Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = passive brain–computer interface (pBCI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2133 KiB  
Article
Real-Time Mobile Robot Obstacles Detection and Avoidance Through EEG Signals
by Karameldeen Omer, Francesco Ferracuti, Alessandro Freddi, Sabrina Iarlori, Francesco Vella and Andrea Monteriù
Brain Sci. 2025, 15(4), 359; https://doi.org/10.3390/brainsci15040359 - 30 Mar 2025
Viewed by 1905
Abstract
Background/Objectives: The study explores the integration of human feedback into the control loop of mobile robots for real-time obstacle detection and avoidance using EEG brain–computer interface (BCI) methods. The goal is to assess the possible paradigms applicable to the most current navigation system [...] Read more.
Background/Objectives: The study explores the integration of human feedback into the control loop of mobile robots for real-time obstacle detection and avoidance using EEG brain–computer interface (BCI) methods. The goal is to assess the possible paradigms applicable to the most current navigation system to enhance safety and interaction between humans and robots. Methods: The research explores passive and active brain–computer interface (BCI) technologies to enhance a wheelchair-mobile robot’s navigation. In the passive approach, error-related potentials (ErrPs), neural signals triggered when users comment or perceive errors, enable automatic correction of the robot navigation mistakes without direct input or command from the user. In contrast, the active approach leverages steady-state visually evoked potentials (SSVEPs), where users focus on flickering stimuli to control the robot’s movements directly. This study evaluates both paradigms to determine the most effective method for integrating human feedback into assistive robotic navigation. This study involves experimental setups where participants control a robot through a simulated environment, and their brain signals are recorded and analyzed to measure the system’s responsiveness and the user’s mental workload. Results: The results show that a passive BCI requires lower mental effort but suffers from lower engagement, with a classification accuracy of 72.9%, whereas an active BCI demands more cognitive effort but achieves 84.9% accuracy. Despite this, task achievement accuracy is higher in the passive method (e.g., 71% vs. 43% for subject S2) as a single correct ErrP classification enables autonomous obstacle avoidance, whereas SSVEP requires multiple accurate commands. Conclusions: This research highlights the trade-offs between accuracy, mental load, and engagement in BCI-based robot control. The findings support the development of more intuitive assistive robotics, particularly for disabled and elderly users. Full article
(This article belongs to the Special Issue Multisensory Perception of the Body and Its Movement)
Show Figures

Figure 1

15 pages, 7708 KiB  
Article
Influence of Temporal and Frequency Selective Patterns Combined with CSP Layers on Performance in Exoskeleton-Assisted Motor Imagery Tasks
by Cristian David Guerrero-Mendez, Cristian Felipe Blanco-Diaz, Hamilton Rivera-Flor, Pedro Henrique Fabriz-Ulhoa, Eduardo Antonio Fragoso-Dias, Rafhael Milanezi de Andrade, Denis Delisle-Rodriguez and Teodiano Freire Bastos-Filho
NeuroSci 2024, 5(2), 169-183; https://doi.org/10.3390/neurosci5020012 - 11 May 2024
Cited by 3 | Viewed by 1848
Abstract
Common Spatial Pattern (CSP) has been recognized as a standard and powerful method for the identification of Electroencephalography (EEG)-based Motor Imagery (MI) tasks when implementing brain–computer interface (BCI) systems towards the motor rehabilitation of lost movements. The combination of BCI systems with robotic [...] Read more.
Common Spatial Pattern (CSP) has been recognized as a standard and powerful method for the identification of Electroencephalography (EEG)-based Motor Imagery (MI) tasks when implementing brain–computer interface (BCI) systems towards the motor rehabilitation of lost movements. The combination of BCI systems with robotic systems, such as upper limb exoskeletons, has proven to be a reliable tool for neuromotor rehabilitation. Therefore, in this study, the effects of temporal and frequency segmentation combined with layer increase for spatial filtering were evaluated, using three variations of the CSP method for the identification of passive movement vs. MI+passive movement. The passive movements were generated using a left upper-limb exoskeleton to assist flexion/extension tasks at two speeds (high—85 rpm and low—30 rpm). Ten healthy subjects were evaluated in two recording sessions using Linear Discriminant Analysis (LDA) as a classifier, and accuracy (ACC) and False Positive Rate (FPR) as metrics. The results allow concluding that the use of temporal, frequency or spatial selective information does not significantly (p< 0.05) improve task identification performance. Furthermore, dynamic temporal segmentation strategies may perform better than static segmentation tasks. The findings of this study are a starting point for the exploration of complex MI tasks and their application to neurorehabilitation, as well as the study of brain effects during exoskeleton-assisted MI tasks. Full article
Show Figures

Figure 1

20 pages, 16971 KiB  
Article
Human–Computer Interaction Multi-Task Modeling Based on Implicit Intent EEG Decoding
by Xiu Miao and Wenjun Hou
Appl. Sci. 2024, 14(1), 368; https://doi.org/10.3390/app14010368 - 30 Dec 2023
Cited by 2 | Viewed by 2127
Abstract
In the short term, a fully autonomous level of machine intelligence cannot be achieved. Humans are still an important part of HCI systems, and intelligent systems should be able to “feel” and “predict” human intentions in order to achieve dynamic coordination between humans [...] Read more.
In the short term, a fully autonomous level of machine intelligence cannot be achieved. Humans are still an important part of HCI systems, and intelligent systems should be able to “feel” and “predict” human intentions in order to achieve dynamic coordination between humans and machines. Intent recognition is very important to improve the accuracy and efficiency of the HCI system. However, it is far from enough to focus only on explicit intent. There is a lot of vague and hidden implicit intent in the process of human–computer interaction. Based on passive brain–computer interface (pBCI) technology, this paper proposes a method to integrate humans into HCI systems naturally, which is to establish an intent-based HCI model and automatically recognize the implicit intent according to human EEG signals. In view of the existing problems of few divisible patterns and low efficiency of implicit intent recognition, this paper finally proves that EEG can be used as the basis for judging human implicit intent through extracting multi-task intention, carrying out experiments, and constructing algorithmic models. The CSP + SVM algorithm model can effectively improve the EEG decoding performance of implicit intent in HCI, and the effectiveness of the CSP algorithm on intention feature extraction is further verified by combining 3D space visualization. The translation of implicit intent information is of significance for the study of intent-based HCI models, the development of HCI systems, and the improvement of human–machine collaboration efficiency. Full article
Show Figures

Figure 1

31 pages, 7639 KiB  
Article
Unsupervised Detection of Covariate Shift Due to Changes in EEG Headset Position: Towards an Effective Out-of-Lab Use of Passive Brain–Computer Interface
by Daniele Germano, Nicolina Sciaraffa, Vincenzo Ronca, Andrea Giorgi, Giacomo Trulli, Gianluca Borghini, Gianluca Di Flumeri, Fabio Babiloni and Pietro Aricò
Appl. Sci. 2023, 13(23), 12800; https://doi.org/10.3390/app132312800 - 29 Nov 2023
Cited by 2 | Viewed by 1655
Abstract
In the field of passive Brain–computer Interfaces (BCI), the need to develop systems that require rapid setup, suitable for use outside of laboratories is a fundamental challenge, especially now, that the market is flooded with novel EEG headsets with a good quality. However, [...] Read more.
In the field of passive Brain–computer Interfaces (BCI), the need to develop systems that require rapid setup, suitable for use outside of laboratories is a fundamental challenge, especially now, that the market is flooded with novel EEG headsets with a good quality. However, the lack of control in operational conditions can compromise the performance of the machine learning model behind the BCI system. First, this study focuses on evaluating the performance loss of the BCI system, induced by a different positioning of the EEG headset (and of course sensors), so generating a variation in the control features used to calibrate the machine learning algorithm. This phenomenon is called covariate shift. Detecting covariate shift occurrences in advance allows for preventive measures, such as informing the user to adjust the position of the headset or applying specific corrections in new coming data. We used in this study an unsupervised Machine Learning model, the Isolation Forest, to detect covariate shift occurrence in new coming data. We tested the method on two different datasets, one in a controlled setting (9 participants), and the other in a more realistic setting (10 participants). In the controlled dataset, we simulated the movement of the EEG cap using different channel and reference configurations. For each test configuration, we selected a set of electrodes near the control electrodes. Regarding the realistic dataset, we aimed to simulate the use of the cap outside the laboratory, mimicking the removal and repositioning of the cap by a non-expert user. In both datasets, we recorded multiple test sessions for each configuration while executing a set of Workload tasks. The results obtained using the Isolation Forest model allowed the identification of covariate shift in the data, even with a 15-s recording sample. Moreover, the results showed a strong and significant negative correlation between the percentage of covariate shift detected by the method, and the accuracy of the passive BCI system (p-value < 0.01). This novel approach opens new perspectives for developing more robust and flexible BCI systems, with the potential to move these technologies towards out-of-the-lab use, without the need for supervision for use by a non-expert user. Full article
(This article belongs to the Special Issue Deep Networks for Biosignals)
Show Figures

Figure 1

16 pages, 3708 KiB  
Article
Design of Wearable EEG Devices Specialized for Passive Brain–Computer Interface Applications
by Seonghun Park, Chang-Hee Han and Chang-Hwan Im
Sensors 2020, 20(16), 4572; https://doi.org/10.3390/s20164572 - 14 Aug 2020
Cited by 31 | Viewed by 7722
Abstract
Owing to the increased public interest in passive brain–computer interface (pBCI) applications, many wearable devices for capturing electroencephalogram (EEG) signals in daily life have recently been released on the market. However, there exists no well-established criterion to determine the electrode configuration for such [...] Read more.
Owing to the increased public interest in passive brain–computer interface (pBCI) applications, many wearable devices for capturing electroencephalogram (EEG) signals in daily life have recently been released on the market. However, there exists no well-established criterion to determine the electrode configuration for such devices. Herein, an overall procedure is proposed to determine the optimal electrode configurations of wearable EEG devices that yield the optimal performance for intended pBCI applications. We utilized two EEG datasets recorded in different experiments designed to modulate emotional or attentional states. Emotion-specialized EEG headsets were designed to maximize the accuracy of classification of different emotional states using the emotion-associated EEG dataset, and attention-specialized EEG headsets were designed to maximize the temporal correlation between the EEG index and the behavioral attention index. General purpose electrode configurations were designed to maximize the overall performance in both applications for different numbers of electrodes (2, 4, 6, and 8). The performance was then compared with that of existing wearable EEG devices. Simulations indicated that the proposed electrode configurations allowed for more accurate estimation of the users’ emotional and attentional states than the conventional electrode configurations, suggesting that wearable EEG devices should be designed according to the well-established EEG datasets associated with the target pBCI applications. Full article
(This article belongs to the Collection EEG-Based Brain–Computer Interface for a Real-Life Appliance)
Show Figures

Figure 1

4 pages, 635 KiB  
Editorial
Brain–Computer Interfaces: Toward a Daily Life Employment
by Pietro Aricò, Nicolina Sciaraffa and Fabio Babiloni
Brain Sci. 2020, 10(3), 157; https://doi.org/10.3390/brainsci10030157 - 9 Mar 2020
Cited by 15 | Viewed by 7098
Abstract
Recent publications in the Electroencephalogram (EEG)-based brain–computer interface field suggest that this technology could be ready to go outside the research labs and enter the market as a new consumer product. This assumption is supported by the recent advantages obtained in terms of [...] Read more.
Recent publications in the Electroencephalogram (EEG)-based brain–computer interface field suggest that this technology could be ready to go outside the research labs and enter the market as a new consumer product. This assumption is supported by the recent advantages obtained in terms of front-end graphical user interfaces, back-end classification algorithms, and technology improvement in terms of wearable devices and dry EEG sensors. This editorial paper aims at mentioning these aspects, starting from the review paper “Brain–Computer Interface Spellers: A Review” (Rezeika et al., 2018), published within the Brain Sciences journal, and citing other relevant review papers that discussed these points. Full article
Show Figures

Figure 1

12 pages, 2390 KiB  
Article
Prediction of Individual User’s Dynamic Ranges of EEG Features from Resting-State EEG Data for Evaluating Their Suitability for Passive Brain–Computer Interface Applications
by Ho-Seung Cha, Chang-Hee Han and Chang-Hwan Im
Sensors 2020, 20(4), 988; https://doi.org/10.3390/s20040988 - 12 Feb 2020
Cited by 7 | Viewed by 3878
Abstract
With the recent development of low-cost wearable electroencephalogram (EEG) recording systems, passive brain–computer interface (pBCI) applications are being actively studied for a variety of application areas, such as education, entertainment, and healthcare. Various EEG features have been employed for the implementation of pBCI [...] Read more.
With the recent development of low-cost wearable electroencephalogram (EEG) recording systems, passive brain–computer interface (pBCI) applications are being actively studied for a variety of application areas, such as education, entertainment, and healthcare. Various EEG features have been employed for the implementation of pBCI applications; however, it is frequently reported that some individuals have difficulty fully enjoying the pBCI applications because the dynamic ranges of their EEG features (i.e., its amplitude variability over time) were too small to be used in the practical applications. Conducting preliminary experiments to search for the individualized EEG features associated with different mental states can partly circumvent this issue; however, these time-consuming experiments were not necessary for the majority of users whose dynamic ranges of EEG features are large enough to be used for pBCI applications. In this study, we tried to predict an individual user’s dynamic ranges of the EEG features that are most widely employed for pBCI applications from resting-state EEG (RS-EEG), with the ultimate goal of identifying individuals who might need additional calibration to become suitable for the pBCI applications. We employed a machine learning-based regression model to predict the dynamic ranges of three widely used EEG features known to be associated with the brain states of valence, relaxation, and concentration. Our results showed that the dynamic ranges of EEG features could be predicted with normalized root mean squared errors of 0.2323, 0.1820, and 0.1562, respectively, demonstrating the possibility of predicting the dynamic ranges of the EEG features for pBCI applications using short resting EEG data. Full article
(This article belongs to the Special Issue Novel Approaches to EEG Signal Processing)
Show Figures

Figure 1

13 pages, 1582 KiB  
Article
Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced Brain-Computer Interface
by Mads Jochumsen, Sylvain Cremoux, Lucien Robinault, Jimmy Lauber, Juan Carlos Arceo, Muhammad Samran Navid, Rasmus Wiberg Nedergaard, Usman Rashid, Heidi Haavik and Imran Khan Niazi
Sensors 2018, 18(11), 3761; https://doi.org/10.3390/s18113761 - 3 Nov 2018
Cited by 20 | Viewed by 4092
Abstract
Brain-computer interfaces (BCIs) can be used to induce neural plasticity in the human nervous system by pairing motor cortical activity with relevant afferent feedback, which can be used in neurorehabilitation. The aim of this study was to identify the optimal type or combination [...] Read more.
Brain-computer interfaces (BCIs) can be used to induce neural plasticity in the human nervous system by pairing motor cortical activity with relevant afferent feedback, which can be used in neurorehabilitation. The aim of this study was to identify the optimal type or combination of afferent feedback modalities to increase cortical excitability in a BCI training intervention. In three experimental sessions, 12 healthy participants imagined a dorsiflexion that was decoded by a BCI which activated relevant afferent feedback: (1) electrical nerve stimulation (ES) (peroneal nerve—innervating tibialis anterior), (2) passive movement (PM) of the ankle joint, or (3) combined electrical stimulation and passive movement (Comb). The cortical excitability was assessed with transcranial magnetic stimulation determining motor evoked potentials (MEPs) in tibialis anterior before, immediately after and 30 min after the BCI training. Linear mixed regression models were used to assess the changes in MEPs. The three interventions led to a significant (p < 0.05) increase in MEP amplitudes immediately and 30 min after the training. The effect sizes of Comb paradigm were larger than ES and PM, although, these differences were not statistically significant (p > 0.05). These results indicate that the timing of movement imagery and afferent feedback is the main determinant of induced cortical plasticity whereas the specific type of feedback has a moderate impact. These findings can be important for the translation of such a BCI protocol to the clinical practice where by combining the BCI with the already available equipment cortical plasticity can be effectively induced. The findings in the current study need to be validated in stroke populations. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

33 pages, 1560 KiB  
Review
A Review of Brain-Computer Interface Games and an Opinion Survey from Researchers, Developers and Users
by Minkyu Ahn, Mijin Lee, Jinyoung Choi and Sung Chan Jun
Sensors 2014, 14(8), 14601-14633; https://doi.org/10.3390/s140814601 - 11 Aug 2014
Cited by 160 | Viewed by 16827
Abstract
In recent years, research on Brain-Computer Interface (BCI) technology for healthy users has attracted considerable interest, and BCI games are especially popular. This study reviews the current status of, and describes future directions, in the field of BCI games. To this end, we [...] Read more.
In recent years, research on Brain-Computer Interface (BCI) technology for healthy users has attracted considerable interest, and BCI games are especially popular. This study reviews the current status of, and describes future directions, in the field of BCI games. To this end, we conducted a literature search and found that BCI control paradigms using electroencephalographic signals (motor imagery, P300, steady state visual evoked potential and passive approach reading mental state) have been the primary focus of research. We also conducted a survey of nearly three hundred participants that included researchers, game developers and users around the world. From this survey, we found that all three groups (researchers, developers and users) agreed on the significant influence and applicability of BCI and BCI games, and they all selected prostheses, rehabilitation and games as the most promising BCI applications. User and developer groups tended to give low priority to passive BCI and the whole head sensor array. Developers gave higher priorities to “the easiness of playing” and the “development platform” as important elements for BCI games and the market. Based on our assessment, we discuss the critical point at which BCI games will be able to progress from their current stage to widespread marketing to consumers. In conclusion, we propose three critical elements important for expansion of the BCI game market: standards, gameplay and appropriate integration. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Back to TopTop