500 m walking distance, indicating that a considerable portion of residents remain beyond a reasonable walking distance. In the context of urban renewal and sustainable development, this study proposes practical improvements to park accessibility, including suggestions for determining suitable locations for new large parks as a long-term goal, alongside low-cost interventions such as increasing park entrances to maximize the use of existing resources and optimizing pedestrian routes (including opening gated communities and adding crossing facilities) to improve park walking service catchment in smaller environments. This study provides insights for urban park renewal, retrofitting, and expansion, supporting accessibility measures in planning practices, and is expected to provide valuable references for urban managers and policymakers. Furthermore, the study suggests that policy adjustments are necessary to integrate green spaces into urban development more effectively, particularly in rapidly urbanizing areas. Full article
(This article belongs to the Special Issue Urban Forestry Dynamics: Management and Mechanization)
Show Figures

Figure 1

26 pages, 13220 KiB  
Article
YOLOv8-Based XR Smart Glasses Mobility Assistive System for Aiding Outdoor Walking of Visually Impaired Individuals in South Korea
by Incheol Jeong, Kapyol Kim, Jungil Jung and Jinsoo Cho
Electronics 2025, 14(3), 425; https://doi.org/10.3390/electronics14030425 - 22 Jan 2025
Cited by 1 | Viewed by 3285
Abstract
This study proposes an eXtended Reality (XR) glasses-based walking assistance system to support independent and safe outdoor walking for visually impaired people. The system leverages the YOLOv8n deep learning model to recognize walkable areas, public transport facilities, and obstacles in real time and [...] Read more.
This study proposes an eXtended Reality (XR) glasses-based walking assistance system to support independent and safe outdoor walking for visually impaired people. The system leverages the YOLOv8n deep learning model to recognize walkable areas, public transport facilities, and obstacles in real time and provide appropriate guidance to the user. The core components of the system are Xreal Light Smart Glasses and an Android-based smartphone, which are operated through a mobile application developed using the Unity game engine. The system divides the user’s field of vision into nine zones, assesses the level of danger in each zone, and guides the user along a safe walking path. The YOLOv8n model was trained to recognize sidewalks, pedestrian crossings, bus stops, subway exits, and various obstacles on a smartphone connected to XR glasses and demonstrated an average processing time of 583 ms and an average memory usage of 80 MB, making it suitable for real-time use. The experiments were conducted on a 3.3 km route around Bokjeong Station in South Korea and confirmed that the system works effectively in a variety of walking environments, but recognized the need to improve performance in low-light environments and further testing with visually impaired people. By proposing an innovative walking assistance system that combines XR technology and artificial intelligence, this study is expected to contribute to improving the independent mobility of visually impaired people. Future research will further validate the effectiveness of the system by integrating it with real-time public transport information and conducting extensive experiments with users with varying degrees of visual impairment. Full article
Show Figures

Figure 1

19 pages, 14691 KiB  
Article
Quality of Pedestrian Networks Around Metro Stations: An Assessment Based on Approach Routes
by Qiyao Yang, Zheng Zhang, Jun Cai, Mengzhen Ding, Lemei Li, Shaohua Zhang, Zhenang Song, Feiyang Chen and Yi Ling
Systems 2025, 13(1), 63; https://doi.org/10.3390/systems13010063 - 20 Jan 2025
Cited by 2 | Viewed by 1443
Abstract
Walking is the primary mode of reaching metro stations, yet the quality of pedestrian networks around these stations has not been well researched. Considering the objective physical characteristics of pedestrian networks and the subjective assessments of walkers on the routes, this study developed [...] Read more.
Walking is the primary mode of reaching metro stations, yet the quality of pedestrian networks around these stations has not been well researched. Considering the objective physical characteristics of pedestrian networks and the subjective assessments of walkers on the routes, this study developed an evaluation model that integrated the Analytic Hierarchy Process and Entropy Weight Method with human–machine adversarial scoring and cosine similarity to validate the reliability. Nineteen indicators concerning four fundamental criteria, including accessibility, convenience, safety, and comfort, were applied with data acquired from eight stations in Tianjin, China. Results reveal that accessibility and safety indicators weigh more than convenience and comfort indicators. The quality of pedestrian networks around the public-service and comprehensive stations scores higher than that around residential stations, while walking environment quality near commercial stations shows significant disparities. These findings highlight the importance of prioritizing accessibility and safety while enhancing convenience and comfort in the renewal of the pedestrian network in Tianjin. The assessment model provides a valuable tool for urban policymakers and planners, enabling the formulation of sound pedestrian-network policies, facilitating higher-quality walking access and egress trips to stations, and encouraging transit-oriented development. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

Back to TopTop