Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = pectin oligosaccharides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 2259 KB  
Review
Bioactive Compounds of Agro-Industrial By-Products: Current Trends, Recovery, and Possible Utilization
by Ramesh Kumar Saini, Mohammad Imtiyaj Khan, Vikas Kumar, Xiaomin Shang, Ji-Ho Lee and Eun-Young Ko
Antioxidants 2025, 14(6), 650; https://doi.org/10.3390/antiox14060650 - 28 May 2025
Cited by 1 | Viewed by 2408
Abstract
Domestic food waste and agro-industrial by-products (AIBPs) occurring throughout the food chain, including production, processing, and storage, have become a global sustainability concern. Interestingly, this waste and these by-products contain a significant amount of commercially vital bioactive compounds, including polyphenols and carotenoids. Remarkably, [...] Read more.
Domestic food waste and agro-industrial by-products (AIBPs) occurring throughout the food chain, including production, processing, and storage, have become a global sustainability concern. Interestingly, this waste and these by-products contain a significant amount of commercially vital bioactive compounds, including polyphenols and carotenoids. Remarkably, discarded by-products such as fruit and vegetable peels contain more bioactive compounds than edible pulp. Thus, valorizing this waste and these by-products for commercially vital bioactive products can solve their disposal problems and help alleviate climate change crises. Additionally, it can generate surplus revenue, significantly improving food production and processing economics. Interestingly, several bioactive extracts derived from citrus peel, carrot pomace, olive leaf, and grape seed are commercially available, highlighting the importance of agro-food waste and by-product valorization. Considering this background information, this review aims to provide holistic information on major AIBPs; recovery methods of bioactive compounds focusing on polyphenols, carotenoids, oligosaccharides, and pectin; microencapsulation of isolated bioactive for enhanced physical, chemical, and biological properties; and their commercial application. In addition, green extraction methods are discussed, which have several advantages over conventional extraction. The concept of the circular bio-economy approach, challenges in waste valorization, and future perspective are also discussed. Full article
(This article belongs to the Special Issue Valorization of Waste Through Antioxidant Extraction and Utilization)
Show Figures

Figure 1

34 pages, 1673 KB  
Review
Current Directions of Selected Plant-Origin Wastes’ Valorization in Biotechnology of Food Additives and Other Important Chemicals
by Dominika Popielarz, Pavol Farkaš and Anna Bzducha-Wróbel
Foods 2025, 14(6), 954; https://doi.org/10.3390/foods14060954 - 11 Mar 2025
Cited by 1 | Viewed by 1857
Abstract
Environmental pollution and the accumulation of industrial waste are increasingly serious issues that impose financial burdens on businesses and pose threats to ecosystems. As industrial production continues to grow, the volume of waste generated by humanity is rising, leading to a heightened need [...] Read more.
Environmental pollution and the accumulation of industrial waste are increasingly serious issues that impose financial burdens on businesses and pose threats to ecosystems. As industrial production continues to grow, the volume of waste generated by humanity is rising, leading to a heightened need to search for effective waste management and recycling methods. One promising approach is the concept of a circular economy, where industrial waste, including agricultural and food processing waste, is transformed into new products. The goal is to maximize the utilization of natural resources, particularly in food production. This article presents various concepts for utilizing specific types of plant-based waste, particularly lignocellulosic, pectin, and starch wastes, in biotechnological processes aimed at producing value-added food ingredients with a technological function. The literature clearly shows that this waste can be effectively used in the cultivation of different microorganisms to produce enzymes, polyols, oligosaccharides, carboxylic acids, and biopolymers, among other products. However, further research is needed to explore more efficient and environmentally friendly methods, especially in the utilization of lignocellulose in biotechnology. This research shows knowledge gaps in existing discussed solutions. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

17 pages, 1563 KB  
Article
A Promising Approach for the Food Industry: Enhancing Probiotic Viability Through Microencapsulated Synbiotics
by Iuliu Gabriel Malos, Diana Pasarin, Andra-Ionela Ghizdareanu and Bogdan Frunzareanu
Microorganisms 2025, 13(2), 336; https://doi.org/10.3390/microorganisms13020336 - 4 Feb 2025
Cited by 7 | Viewed by 2054
Abstract
The role of prebiotics and probiotics in promoting gut health is increasingly recognized in food development and nutrition research. This study explored the enhancement of probiotic viability in the food industry through microencapsulated synbiotics, focusing on Lactiplantibacillus plantarum NCIMB 11974 with fructooligosaccharides (FOSs) [...] Read more.
The role of prebiotics and probiotics in promoting gut health is increasingly recognized in food development and nutrition research. This study explored the enhancement of probiotic viability in the food industry through microencapsulated synbiotics, focusing on Lactiplantibacillus plantarum NCIMB 11974 with fructooligosaccharides (FOSs) and inulin as prebiotics. The effect of encapsulation in a chitosan-coated alginate matrix on probiotic survival under simulated gastrointestinal conditions showed a significant effect of 2% FOS concentration on the growth of Lactiplantibacillus plantarum NCIMB 11974. The optimization of microencapsulation parameters by the Taguchi method revealed a 2% sodium alginate concentration, a nozzle size of 200 µm, and a concentration of 0.4% chitosan solution as ideal, producing microcapsules with an estimated average diameter of 212 µm. Viability assessments in simulated gastric juice and simulated intestinal juice showed that chitosan-coated alginate microcapsules notably enhanced probiotic survival, achieving log 8 CFU mL−1 viability in both environments, a marked improvement over the uncoated variant. The study emphasizes the importance of microencapsulation, particularly by sodium alginate and chitosan, as a viable strategy to improve the survival and delivery of probiotics through the digestive system. By improving the stability and survivability of probiotics, microencapsulation promises to expand the use of synbiotics in various foods, contributing to the development of functional foods with health-promoting properties. Full article
Show Figures

Figure 1

24 pages, 8588 KB  
Article
Saprotrophic Wood Decay Ability and Plant Cell Wall Degrading Enzyme System of the White Rot Fungus Crucibulum laeve: Secretome, Metabolome and Genome Investigations
by Alexander V. Shabaev, Olga S. Savinova, Konstantin V. Moiseenko, Olga A. Glazunova and Tatyana V. Fedorova
J. Fungi 2025, 11(1), 21; https://doi.org/10.3390/jof11010021 - 31 Dec 2024
Cited by 3 | Viewed by 1510
Abstract
The basidiomycete Crucibulum laeve strain LE-BIN1700 (Agaricales, Nidulariaceae) is able to grow on agar media supplemented with individual components of lignocellulose such as lignin, cellulose, xylan, xyloglucan, arabinoxylan, starch and pectin, and also to effectively destroy and digest birch, alder and pine sawdust. [...] Read more.
The basidiomycete Crucibulum laeve strain LE-BIN1700 (Agaricales, Nidulariaceae) is able to grow on agar media supplemented with individual components of lignocellulose such as lignin, cellulose, xylan, xyloglucan, arabinoxylan, starch and pectin, and also to effectively destroy and digest birch, alder and pine sawdust. C. laeve produces a unique repertoire of proteins for the saccharification of the plant biomass, including predominantly oxidative enzymes such as laccases (family AA1_1 CAZymes), GMC oxidoreductases (family AA3_2 CAZymes), FAD-oligosaccharide oxidase (family AA7 CAZymes) and lytic polysaccharide monooxygenases (family LPMO X325), as well as accompanying acetyl esterases and loosenine-like expansins. Metabolomic analysis revealed that, specifically, monosaccharides and carboxylic acids were the key low molecular metabolites in the C. laeve culture liquids in the experimental conditions. The proportion of monosaccharides and polyols in the total pool of identified compounds increased on the sawdust-containing media. Multiple copies of the family AA1_1, AA3_2, AA7 and LPMOs CAZyme genes, as well as eight genes encoding proteins of the YvrE superfamily (COG3386), which includes sugar lactone lactonases, were predicted in the C. laeve genome. According to metabolic pathway analysis, the litter saprotroph C. laeve can catabolize D-gluconic and D-galacturonic acids, and possibly other aldonic acids, which seems to confer certain ecological advantages. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

17 pages, 3414 KB  
Article
The Molecular Weight of Enzymatically Modified Pectic Oligosaccharides from Apple Pomace as a Determinant for Biological and Prebiotic Activity
by Agnieszka Wilkowska, Adriana Nowak, Ilona Motyl and Joanna Oracz
Molecules 2025, 30(1), 46; https://doi.org/10.3390/molecules30010046 - 26 Dec 2024
Cited by 2 | Viewed by 1491
Abstract
The purpose of this research was to investigate the prebiotic effects of different fractions of pectin-derived oligosaccharides (POSs) from apple pomace (AP) in relation to their molecular weight (MW), structure, and composition. Enzymatic treatment of the apple pomace resulted in high-molecular-weight arabinans and [...] Read more.
The purpose of this research was to investigate the prebiotic effects of different fractions of pectin-derived oligosaccharides (POSs) from apple pomace (AP) in relation to their molecular weight (MW), structure, and composition. Enzymatic treatment of the apple pomace resulted in high-molecular-weight arabinans and rhamnogalacturonans (MW 30–100 kDa, MW 10–30 kDa), as well as oligomeric fractions with molecular weights of less than 10 kDa, consisting mainly of homogalacturonan. The biological potential of the POSs against various lactobacilli and bifidobacteria was evaluated. The oligosaccharides with the highest molecular weights (MW 30–100 kDa, MW 10–30 kDa) showed better prebiotic effect to lactobacilli. The oligosaccharides with MW 3–10 kDa and MW 10–30 kDa caused an increase in the bifidogenic effect. Inhibition of Escherichia coli, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes was also observed. The preparations with MW 3–10 kDa and MW 10–30 kDa demonstrated the strongest biological activity, supporting the adhesion of beneficial microorganisms to mucin and collagen surfaces. Therefore, oligosaccharides with MW 10–30 kDa were considered to be the most promising prebiotic candidates. This study confirms that the biological effects of pectic oligosaccharides vary significantly based on their structural differences. Therefore, the conditions of enzymatic hydrolysis of apple pectin should be optimized to obtain oligosaccharides within a specific molecular mass range. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

27 pages, 3099 KB  
Review
A Comprehensive Review on Dietary Polysaccharides as Prebiotics, Synbiotics, and Postbiotics in Infant Formula and Their Influences on Gut Microbiota
by Wenyuan Zhang, Yanli Zhang, Yaqi Zhao, Liang Li, Zhanquan Zhang, Kasper Hettinga, Haixia Yang and Jianjun Deng
Nutrients 2024, 16(23), 4122; https://doi.org/10.3390/nu16234122 - 28 Nov 2024
Cited by 6 | Viewed by 3344
Abstract
Human milk contains an abundance of nutrients which benefit the development and growth of infants. However, infant formula has to be used when breastfeeding is not possible. The large differences between human milk and infant formula in prebiotics lead to the suboptimal intestinal [...] Read more.
Human milk contains an abundance of nutrients which benefit the development and growth of infants. However, infant formula has to be used when breastfeeding is not possible. The large differences between human milk and infant formula in prebiotics lead to the suboptimal intestinal health of infant formula-fed infants. This functional deficit of infant formula may be overcome through other dietary polysaccharides that have been characterized. The aim of this review was to summarize the potential applications of dietary polysaccharides as prebiotics, synbiotics, and postbiotics in infant formula to better mimic the functionality of human milk prebiotics for infant gut health. Previous studies have demonstrated the influences of dietary polysaccharides on gut microbiota, SCFA production, and immune system development. Compared to prebiotics, synbiotics and postbiotics showed better application potential in shaping the gut microbiota, the prevention of pathogen infections, and the development of the immune system. Moreover, the safety issues for biotics still require more clinical trials with a large-scale population and long time duration, and the generally accepted regulations are important to regulate related products. Pectin polysaccharides has similar impacts to human milk oligosaccharides on gut microbiota and the repairing of a damaged gut barrier, with similar functions also being observed for inulin and β-glucan. Prebiotics as an encapsulation material combined with probiotics and postbiotics showed better potential applications compared to traditional material in infant formula. Full article
(This article belongs to the Special Issue Effect of Dietary Components on Gut Homeostasis and Microbiota)
Show Figures

Figure 1

10 pages, 4870 KB  
Article
Bamboo Kraft Pulp Black Liquor as a Renewable Source of Value-Added Carbon Dots
by Xiaolong Qiao, Shixing Wang, Qiulian Liu, Yuanming Zhang, Guangting Han, Haoxi Ben, Wei Jiang, Haiguang Zhao and Yan Song
Nanomaterials 2024, 14(23), 1887; https://doi.org/10.3390/nano14231887 - 23 Nov 2024
Viewed by 1425
Abstract
China is the country with the most abundant bamboo resources in the world. Using bamboo as a raw material for pulping and papermaking can save a lot of wood and protect forests. Bamboo pulping enterprises mostly adopt sulfate processes to produce a large [...] Read more.
China is the country with the most abundant bamboo resources in the world. Using bamboo as a raw material for pulping and papermaking can save a lot of wood and protect forests. Bamboo pulping enterprises mostly adopt sulfate processes to produce a large amount of black liquor (BL), which contains monosaccharides, polysaccharides, oligosaccharides, pectin, lignin, etc. The utilization of the high-value organic matter is of great economic and environmental significance. In this study, blue-green carbon dots (C-dots) were prepared from bamboo (Lingnania chungii) kraft pulp BL using a hydrothermal method. The changes in carbohydrate content in BL in relation to hydrothermal temperature and hydrothermal time were discussed in detail. Then, a series of characterizations of BL-C-dots, prepared under one of the hydrothermal conditions (180 °C, 6 h), were performed and the BL-C-dots showed an excitation-dependent photoluminescence (PL) spectrum and a quantum yield (QY) of 2.9% in an aqueous solution. Finally, the as-prepared BL-C-dots were successfully used as fluorescent materials to develop an anti-counterfeiting code. The fluorescent code exhibited a clear outline, an excitation-tunable color, good stability, and high security, showing great anti-counterfeiting potential and realizing the high-value utilization of BL. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

9 pages, 703 KB  
Article
Production of Pectic Oligosaccharides from Citrus Peel via Steam Explosion
by Toni-Ann Martorano, Kyle L. Ferguson, Randall G. Cameron, Wei Zhao, Arland T. Hotchkiss, Hoa K. Chau and Christina Dorado
Foods 2024, 13(23), 3738; https://doi.org/10.3390/foods13233738 - 22 Nov 2024
Viewed by 1540
Abstract
Steam explosion (STEX) of peel from commercially juice-extracted oranges was used to convert peel pectin into pectic oligosaccharides (POSs). Surprisingly uniform populations, based on the polydispersity index (PDI; weight-average molecular weight (Mw)/number-average molecular weight (Mn)) of POSs, were obtained [...] Read more.
Steam explosion (STEX) of peel from commercially juice-extracted oranges was used to convert peel pectin into pectic oligosaccharides (POSs). Surprisingly uniform populations, based on the polydispersity index (PDI; weight-average molecular weight (Mw)/number-average molecular weight (Mn)) of POSs, were obtained from the Hamlin and Valencia varieties of Citrus sinensis. The POSs from Hamlin and Valencia peel had PDI values of (1.23 ± 0.01, 1.24 ± 0.1), respectively. The Mw values for these samples were 14.9 ± 0.2 kDa for Hamlin, and 14.5 ± 0.1 kDa for Valencia, respectively. The degree of methyl-esterification (DM) was 69.64 ± 3.18 for Hamlin and 65.51 ± 1.61 for Valencia. The composition of the recovered POSs was dominated by galacturonic acid, ranging from 89.1% to 99.6% of the major pectic sugars. Only the Hamlin sample had a meaningful amount of rhamnose present, indicating the presence of an RG I domain. Even so, the Hamlin sample’s degree of branching (DBr) was very low (2.95). Full article
Show Figures

Figure 1

25 pages, 5129 KB  
Review
Exploring the Prebiotic Potentials of Hydrolyzed Pectins: Mechanisms of Action and Gut Microbiota Modulation
by Débora Preceliano de Oliveira, Svetoslav Dimitrov Todorov and João Paulo Fabi
Nutrients 2024, 16(21), 3689; https://doi.org/10.3390/nu16213689 - 29 Oct 2024
Cited by 14 | Viewed by 4489
Abstract
The intestinal microbiota is a complex ecosystem where the microbial community (including bacteria) can metabolize available substrates via metabolic pathways specific to each species, often related in symbiotic relations. As a consequence of using available substrates and microbial growth, specific beneficial metabolites can [...] Read more.
The intestinal microbiota is a complex ecosystem where the microbial community (including bacteria) can metabolize available substrates via metabolic pathways specific to each species, often related in symbiotic relations. As a consequence of using available substrates and microbial growth, specific beneficial metabolites can be produced. When this reflects the health benefits for the host, these substrates can be categorized as prebiotics. Given that most prebiotic candidates must have a low molecular weight to be further metabolized by the microbiota, the role in the preliminary biological pretreatment is crucial. To provide proper substrates to the intestinal microbiota, a strategy could be to decrease the complexity of polysaccharides and reduce the levels of polymerization to low molecular weight for the target molecules, driving better solubilization and the consequent metabolic use by intestinal bacteria. When high molecular weight pectin is degraded (partially depolymerized), its solubility increases, thereby improving its utilization by gut microbiota. With regards to application, prebiotics have well-documented advantages when applied as food additives, as they improve gut health and can enhance drug effects, all shown by in vitro, in vivo, and clinical trials. In this review, we aim to provide systematic evidence for the mechanisms of action and the modulation of gut microbiota by the pectin-derived oligosaccharides produced by decreasing overall molecular weight after physical and/or chemical treatments and to compare with other types of prebiotics. Full article
(This article belongs to the Special Issue Probiotics, Prebiotics and Gut Health)
Show Figures

Figure 1

23 pages, 4088 KB  
Review
A Comprehensive Review on the Isolation, Bioactivities, and Structure–Activity Relationship of Hawthorn Pectin and Its Derived Oligosaccharides
by Tao Li, Wenhua Ji, Hongjing Dong, Yingqun Wu, Lanping Guo, Lei Chen and Xiao Wang
Foods 2024, 13(17), 2750; https://doi.org/10.3390/foods13172750 - 29 Aug 2024
Cited by 2 | Viewed by 2322
Abstract
Hawthorn (Crataegus pinnatifida Bunge) has been highlighted as an excellent source of a variety of bioactive polymers, which has attracted increasing research interest. Pectin, as a kind of soluble dietary fiber in hawthorn, is mainly extracted by hot water extraction and ultrasonic [...] Read more.
Hawthorn (Crataegus pinnatifida Bunge) has been highlighted as an excellent source of a variety of bioactive polymers, which has attracted increasing research interest. Pectin, as a kind of soluble dietary fiber in hawthorn, is mainly extracted by hot water extraction and ultrasonic or enzymatic hydrolysis and is then extensively used in food, pharmaceutical, and nutraceutical industries. Numerous studies have shown that hawthorn pectin and its derived oligosaccharides exhibit a wide range of biological activities, such as antioxidant activity, hypolipidemic and cholesterol-reducing effects, antimicrobial activity, and intestinal function modulatory activity. As discovered, the bioactivities of hawthorn pectin and its derived oligosaccharides were mainly contributed by structural features and chemical compositions and were highly associated with the extraction methods. Additionally, hawthorn pectin is a potential resource for the development of emulsifiers and gelling agents, food packaging films, novel foods, and traditional medicines. This review provides a comprehensive summary of current research for readers on the extraction techniques, functional characteristics, structure–activity relationship, and applications in order to provide ideas and references for the investigation and utilization of hawthorn pectin and its derived oligosaccharides. Further research and development efforts are imperative to fully explore and harness the potential of hawthorn pectin-derived oligosaccharides in the food and medicine fields. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

16 pages, 2982 KB  
Article
Analyzing Cooking Efficiency of Gradoli Purgatory Beans: Effects of Dehulling, Malting, and Monovalent Carbonates
by Alessio Cimini, Lorenzo Morgante and Mauro Moresi
Foods 2024, 13(16), 2505; https://doi.org/10.3390/foods13162505 - 9 Aug 2024
Cited by 4 | Viewed by 2755
Abstract
Legumes, rich in protein, fiber, and micronutrients, are increasingly popular in pulse-based and gluten-free foods despite global consumption stagnating at 21 g/day due to taste, low protein digestibility, anti-nutrients, and long cooking times. Bean resistance to cooking causes textural defects like the hardshell [...] Read more.
Legumes, rich in protein, fiber, and micronutrients, are increasingly popular in pulse-based and gluten-free foods despite global consumption stagnating at 21 g/day due to taste, low protein digestibility, anti-nutrients, and long cooking times. Bean resistance to cooking causes textural defects like the hardshell and hard-to-cook phenomena. The pectin–cation–phytate hypothesis explains why soaking beans in sodium salts reduces cooking time by enhancing pectin solubility in water. Gradoli Purgatory beans (GPB), from Italy′s Latium region, were malted, reducing phytic acid by 32% and oligosaccharides by 63%. This study evaluated the hardness of cooked GPB seeds in various conditions, including decorticated or malted states, using a modified standard method. Cooking at 98 °C for 7–75 min on an induction hob with a water-to-seed ratio of 4 g/g was tested. Soaking was applied before cooking for conventional seeds only, followed by texture analysis. Conventional GPBs were adequately cooked if their cotyledons disintegrated upon pressing, requiring a force peak of 250 to 220 N and cooking times of 52 to 57 min. Malted, decorticated, and split GPBs cooked similarly to raw decorticated and split ones, with times of 32 and 25 min, respectively. Faster cooking was due to bean coat removal and splitting, not chemical changes. Sodium or potassium carbonate/bicarbonate at 1–2 g/L improved cooking efficiency, with 2 g/L of sodium carbonate reducing cooking time to 13 min. Higher concentrations caused non-uniform cooking. Cooking malted, decorticated, and split GPBs in sodium-carbonated water reduced greenhouse gas emissions from 561 to 368 g CO2e/kg, meeting the demand for eco-friendly and nutritionally enhanced plant protein sources. Full article
Show Figures

Graphical abstract

22 pages, 5353 KB  
Article
Regulations of Citrus Pectin Oligosaccharide on Cholesterol Metabolism: Insights from Integrative Analysis of Gut Microbiota and Metabolites
by Haijuan Hu, Peipei Zhang, Fengxia Liu and Siyi Pan
Nutrients 2024, 16(13), 2002; https://doi.org/10.3390/nu16132002 - 24 Jun 2024
Cited by 8 | Viewed by 2477
Abstract
(1) Background: Recently, academic studies are demonstrating that the cholesterol-lowering effects of pectin oligosaccharides (POSs) are correlated to intestinal flora. However, the mechanisms of POS on cholesterol metabolisms are limited, and the observations of intestinal flora are lacking integrative analyses. (2) Aim and [...] Read more.
(1) Background: Recently, academic studies are demonstrating that the cholesterol-lowering effects of pectin oligosaccharides (POSs) are correlated to intestinal flora. However, the mechanisms of POS on cholesterol metabolisms are limited, and the observations of intestinal flora are lacking integrative analyses. (2) Aim and methods: To reveal the regulatory mechanisms of POS on cholesterol metabolism via an integrative analysis of the gut microbiota, the changes in gut microbiota structure and metabolite composition after POS addition were investigated using Illumina MiSeq sequencing and non-targeted metabolomics through in vitro gut microbiota fermentation. (3) Results: The composition of fecal gut flora was adjusted positively by POS. POS increased the abundances of the cholesterol-related bacterial groups Bacteroidetes, Bifidobacterium and Lactobacillus, while it decreased conditional pathogenic Escherichia coli and Enterococcus, showing good prebiotic activities. POS changed the composition of gut microbiota fermentation metabolites (P24), causing significant changes in 221 species of fermentation metabolites in a non-targeted metabolomics analysis and promoting the production of short-chain fatty acids. The abundances of four types of cholesterol metabolism-related metabolites (adenosine monophosphate, cyclic adenosine monophosphate, guanosine and butyrate) were significantly higher in the P24 group than those in the control group without POS addition. (4) Conclusion: The abovementioned results may explain the hypocholesterolemic effects of POS and promotion effects on cholesterol efflux of P24. These findings indicated that the potential regulatory mechanisms of citrus POS on cholesterol metabolism are modulated by cholesterol-related gut microbiota and specific metabolites. Full article
(This article belongs to the Special Issue Dietary Nutrition on Gastrointestinal Health)
Show Figures

Figure 1

16 pages, 5480 KB  
Article
Alginate Oligosaccharides Alleviate Salt Stress in Rice Seedlings by Regulating Cell Wall Metabolism to Maintain Cell Wall Structure and Improve Lodging Resistance
by Youwei Du, Huimin Zhao, Naijie Feng, Dianfeng Zheng, Aaqil Khan, Hang Zhou, Peng Deng, Yaxing Wang, Xutong Lu and Wenxin Jiang
Plants 2024, 13(9), 1215; https://doi.org/10.3390/plants13091215 - 28 Apr 2024
Cited by 6 | Viewed by 2692
Abstract
Salt stress is one of the major abiotic stresses that damage the structure and composition of cell walls. Alginate oligosaccharides (AOS) have been advocated to significantly improve plant stress tolerance. The metabolic mechanism by which AOS induces salt tolerance in rice cell walls [...] Read more.
Salt stress is one of the major abiotic stresses that damage the structure and composition of cell walls. Alginate oligosaccharides (AOS) have been advocated to significantly improve plant stress tolerance. The metabolic mechanism by which AOS induces salt tolerance in rice cell walls remains unclear. Here, we report the impact of AOS foliar application on the cell wall composition of rice seedlings using the salt-tolerant rice variety FL478 and the salt-sensitive variety IR29. Data revealed that salt stress decreased biomass, stem basal width, stem breaking strength, and lodging resistance; however, it increased cell wall thickness. In leaves, exogenous AOS up-regulated the expression level of OSCESA8, increased abscisic acid (ABA) and brassinosteroids (BR) content, and increased β-galacturonic activity, polygalacturonase activity, xylanase activity, laccase activity, biomass, and cellulose content. Moreover, AOS down-regulated the expression levels of OSMYB46 and OSIRX10 and decreased cell wall hemicellulose, pectin, and lignin content to maintain cell wall stability under salt stress. In stems, AOS increased phenylalamine ammonia-lyase and tyrosine ammonia-lyase activities, while decreasing cellulase, laccase, and β-glucanase activities. Furthermore, AOS improved the biomass and stem basal width and also enhanced the cellulose, pectin, and lignin content of the stem, As a result, increased resistance to stem breakage strength and alleviated salt stress-induced damage, thus enhancing the lodging resistance. Under salt stress, AOS regulates phytohormones and modifies cellulose, hemicellulose, lignin, and pectin metabolism to maintain cell wall structure and improve stem resistance to lodging. This study aims to alleviate salt stress damage to rice cell walls, enhance resistance to lodging, and improve salt tolerance in rice by exogenous application of AOS. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

15 pages, 3654 KB  
Article
Cloning, Expression, Purification, and Characterization of a Novel β-Galactosidase/α-L-Arabinopyranosidase from Paenibacillus polymyxa KF-1
by Jing Cui, Yibing Wang, Andong Zhou, Shuhui He, Zihan Mao, Ting Cao, Nan Wang and Ye Yuan
Molecules 2023, 28(22), 7464; https://doi.org/10.3390/molecules28227464 - 7 Nov 2023
Viewed by 2521
Abstract
Glycosidases are essential for the industrial production of functional oligosaccharides and many biotech applications. A novel β-galactosidase/α-L-arabinopyranosidase (PpBGal42A) of the glycoside hydrolase family 42 (GH42) from Paenibacillus polymyxa KF-1 was identified and functionally characterized. Using pNPG as a substrate, the recombinant PpBGal42A [...] Read more.
Glycosidases are essential for the industrial production of functional oligosaccharides and many biotech applications. A novel β-galactosidase/α-L-arabinopyranosidase (PpBGal42A) of the glycoside hydrolase family 42 (GH42) from Paenibacillus polymyxa KF-1 was identified and functionally characterized. Using pNPG as a substrate, the recombinant PpBGal42A (77.16 kD) was shown to have an optimal temperature and pH of 30 °C and 6.0. Using pNPαArap as a substrate, the optimal temperature and pH were 40 °C and 7.0. PpBGal42A has good temperature and pH stability. Furthermore, Na+, K+, Li+, and Ca2+ (5 mmol/L) enhanced the enzymatic activity, whereas Mn2+, Cu2+, Zn2+, and Hg2+ significantly reduced the enzymatic activity. PpBGal42A hydrolyzed pNP-β-D-galactoside and pNP-α-L-arabinopyranoside. PpBGal42A liberated galactose from β-1,3/4/6-galactobiose and galactan. PpBGal42A hydrolyzed arabinopyranose at C20 of ginsenoside Rb2, but could not cleave arabinofuranose at C20 of ginsenoside Rc. Meanwhile, the molecular docking results revealed that PpBGal42A efficiently recognized and catalyzed lactose. PpBGal42A hydrolyzes lactose to galactose and glucose. PpBGal42A exhibits significant degradative activity towards citrus pectin when combined with pectinase. Our findings suggest that PpBGal42A is a novel bifunctional enzyme that is active as a β-galactosidase and α-L-arabinopyranosidase. This study expands on the diversity of bifunctional enzymes and provides a potentially effective tool for the food industry. Full article
Show Figures

Figure 1

14 pages, 1952 KB  
Article
Evaluation of the Carbohydrate Composition of Crabapple Fruit Tissues Native to Northern Asia
by Zlata Stavitskaya, Lyubov Dudareva, Alexander Rudikovskii, Larisa Garkava-Gustavsson, Elena Shabanova, Alexey Levchuk and Elena Rudikovskaya
Plants 2023, 12(19), 3472; https://doi.org/10.3390/plants12193472 - 4 Oct 2023
Cited by 5 | Viewed by 2835
Abstract
A comprehensive comparative analysis of the carbohydrate composition (soluble sugars and pectins) of fruit tissues of Malus baccata, Malus mandshurica, Malus chamardabanica, and Malus sachalinensis, characteristic of the vast territory of Eastern Siberia and the Far East, was carried [...] Read more.
A comprehensive comparative analysis of the carbohydrate composition (soluble sugars and pectins) of fruit tissues of Malus baccata, Malus mandshurica, Malus chamardabanica, and Malus sachalinensis, characteristic of the vast territory of Eastern Siberia and the Far East, was carried out. It was shown that a large part of the soluble carbohydrates of the studied species were represented by transport sugars—sorbitol and sucrose. These compounds also provided the main variability in the carbohydrate composition of fruits in the studied material. The polymers pectins and protopectins isolated from the studied fruits were highly methoxylated (up to 60–70%), and their content averaged about 6% of dry weight. The greatest length of pectin polymers was found in the fruit tissues of M. chamardabanica and M. sachalinensis. Data on elemental analysis of fractions of pectins and protopectins of all studied species showed the absence of potentially toxic concentrations of heavy metals. Of note is the rather high content of calcium in both polymer fractions of the four studied species, while its content in protopectin is significantly higher. In addition, in all cases, the presence of low-molecular-weight oligosaccharide molecules with a low-dispersed linear structure was revealed in the tissues of the fruits. It is worth noting that the high content of ascorbic acid was observed in the fruits of all studied species. In addition to being of fundamental interest, information about the carbohydrate composition of the wild Malus species can be useful for apple breeding when choosing sources of genes underlying useful traits. Full article
(This article belongs to the Topic Natural Compounds in Plants, 2nd Volume)
Show Figures

Figure 1

Back to TopTop