Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = peach potato aphid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1859 KiB  
Article
Genistein and Aphid Probing Behavior: Case Studies on Polyphagous Aphid Species
by Anna Wróblewska-Kurdyk, Bożena Kordan, Katarzyna Stec, Jan Bocianowski and Beata Gabryś
Molecules 2024, 29(23), 5715; https://doi.org/10.3390/molecules29235715 - 3 Dec 2024
Viewed by 962
Abstract
(1) Background: Genistein is a naturally occurring flavonoid with a rich spectrum of biological activities, including plant-herbivore interactions. The aim of the study was to evaluate the effect of exogenous application of genistein on aphid behavior during probing in plant tissues. (2) Methods: [...] Read more.
(1) Background: Genistein is a naturally occurring flavonoid with a rich spectrum of biological activities, including plant-herbivore interactions. The aim of the study was to evaluate the effect of exogenous application of genistein on aphid behavior during probing in plant tissues. (2) Methods: Vicia faba, Brassica rapa ssp. pekinensis, and Avena sativa were treated transepidermally with a 0.1% ethanolic solution of genistein, and the probing behavior of generalist aphid species Aphis fabae, Myzus persicae, and Rhopalosiphum padi was monitored on their respective treated and untreated host plants using electropenetrography (=electrical penetration graph technique, EPG); (3) Results: Genistein did not deter aphid probing activities in non-phloem tissues. In A. fabae and R. padi, a trend towards reduction and in M. persicae a trend towards increase in phloem sap ingestion occurred on genistein-treated plants, but these trends were not statistically significant. (4) Conclusions: Genistein is not a deterrent chemical against generalist aphid species studied; therefore, it is not recommended for practical application. Full article
Show Figures

Figure 1

23 pages, 4092 KiB  
Review
Peach–Potato Aphid Myzus persicae: Current Management Strategies, Challenges, and Proposed Solutions
by Jamin Ali, Ahmet Bayram, Mohammad Mukarram, Fanrui Zhou, Muhammad Fazal Karim, Mogeda Mohammed Abdel Hafez, Mohammad Mahamood, Abdullahi Ahmed Yusuf, Patricia Jie Hung King, Muhammad Faheem Adil, Zhengxin Ma and Imran Haider Shamsi
Sustainability 2023, 15(14), 11150; https://doi.org/10.3390/su151411150 - 17 Jul 2023
Cited by 35 | Viewed by 7707
Abstract
The peach–potato aphid, Myzus persicae (Sulzer), is one of the most important pests of economic crops. It damages the plant directly by consuming nutrients and water and indirectly by transmitting plant viruses. This pest has the unenviable title of having resistance to more [...] Read more.
The peach–potato aphid, Myzus persicae (Sulzer), is one of the most important pests of economic crops. It damages the plant directly by consuming nutrients and water and indirectly by transmitting plant viruses. This pest has the unenviable title of having resistance to more insecticides than any other herbivorous insect pest. Due to the development of its resistance to chemical pesticides, it is necessary to find other control options. Consequently, increased efforts worldwide have been undertaken to develop new management approaches for M. persicae. In this review, we highlight the problems associated with the peach–potato aphid, its economic importance, and current management approaches. This review also describes the challenges with current management approaches and their potential solutions, with special focus given to the evolution of insecticidal resistance and sustainable pest management strategies, such as biocontrol agents, entomopathogens, the use of natural plant-derived compounds, and cultural methods. Furthermore, this review provides some successful approaches from the above eco-friendly pest management strategies that show high efficacy against M. persicae. Full article
Show Figures

Figure 1

12 pages, 1591 KiB  
Article
Exogenous Application of Methyl Salicylate Induces Defence in Brassica against Peach Potato Aphid Myzus persicae
by Jamin Ali, Dongming Wei, Mohammad Mahamood, Fanrui Zhou, Patricia Jie Hung King, Wenwu Zhou and Imran Haider Shamsi
Plants 2023, 12(9), 1770; https://doi.org/10.3390/plants12091770 - 26 Apr 2023
Cited by 15 | Viewed by 3822
Abstract
Plants use a variety of secondary metabolites to defend themselves against herbivore insects. Methyl salicylate (MeSA) is a natural plant-derived compound that has been used as a plant defence elicitor and a herbivore repellent on several crop plants. The aim of this study [...] Read more.
Plants use a variety of secondary metabolites to defend themselves against herbivore insects. Methyl salicylate (MeSA) is a natural plant-derived compound that has been used as a plant defence elicitor and a herbivore repellent on several crop plants. The aim of this study was to investigate the effect of MeSA treatment of Brassica rapa subsp. chinensis (‘Hanakan’ pak choi) on its interactions with peach potato aphids, Myzus persicae, and their natural enemy, Diaeretiella rapae. For this, we selected two concentrations of MeSA (75 mg/L and 100 mg/L). Our results showed that aphid performance was significantly reduced on plants treated with MeSA (100 mg/L). In a cage bioassay, the MeSA (100 mg/L)-treated plants showed lower adult survival and larviposition. Similarly, the MeSA (100 mg/L)-treated plants had a significantly lower aphid settlement in a settlement bioassay. In contrast, the M. persicae aphids did not show any significant difference between the MeSA (75 mg/L)-treated and control plants. In a parasitoid foraging bioassay, the parasitoid D. rapae also did not show any significant difference in the time spent on MeSA-treated and control plants. A volatile analysis showed that the MeSA treatment induced a significant change in volatile emissions, as high numbers of volatile compounds were detected from the MeSA-treated plants. Our results showed that MeSA has potential to induce defence in Brassica against M. persicae and can be utilised in developing sustainable approaches for the management of peach potato aphids. Full article
(This article belongs to the Special Issue Advances in Induced Plant Defense and Biological Control)
Show Figures

Graphical abstract

15 pages, 1420 KiB  
Article
Potato (Solanum tuberosum L.) Leaf Extract Concentration Affects Performance and Oxidative Stress in Green Peach Aphids (Myzus persicae (Sulzer)
by Peter Quandahor, Yuping Gou, Chunyan Lin and Changzhong Liu
Plants 2022, 11(20), 2757; https://doi.org/10.3390/plants11202757 - 18 Oct 2022
Cited by 4 | Viewed by 3698
Abstract
This study was conducted to determine the aphicidal effect of a leaf extract of the Atlantic potato cultivar on the performance of green peach aphids. Three concentrations of the leaf extract (100, 75, and 50% potato extract), synthetic pesticide (Beta cypermethrin 4.5%), and [...] Read more.
This study was conducted to determine the aphicidal effect of a leaf extract of the Atlantic potato cultivar on the performance of green peach aphids. Three concentrations of the leaf extract (100, 75, and 50% potato extract), synthetic pesticide (Beta cypermethrin 4.5%), and distilled water (control) treatments were applied in a greenhouse experiment. The results showed that the synthetic pesticide, which was used as a standard check, caused the maximum aphid mortality, followed by the 100% potato leaf extract. Compared with the other botanical treatments, the 100% extract produced low mean rates of survival, aphids’ average daily reproduction, the number of nymphs per plant, and the number of nymphs per adult. This treatment also increased the accumulation of hydrogen Peroxide (H2O2) and malondialdehyde (MDA), glutathione-s-transferase, mixed-function oxidase, and carboxylesterase content in the green peach aphid. Moreover, the 100% extract also protected the host plants against green peach aphid attacks by demonstrating higher chlorophyll content, net photosynthesis, above-ground fresh weight, and above-ground dry weight of the host plant. This study demonstrates that the highest concentration of potato (Atlantic cultivar) leaf extract (100% extract) could be used as the appropriate dosage for the control of green peach aphids on potatoes, which could greatly reduce the use of synthetic insecticides and promote ecosystem sustainability. Full article
(This article belongs to the Topic Integrated Pest Management of Crops)
Show Figures

Figure 1

11 pages, 571 KiB  
Article
Biological Pests Management for Sustainable Agriculture: Understanding the Influence of Cladosporium-Bioformulated Endophytic Fungi Application to Control Myzus persicae (Sulzer, 1776) in Potato (Solanum tuberosum L.)
by Oussama A. Bensaci, Khamsa Rouabah, Toufik Aliat, Nadia Lombarkia, Vadim G. Plushikov, Dmitry E. Kucher, Petr A. Dokukin, Sulukhan K. Temirbekova and Nazih Y. Rebouh
Plants 2022, 11(15), 2055; https://doi.org/10.3390/plants11152055 - 5 Aug 2022
Cited by 8 | Viewed by 2646
Abstract
The potato is a staple food crop worldwide and the need for this product has increased due to the burgeoning population. However, potato production is highly constrained by biotic stress interference, such as Myzus persicae Sulzer, which causes serious yield losses and thus [...] Read more.
The potato is a staple food crop worldwide and the need for this product has increased due to the burgeoning population. However, potato production is highly constrained by biotic stress interference, such as Myzus persicae Sulzer, which causes serious yield losses and thus minimizing production income. The current study aims to investigate the effect of different formulations prepared as an invert emulsion with different concentrations of fungal culture filtrates derived from three endophytic fungi (genus Cladosporium) against Myzus persicae. All formulations have demonstrated an aphicidal activity, which increases with the increasing concentration of fungal filtrates. Furthermore, it has been noted that chitinolytic activity recorded for 12 days is important in Cladosporium sp. BEL21 isolated from dwarf mistletoe Arceuthobium oxycedri. The study of demographic and embryonic parameters of aphids settled on potato plants previously treated with formulations revealed a significant reduction in the numbers of colonizing aphids and a relative increase in the numbers of winged adults, especially in plants treated with BEL21-derived emulsion. The pre-treatment of plants may interfere with and negatively influence embryonic development and early maturity of the embryo and thus affect the fertility of parthenogenetic aphids. BEL21-derived emulsion can ensure effective and an inexpensive control of M. persicae for potato spring cropping systems. The current results open real opportunities concerning the implementation of ecofriendly and potent potato protection systems. Full article
(This article belongs to the Special Issue Symbiosis of Plants with Mycorrhizal and Endophytic Fungi)
Show Figures

Figure 1

10 pages, 47329 KiB  
Article
The foraging Gene Is Involved in the Presence of Wings and Explorative Behaviours in Parthenogenetic Females of the Aphid Myzus persicae
by Mauro Mandrioli and Gian Carlo Manicardi
Life 2022, 12(3), 369; https://doi.org/10.3390/life12030369 - 3 Mar 2022
Viewed by 2742
Abstract
The foraging gene (for) encodes for a cyclic guanosine monophosphate (cGMP)-dependent protein kinase involved in behavioural plasticity in aphids and in other insects. In this paper, we analysed the complete for sequence in eight clones of the peach potato aphid Myzus [...] Read more.
The foraging gene (for) encodes for a cyclic guanosine monophosphate (cGMP)-dependent protein kinase involved in behavioural plasticity in aphids and in other insects. In this paper, we analysed the complete for sequence in eight clones of the peach potato aphid Myzus persicae, reporting the presence of nonsense and frameshift mutations in three studied clones characterized by a reduced number of winged females and by the absence of exploratory behaviours. Quantitative PCR experiments evidenced similar results in clones possessing for genes with a conserved coding sequence, but low expression levels. The comparison of the for transcriptional level in Myzus persicae persicae and Myzus persicae nicotianae showed very different expression in the two studied M. p. nicotianae clones so that our data did not support a previous hypothesis suggesting that a differential for expression was related to ecological specialization of M. p. nicotianae. In view of its role in both the dispersal of winged females and exploratory behaviours, the screening of the for sequences could be useful for predicting invasions of cultivated areas by peach potato aphids. Full article
(This article belongs to the Special Issue Functional and Morphological Adaptations in Insects)
Show Figures

Graphical abstract

11 pages, 1194 KiB  
Article
Quercetin and Rutin as Modifiers of Aphid Probing Behavior
by Katarzyna Stec, Bożena Kordan and Beata Gabryś
Molecules 2021, 26(12), 3622; https://doi.org/10.3390/molecules26123622 - 13 Jun 2021
Cited by 23 | Viewed by 3312
Abstract
Rutin and its aglycone quercetin occur in the fruits, leaves, seeds, and grains of many plant species and are involved in plant herbivore interactions. We studied the effect of the exogenous application of rutin and quercetin on the probing behavior (= stylet penetration [...] Read more.
Rutin and its aglycone quercetin occur in the fruits, leaves, seeds, and grains of many plant species and are involved in plant herbivore interactions. We studied the effect of the exogenous application of rutin and quercetin on the probing behavior (= stylet penetration activities in plant tissues) of Acyrthosiphon pisum on Pisum sativum, Myzus persicae on Brassica rapa ssp. pekinensis, and Rhopalosiphum padi on Avena sativa using the electrical penetration graph technique (EPG = electropenetrography). The reaction of aphids to quercetin and rutin and the potency of the effect depended on aphid species, the flavonol, and flavonol concentration. Quercetin promoted probing activities of A. pisum within non-phloem and phloem tissues, which was demonstrated in the longer duration of probes and a trend toward longer duration of sap ingestion, respectively. M. persicae reached phloem in a shorter time on quercetin-treated B. rapa than on the control. Rutin caused a delay in reaching sieve elements by A. pisum and deterred probing activities of M. persicae within non-phloem tissues. Probing of R. padi was not affected by quercetin or rutin. The potency of behavioral effects increased as the applied concentrations of flavonols increased. The prospects of using quercetin and rutin in plant protection are discussed. Full article
Show Figures

Figure 1

14 pages, 958 KiB  
Article
Biological Control May Fail on Pests Applied with High Doses of Insecticides: Effects of Sub-Lethal Concentrations of a Pyrethroid on the Host-Searching Behavior of the Aphid Parasitoid Aphidius colemani (Hymenoptera, Braconidae) on Aphid Pests
by Armando Alfaro-Tapia, Jeniffer K. Alvarez-Baca, Eduardo Fuentes-Contreras and Christian C. Figueroa
Agriculture 2021, 11(6), 539; https://doi.org/10.3390/agriculture11060539 - 11 Jun 2021
Cited by 10 | Viewed by 3721
Abstract
The use of synthetic insecticides may cause failures in the biological control of insect pests due to undesired side effects on natural enemies and the rapid evolution of insecticide resistance in agroecosystems. Residues of neurotoxic insecticides can interfere with the recognition of chemical [...] Read more.
The use of synthetic insecticides may cause failures in the biological control of insect pests due to undesired side effects on natural enemies and the rapid evolution of insecticide resistance in agroecosystems. Residues of neurotoxic insecticides can interfere with the recognition of chemical cues used by natural enemies to find pests. We investigated the effects of sub-lethal concentrations of the pyrethroid lambda-cyhalothrin on the interaction between the aphid parasitoid wasp Aphidius colemani and the peach potato aphid Myzus persicae. We studied changes in host-searching and oviposition behavior through laboratory bioassays when susceptible and kdr-resistant aphids are offered to parasitoid females, evaluating the effect of applying insecticides on the interacting species. The patch residence time, exploration, oviposition, and grooming were significantly disturbed when the parasitoids were offered resistant aphids sprayed with sub-lethal doses, but not when the parasitoids were offered susceptible M. persicae exposed to sub-lethal doses. We discuss how the effects of insecticides on parasitism behavior may result in failures of biological control if natural enemy populations are not adequately managed, particularly for the management of insecticide-resistant pest populations. Efforts to introduce biological control in integrated pest management (IPM) programs are also discussed. Full article
(This article belongs to the Special Issue Pest Control and Insect Behavioral Ecology)
Show Figures

Figure 1

16 pages, 1687 KiB  
Article
Repellent and Antifeedant Activities of Citral-Derived Lactones against the Peach Potato Aphid
by Katarzyna Dancewicz, Antoni Szumny, Czesław Wawrzeńczyk and Beata Gabryś
Int. J. Mol. Sci. 2020, 21(21), 8029; https://doi.org/10.3390/ijms21218029 - 28 Oct 2020
Cited by 24 | Viewed by 4618
Abstract
Citral is well known for its antimicrobial, antifungal, and insecticidal activities. Natural sesquiterpene α-methylenelactones also exhibit a broad spectrum of biological activities. The aim of the study was to explore the effect of structural changes to citral molecules on citral behavior-modifying activity towards [...] Read more.
Citral is well known for its antimicrobial, antifungal, and insecticidal activities. Natural sesquiterpene α-methylenelactones also exhibit a broad spectrum of biological activities. The aim of the study was to explore the effect of structural changes to citral molecules on citral behavior-modifying activity towards Myzus persicae. Specifically, the effects of the introduction of a γ-lactone moiety and methylene groups in α and γ positions of the lactone ring were investigated. The lactones were obtained in five-step (saturated lactone and γ-methylenelactone) or six-step (α-methylenelactone and α,γ-dimethylenelactone) syntheses from citral. The synthetic procedures and physical and spectral data of the lactones are presented. The settling behavior of freely moving aphids in choice and no-choice situations was monitored. The probing behavior of tethered M. persicae using the Electrical Penetration Graph (EPG) technique was also analyzed. Citral appeared a strong repellent and pre-ingestive and ingestive probing deterrent to M. persicae. The incorporation of a lactone moiety caused the loss of the repellent activity. α-Methylenelactone inhibited aphid settling and probing activities at pre-ingestive and ingestive phases. The saturated γ-lactone and α,γ-dimethylenelactone were the settling post-ingestive deterrents to M. persicae, which did not affect aphid probing activity. γ-Methylenelactone did not affect aphid behavior. Full article
Show Figures

Graphical abstract

14 pages, 1578 KiB  
Article
Phytohormone Cross-Talk Synthesizes Glycoalkaloids in Potato (Solanum tuberosum L.) in Response to Aphid (Myzus persicae Sulzer) Infestation under Drought Stress
by Peter Quandahor, Yuping Gou, Chunyan Lin, Mohammed Mujitaba Dawuda, Jeffrey A. Coulter and Changzhong Liu
Insects 2020, 11(11), 724; https://doi.org/10.3390/insects11110724 - 23 Oct 2020
Cited by 13 | Viewed by 2495
Abstract
Potato production is adversely affected by aphid infestation across the globe. Understanding the mechanism of host plant defense against aphids under drought stress is paramount for insect pest management. This study was conducted to examine the cross-talk of phytohormones in potato glycoalkaloids’ defense [...] Read more.
Potato production is adversely affected by aphid infestation across the globe. Understanding the mechanism of host plant defense against aphids under drought stress is paramount for insect pest management. This study was conducted to examine the cross-talk of phytohormones in potato glycoalkaloids’ defense against green peach aphids under greenhouse conditions. A 3 × 2 × 2 factorial experiment comprising three potato cultivars (Qingshu 9, Longshu 3, and Atlantic) and two levels each of water availability and aphid infestation was conducted. The results show that under drought stress, green peach aphids thrive well on host plants, which contain a relatively high water content. The resistant cultivar DXY, which exhibited a higher level of phytohormones, also demonstrated higher α-chaconine and α-solanine contents in both leaf and root, under drought and aphid stress. Conversely, the susceptible cultivar QS9, which exhibited a lower level of phytohormones, also demonstrated low α-chaconine and α-solanine contents in both leaf and root, under drought and aphid stress. The DXY cultivar, which possessed high resistant traits such as α-chaconine and α-solanine, can be used in areas where green peach aphid infestation is a major setback. Full article
Show Figures

Graphical abstract

31 pages, 3341 KiB  
Article
Comparative Efficacy of Common Active Ingredients in Organic Insecticides Against Difficult to Control Insect Pests
by Galen P. Dively, Terrence Patton, Lindsay Barranco and Kelly Kulhanek
Insects 2020, 11(9), 614; https://doi.org/10.3390/insects11090614 - 8 Sep 2020
Cited by 26 | Viewed by 9869
Abstract
There exists a lack of control efficacy information to enable decision-making about which organic insecticide product works best for a given insect pest. Here, we summarize results of 153 field trials on the control efficacy of common active ingredients in organic insecticides against [...] Read more.
There exists a lack of control efficacy information to enable decision-making about which organic insecticide product works best for a given insect pest. Here, we summarize results of 153 field trials on the control efficacy of common active ingredients in organic insecticides against 12 groups of the most difficult to control insect pests. These trials evaluated primarily the organic products Entrust (spinosad), Azera (pyrethrin and azadirachtin), PyGanic (pyrethrin) and Neemix (azadirachtin), which reduced pest infestations by an overall 73.9%, 61.7%, 48.6% and 46.1% respectively, averaged across all trials. Entrust was the most effective control option for many insect pests, particularly providing >75% control of flea beetles, Colorado potato beetle, cabbageworms and alfalfa weevil, but was relatively ineffective against true bugs and aphids. Azera provided >75% control of green peach aphid, flea beetles, Japanese beetle, Mexican bean beetle, potato leafhopper and cabbageworms. PyGanic was less effective than Entrust and Azera but still provided >75% control of green peach aphid, flea beetles and potato leafhopper. The growth inhibition effects of azadirachtin in Neemix were particularly effective against larvae of Mexican bean beetle and Colorado potato beetle but was generally less effective in trials with insect infestations consisting mainly of adult stages. Those insect pests that were particularly difficult to control included thrips, stinkbugs, cucumber beetles and fruitworms. Several caveats pertaining to the application of the results are discussed. Full article
Show Figures

Figure 1

13 pages, 590 KiB  
Article
Effect of Naringenin and Its Derivatives on the Probing Behavior of Myzus persicae (Sulz.)
by Katarzyna Stec, Joanna Kozłowska, Anna Wróblewska-Kurdyk, Bożena Kordan, Mirosław Anioł and Beata Gabryś
Molecules 2020, 25(14), 3185; https://doi.org/10.3390/molecules25143185 - 13 Jul 2020
Cited by 15 | Viewed by 2914
Abstract
Substances that alter insect behavior have attracted a lot of attention as potential crop protection agents. Naringenin (5,7,4′-trihydroxyflavanone) is a naturally occurring bioactive flavanone. We evaluated the influence of naringenin on aphid activities during individual phases of probing and feeding and the effect [...] Read more.
Substances that alter insect behavior have attracted a lot of attention as potential crop protection agents. Naringenin (5,7,4′-trihydroxyflavanone) is a naturally occurring bioactive flavanone. We evaluated the influence of naringenin on aphid activities during individual phases of probing and feeding and the effect of structural modifications of naringenin on its activity towards aphids. We monitored the probing behavior of Myzus persicae (Sulz.) (Hemiptera: Aphididae) using the Electrical Penetration Graph (EPG) technique. The chemical modifications were the substitution of hydrogen atoms with methyl, ethyl or pentyl groups and the replacement of the carbonyl group in naringenin and its derivatives with an oxime moiety. Depending on the substituents, the activity of naringenin-derived compounds varied in potency and mode of action. Naringenin was an attractant of moderate activity, which enhanced sap ingestion. The naringenin derivative with two methyl groups—7,4′-di-O-methylnaringenin—was a deterrent, which hindered aphid probing in non-phloem tissues. Naringenin oxime derivatives with methyl substituents—7,4′-di-O-methylnaringenin oxime, 7-O-methylnaringenin oxime, and 5,7,4′-tri-O-methylnaringenin oxime—and the derivative with a pentyl substituent—7-O-pentylnaringenin oxime—were strong attractants which stimulated aphid probing in non-phloem tissues and the ingestion of phloem sap. Full article
(This article belongs to the Special Issue Insecticide, Acaricide, Repellent and Antimicrobial Development)
Show Figures

Graphical abstract

16 pages, 250 KiB  
Article
Susceptibility of Myzus persicae, Brevicoryne brassicae and Nasonovia ribisnigri to Fungal Biopesticides in Laboratory and Field Experiments
by Gill Prince and Dave Chandler
Insects 2020, 11(1), 55; https://doi.org/10.3390/insects11010055 - 17 Jan 2020
Cited by 20 | Viewed by 5133
Abstract
The aim of this study was to evaluate the potential of entomopathogenic fungi (EPF) for the control of aphid pests of field vegetable crops. Four biopesticides based on the EPF Beauveria bassiana (Botanigard ES and Naturalis L), Cordyceps fumosorosea s.l. (Preferal WG), and [...] Read more.
The aim of this study was to evaluate the potential of entomopathogenic fungi (EPF) for the control of aphid pests of field vegetable crops. Four biopesticides based on the EPF Beauveria bassiana (Botanigard ES and Naturalis L), Cordyceps fumosorosea s.l. (Preferal WG), and Akanthomyces dipterigenus (Vertalec) were evaluated in a laboratory bioassay against peach-potato aphid Myzus persicae, cabbage aphid Brevicoryne brassicae, and currant-lettuce aphid Nasonovia ribisnigri. There was significant variation in the spore dose provided by the products, with Botanigard ES producing the highest dose (639 viable spores per mm2). Botanigard ES also caused more mortality than the other products. Combining Vertalec with the vegetable oil-based adjuvant Addit had an additive effect on the mortality of B. brassicae. All fungal products reduced the number of progeny produced by M. persicae but there was no effect with B. brassicae or N. ribisnigri. When aphid nymphs were treated with Botanigard ES and Preferal WG, both products reduced population development, with up to 86% reduction occurring for Botanigard ES against M. persicae. In a field experiment, Botanigard ES sprayed twice, at seven-day intervals, against B. brassicae on cabbage plants, reduced aphid numbers by 73%. In a second field experiment with B. brassicae, M. persicae, and N. ribisnigri, Botanigard ES reduced populations of B. brassicae and N. ribisnigri but there was no significant effect on M. persicae. Full article
(This article belongs to the Collection Integrated Pest Management Strategies for Horticultural Crops)
12 pages, 3534 KiB  
Article
Comparative Analysis of Intra- and Inter-Specific Genomic Variability in the Peach Potato Aphid, Myzus persicae
by Mauro Mandrioli, Deborah Salvatore, Agnese Ferrari, Niccolò Patelli and Gian Carlo Manicardi
Insects 2019, 10(10), 368; https://doi.org/10.3390/insects10100368 - 22 Oct 2019
Cited by 4 | Viewed by 4269
Abstract
The availability of genomic data in the last decade relating to different aphid species has allowed the analysis of the genomic variability occurring among such species, whereas intra-specific variability has hitherto very largely been neglected. In order to analyse the intra-genomic [...] Read more.
The availability of genomic data in the last decade relating to different aphid species has allowed the analysis of the genomic variability occurring among such species, whereas intra-specific variability has hitherto very largely been neglected. In order to analyse the intra-genomic variability in the peach potato aphid, Myzus persicae, comparative analyses were performed revealing several clone-specific gene duplications, together with numerous deletions/rearrangements. Our comparative approach also allowed us to evaluate the synteny existing between the two M. persicae clones tested and between the peach potato aphid and the pea aphid, Acyrthosiphon pisum. Even if part of the observed rearrangements are related to a low quality of some assembled contigs and/or to the high number of contigs present in these aphid genomes, our evidence reveals that aphid clones are genetically more different than expected. These results suggest that the choice of performing genomes sequencing combining different biotypes/populations, as revealed in the case of the soybean aphid, Aphis glycines, is unlikely to be very informative in aphids. Interestingly, it is possible that the holocentric nature of aphid chromosomes favours genome rearrangements that can be successively inherited transgenerationally via the aphid’s apomictic (parthenogenetic) mode of reproduction. Lastly, we evaluated the structure of the cluster of genes coding for the five histones (H1, H2A, H2B, H3 and H4) in order to better understand the quality of the two M. persicae genomes and thereby to improve our knowledge of this functionally important gene family. Full article
Show Figures

Figure 1

21 pages, 1930 KiB  
Article
Spatial and Temporal Genetic Diversity of the Peach Potato Aphid Myzus persicae (Sulzer) in Tunisia
by Amen Hlaoui, Sonia Boukhris-Bouhachem, Daniela A. Sepúlveda, Margarita C.G. Correa, Lucía M. Briones, Rebha Souissi and Christian C. Figueroa
Insects 2019, 10(10), 330; https://doi.org/10.3390/insects10100330 - 1 Oct 2019
Cited by 8 | Viewed by 3930
Abstract
The peach potato aphid, Myzus persicae (Sulzer), is a worldwide pest of many crops, and the most important aphid pest of peach and potato crops in Tunisia, mainly due to virus transmission, for which insecticides are frequently applied. We studied the genetic structure [...] Read more.
The peach potato aphid, Myzus persicae (Sulzer), is a worldwide pest of many crops, and the most important aphid pest of peach and potato crops in Tunisia, mainly due to virus transmission, for which insecticides are frequently applied. We studied the genetic structure of M. persicae populations in Tunisia, in order to further our understanding of the biotic and abiotic factors shaping populations and to predict their evolutionary responses to the present management practices. We monitored peach orchards and seed potato crops in different seasons and regions from 2011–2013 and in 2016 (19 populations), assessing the genetic diversity of M. persicae at six microsatellite loci. Temporal and spatial changes in the frequency and distribution of 397 genotypes in 548 sampled aphids were studied. Only 37 genotypes were found more than once (clonal amplification), as most genotypes were found only once (91.60% in peach; 88.73% in potato crops). A similarly high genetic diversity was observed in aphids sampled from peach (G/N = 0.76; Ho = 0.617) and potato (G/N = 0.70; Ho = 0.641). Only a weak genetic differentiation among populations was found, mainly between geographic locations. Clustering analysis revealed genotypes to be grouped mainly according to host plant. The availability of the primary host, high proportion of unique genotypes, high genetic diversity and lack of structuring suggest that the aphid reproduces mainly through cyclical parthenogenesis in Tunisia. On the other hand, we provide a farm-scale study that shows how easily M. persicae can colonize different areas and hosts, which may have important implications in relation to plant virus vectoring. Full article
Show Figures

Figure 1

Back to TopTop