Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced Brain-Computer Interface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Setup
2.3. Recordings
2.3.1. EEG
2.3.2. Surface EMG
2.4. Stimulation and Motorized Orthotic Device
2.4.1. Transcranial Magnetic Stimulation
2.4.2. Electrical Stimulation
2.4.3. Passive Movements Through the Motorized Orthotic Device
2.5. Brain-Computer Interface
2.6. Statistical Analysis
3. Results
3.1. BCI Performance
3.2. MEP Size
4. Discussion
4.1. Effect of BCI-Triggered Afferent Feedback
4.2. Neural Mechanisms
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ang, K.K.; Guan, C. Brain-Computer Interface in Stroke Rehabilitation. J. Comput. Sci. Eng. 2013, 7, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Ang, K.K.; Guan, C.; Phua, K.S.; Wang, C.; Zhou, L.; Tang, K.Y.; Ephraim Joseph, G.J.; Kuah, C.W.K.; Chua, K.S.G. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: Results of a three-armed randomized controlled trial for chronic stroke. Front. Neuroeng. 2014, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Ang, K.K.; Chua, K.S.G.; Phua, K.S.; Wang, C.; Chin, Z.Y.; Kuah, C.W.K.; Low, W.; Guan, C. A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke. Clin. EEG Neurosci. 2015, 46, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Mrachacz-Kersting, N.; Jiang, N.; Stevenson, A.J.T.; Niazi, I.K.; Kostic, V.; Pavlovic, A.; Radovanovic, S.; Djuric-Jovicic, M.; Agosta, F.; Dremstrup, K.; Farina, D. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. J. Neurophysiol. 2016, 115, 1410–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frolov, A.A.; Mokienko, O.; Lyukmanov, R.; Biryukova, E.; Kotov, S.; Turbina, L.; Nadareyshvily, G.; Bushkova, Y. Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial. Front. Neurosci. 2017, 11, 400. [Google Scholar] [CrossRef] [PubMed]
- Pichiorri, F.; Morone, G.; Pisotta, I.; Petti, M.; Molinari, M.; Astolfi, L.; Cincotti, F.; Mattia, D. BCI for Stroke Rehabilitation: A Randomized Controlled Trial of Efficacy. In Proceedings of the Fifth International Brain-Computer Interface Meeting, Pacific Grove, CA, USA, 3–7 June 2013. [Google Scholar]
- Pavlides, C.; Miyashita, E.; Asanuma, H. Projection from the sensory to the motor cortex is important in learning motor skills in the monkey. J. Neurophysiol. 1993, 70, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, J.W. Motor learning: Its relevance to stroke recovery and neurorehabilitation. Curr. Opin. Neurol. 2006, 19, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Leone, A.; Nguyet, D.; Cohen, L.G.; Brasil-Neto, J.P.; Cammarota, A.; Hallett, M. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J. Neurophysiol. 1995, 74, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Mrachacz-Kersting, N.; Kristensen, S.R.; Niazi, I.K.; Farina, D. Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. J. Physiol. 2012, 590, 1669–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niazi, I.K.; Mrachacz-Kersting, N.; Jiang, N.; Dremstrup, K.; Farina, D. Peripheral Electrical Stimulation Triggered by Self-Paced Detection of Motor Intention Enhances Motor Evoked Potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Jiang, N.; Mrachacz-Kersting, N.; Lin, C.; Asin Prieto, G.; Moreno, J.C.; Pons, J.L.; Dremstrup, K.; Farina, D. A Closed-Loop Brain–Computer Interface Triggering an Active Ankle–Foot Orthosis for Inducing Cortical Neural Plasticity. IEEE Trans. Biomed. Eng. 2014, 61, 2092–2101. [Google Scholar] [CrossRef] [PubMed]
- Stefan, K.; Kunesch, E.; Cohen, L.G.; Benecke, R.; Classen, J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 2000, 123, 572–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vries, S.; Mulder, T. Motor imagery and stroke rehabilitation: A critical discussion. J. Rehabil. Med. 2007, 39, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Niazi, I.K.; Jiang, N.; Tiberghien, O.; Nielsen, J.F.; Dremstrup, K.; Farina, D. Detection of movement intention from single-trial movement-related cortical potentials. J. Neural Eng. 2011, 8, 066009. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Jiang, N.; Lin, C.; Mrachacz-Kersting, N.; Dremstrup, K.; Farina, D. Enhanced Low-Latency Detection of Motor Intention From EEG for Closed-Loop Brain-Computer Interface Applications. IEEE Trans. Biomed. Eng. 2014, 61, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Jochumsen, M.; Niazi, I.K.; Mrachacz-Kersting, N.; Farina, D.; Dremstrup, K. Detection and classification of movement-related cortical potentials associated with task force and speed. J. Neural Eng. 2013, 10, 056015. [Google Scholar] [CrossRef] [PubMed]
- Lew, E.; Chavarriaga, R.; Silvoni, S.; Millán, J.D.R. Detection of self-paced reaching movement intention from EEG signals. Front. Neuroeng. 2012, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Ofner, P.; Schwarz, A.; Pereira, J.; Müller-Putz, G.R. Upper limb movements can be decoded from the time-domain of low-frequency EEG. PLoS ONE 2017, 12, e0182578. [Google Scholar] [CrossRef] [PubMed]
- Vukelić, M.; Gharabaghi, A. Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality. Neuroimage 2015, 111, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kamavuako, E.N.; Jochumsen, M.; Niazi, I.K.; Dremstrup, K. Comparison of Features for Movement Prediction from Single-Trial Movement-Related Cortical Potentials in Healthy Subjects and Stroke Patients. Comput. Intell. Neurosci. 2015, 2015, 858015. [Google Scholar] [CrossRef] [PubMed]
- Jochumsen, M.; Khan Niazi, I.; Taylor, D.; Farina, D.; Dremstrup, K. Detecting and classifying movement-related cortical potentials associated with hand movements in healthy subjects and stroke patients from single-electrode, single-trial EEG. J. Neural Eng. 2015, 12, 056013. [Google Scholar] [CrossRef] [PubMed]
- Karimi, F.; Kofman, J.; Mrachacz-Kersting, N.; Farina, D.; Jiang, N. Detection of Movement Related Cortical Potentials from EEG Using Constrained ICA for Brain-Computer Interface Applications. Front. Neurosci. 2017, 11, 356. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Zhou, G.; Gao, D.; Zhang, Y. EEG classification using sparse Bayesian extreme learning machine for brain–computer interface. Neural Comput. Appl. 2018, 1–9. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, Y.; Cichocki, A.; Matsuno, F. A Novel EOG/EEG Hybrid Human–Machine Interface Adopting Eye Movements and ERPs: Application to Robot Control. IEEE Trans. Biomed. Eng. 2015, 62, 876–889. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Nam, C.S.; Zhou, G.; Jin, J.; Wang, X.; Cichocki, A. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI. IEEE Trans. Cybern. 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, G.; Jin, J.; Zhao, Q.; Wang, X.; Cichocki, A. Sparse Bayesian Classification of EEG for Brain–Computer Interface. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 2256–2267. [Google Scholar] [CrossRef] [PubMed]
- Bergquist, A.J.; Clair, J.M.; Collins, D.F. Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: Triceps surae. J. Appl. Physiol. 2011, 110, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, J.; Serrano, J.I.; del Castillo, M.D.; Monge-Pereira, E.; Molina-Rueda, F.; Alguacil-Diego, I.; Pons, J.L. Detection of the onset of upper-limb movements based on the combined analysis of changes in the sensorimotor rhythms and slow cortical potentials. J. Neural Eng. 2014, 11, 056009. [Google Scholar] [CrossRef] [PubMed]
- Jochumsen, M.; Niazi, I.K.; Nedergaard, R.W.; Navid, M.S.; Dremstrup, K. Effect of subject training on a movement-related cortical potential-based brain-computer interface. Biomed. Signal Process. Control 2018, 41, 63–68. [Google Scholar] [CrossRef]
- Corbet, T.; Iturrate, I.; Pereira, M.; Perdikis, S.; Millán, J.D.R. Sensory threshold neuromuscular electrical stimulation fosters motor imagery performance. Neuroimage 2018, 176, 268–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daly, J.J.; Cheng, R.; Rogers, J.; Litinas, K.; Hrovat, K.; Dohring, M. Feasibility of a New Application of Noninvasive Brain Computer Interface (BCI): A Case Study of Training for Recovery of Volitional Motor Control After Stroke. J. Neurol. Phys. Ther. 2009, 33, 203–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jochumsen, M.; Niazi, I.K.; Signal, N.; Nedergaard, R.W.; Holt, K.; Haavik, H.; Taylor, D. Pairing Voluntary Movement and Muscle-Located Electrical Stimulation Increases Cortical Excitability. Front. Hum. Neurosci. 2016, 10, 482. [Google Scholar] [CrossRef] [PubMed]
- Mrachacz-Kersting, N.; Voigt, M.; Stevenson, A.J.T.; Aliakbaryhosseinabadi, S.; Jiang, N.; Dremstrup, K.; Farina, D. The effect of type of afferent feedback timed with motor imagery on the induction of cortical plasticity. Brain Res. 2017, 1674, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Khaslavskaia, S.; Sinkjaer, T. Motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve depends on the voluntary drive. Exp. Brain Res. 2005, 162, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Barsi, G.I.; Popovic, D.B.; Tarkka, I.M.; Sinkjær, T.; Grey, M.J. Cortical excitability changes following grasping exercise augmented with electrical stimulation. Exp. Brain Res. 2008, 191, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.; Lewis, G.N.; Taylor, D. Short-term Effects of Electrical Stimulation and Voluntary Activity on Corticomotor Excitability in Healthy Individuals and People With Stroke. J. Clin. Neurophysiol. 2012, 29, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, F.; Hayami, T.; Aoyama, T.; Kizuka, T. Motor imagery and electrical stimulation reproduce corticospinal excitability at levels similar to voluntary muscle contraction. J. Neuroeng. Rehabil. 2014, 11, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A. Safety of TMS Consensus Group Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef] [PubMed]
- Toumi, A.; Leteneur, S.; Gillet, C.; Debril, J.-F.; Decoufour, N.; Barbier, F.; Jakobi, J.M.; Simoneau-Buessinger, E. Enhanced precision of ankle torque measure with an open-unit dynamometer mounted with a 3D force-torque sensor. Eur. J. Appl. Physiol. 2015, 115, 2303–2310. [Google Scholar] [CrossRef] [PubMed]
- Arceo, J.C.; Lauber, J.; Robinault, L.; Paganelli, S.; Jochumsen, M.; Niazi, I.K.; Simoneau, E.; Cremoux, S. Modeling and Control of Rehabilitation Robotic Device: motoBOTTE. In Proceedings of the International Conference on Neurorehabilitation, Pisa, Italy, 16–20 October 2018. [Google Scholar]
- Arceo, J.C.; Lauber, J.; Simoneau, E.; Cremoux, S. Nonlinear controller design for robotic assistive therapy. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5 October 2018. [Google Scholar]
- Kunz, C.U.; Stallard, N.; Parsons, N.; Todd, S.; Friede, T. Blinded versus unblinded estimation of a correlation coefficient to inform interim design adaptations. Biom。 J. 2017, 59, 344–357. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models using lme4. J. Stat. Softw. 2014. [Google Scholar] [CrossRef]
- Jaeger, B.C. r2glmm: Computes R Squared for Mixed (Multilevel) Models. Available online: https://CRAN.R-project.org/package=r2glmm (accessed on 20 October 2018).
- Twisk, J.; Bosman, L.; Hoekstra, T.; Rijnhart, J.; Welten, M.; Heymans, M. Different ways to estimate treatment effects in randomised controlled trials. Contemp. Clin. Trials Commun. 2018, 10, 80–85. [Google Scholar] [CrossRef]
- Ridding, M.C.; Ziemann, U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. 2010, 588, 2291–2304. [Google Scholar] [CrossRef] [PubMed]
- Sinkjaer, T.; Andersen, J.B.; Ladouceur, M.; Christensen, L.O.; Nielsen, J.B. Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. J. Physiol. 2000, 523, 817–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, J.B.; Sinkjaer, T. Afferent feedback in the control of human gait. J. Electromyogr. Kinesiol. 2002, 12, 213–217. [Google Scholar] [CrossRef]
- Rosenkranz, K.; Rothwell, J.C. Differences between the effects of three plasticity inducing protocols on the organization of the human motor cortex. Eur. J. Neurosci. 2006, 23, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Mrachacz-Kersting, N.; Fong, M.; Murphy, B.A.; Sinkjær, T. Changes in Excitability of the Cortical Projections to the Human Tibialis Anterior After Paired Associative Stimulation. J. Neurophysiol. 2007, 97, 1951–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, N.; Christensen, L.O.; Morita, H.; Sinkjaer, T.; Nielsen, J. Evidence that a transcortical pathway contributes to stretch reflexes in the tibialis anterior muscle in man. J. Physiol. 1998, 512, 267–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, D.F. Central Contributions to Contractions Evoked by Tetanic Neuromuscular Electrical Stimulation. Exerc. Sport Sci. Rev. 2007, 35, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Suppa, A.; Quartarone, A.; Siebner, H.; Chen, R.; Di Lazzaro, V.; Del Giudice, P.; Paulus, W.; Rothwell, J.C.; Ziemann, U.; Classen, J. The associative brain at work: Evidence from paired associative stimulation studies in humans. Clin. Neurophysiol. 2017, 128, 2140–2164. [Google Scholar] [CrossRef] [PubMed]
- Olsen, S.; Signal, N.; Niazi, I.K.; Christensen, T.; Jochumsen, M.; Taylor, D. Paired Associative Stimulation Delivered by Pairing Movement-Related Cortical Potentials With Peripheral Electrical Stimulation: An Investigation of the Duration of Neuromodulatory Effects. Neuromodul. Technol. Neural Interface 2018, 21, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Biasiucci, A.; Leeb, R.; Iturrate, I.; Perdikis, S.; Al-Khodairy, A.; Corbet, T.; Schnider, A.; Schmidlin, T.; Zhang, H.; Bassolino, M.; et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun. 2018, 9, 2421. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Murguialday, A.; Broetz, D.; Rea, M.; Läer, L.; Yilmaz, Ö.; Brasil, F.L.; Liberati, G.; Curado, M.R.; Garcia-Cossio, E.; Vyziotis, A.; et al. Brain-machine interface in chronic stroke rehabilitation: A controlled study. Ann. Neurol. 2013, 74, 100–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Performance Metric | Mean [min, max] | Variance Explained Partial R2 (%) |
---|---|---|
TPR | 78.13 [58.82, 96.15]% | 1.5 |
FPm | 1.21 [0.22, 4.62] | 0.8 |
Tt | 13.42 [7, 23] min | 6.0 |
Mr | 64.36 [52, 85] | 0.3 |
Trend for Tt | Estimate | Std. Error | p, H0:μ = 0 |
---|---|---|---|
With MEPabs (mV/min) | 0.01 | 0.02 | z = 0.65, p = 0.51 |
With MEP% (%/min) | 1.32 | 2.79 | t[31] = 0.47, p = 0.63 |
Session | Time | MEPabs (mV) | Std. Error (mV) | z, p, H0:μ = 0 |
ES | post- | 0.21 | 0.05 | z = −6.97, p < 0.001 |
PM | 0.17 | 0.03 | z = −8.83, p < 0.001 | |
Comb. | 0.22 | 0.04 | z = −7.98, p < 0.001 | |
ES | post-30 | 0.20 | 0.05 | z = −7.13, p < 0.001 |
PM | 0.19 | 0.04 | z = −8.40, p < 0.001 | |
Comb. | 0.22 | 0.04 | z = −8.00, p < 0.001 | |
Session | Time | MEP% (%) | Std. Error (%) | t[df], p, H0:μ = 0 |
ES | post- | 81.26 | 32.86 | t[35.29] = 2.47, p = 0.02 |
PM | 41.16 | 29.59 | t[36.37] = 1.39, p = 0.17 | |
Comb. | 94.90 | 27.99 | t[37.05] = 3.39, p < 0.01 | |
ES | post-30 | 80.44 | 32.86 | t[35.29] = 2.45, p = 0.02 |
PM | 56.37 | 29.59 | t[36.37] = 1.91, p = 0.06 | |
Comb. | 104.69 | 27.99 | t[37.05] = 3.74, p < 0.001 |
Contrast | Time | Ratio | Std. Error (Ratio) | z, p, H0:μ = 1 |
ES/PM | post- | 1.23 | 0.25 | z = 0.99, p = 0.57 |
ES/Comb. | 0.94 | 0.19 | z = −0.32, p = 0.95 | |
PM/Comb. | 0.77 | 0.15 | z = −1.32, p = 0.39 | |
ES/PM | post-30 | 1.08 | 0.22 | z = 0.39, p = 0.92 |
ES/Comb. | 0.91 | 0.18 | z = −0.46, p = 0.89 | |
PM/Comb. | 0.84 | 0.17 | z = −0.85, p = 0.67 | |
Contrast | Time | Difference (%) | Std. Error (%) | t[df], p, H0:μ = 0 |
ES − PM | post- | 40.10 | 29.90 | t [42.22] = 1.34, p = 0.38 |
ES − Comb. | −13.64 | 301.16 | t [42.00] = −0.45, p = 0.89 | |
PM − Comb. | −53.74 | 29.77 | t [42.33] = −1.81, p = 0.18 | |
ES − PM | post-30 | 24.06 | 29.90 | t [42.22] = 0.81 p = 0.70 |
ES − Comb. | −24.25 | 30.16 | t [42.00] = −0.80, p = 0.70 | |
PM − Comb. | −48.31 | 29.77 | t [42.33] = −1.62, p = 0.25 |
Contrast | Session | Ratio | Std. Error (Ratio) | z, p, H0:μ = 1 |
post-/post-30 | ES | 1.03 | 0.08 | z = 0.42, p = 0.67 |
PM | 0.94 | 0.07 | z = −1.13, p = 0.26 | |
ES+PM | 1.00 | 0.08 | z = 0.05, p = 0.96 | |
Contrast | Session | Difference (%) | Std. Error (%) | t[df], p, H0:μ = 0 |
post- − post-30 | ES | 0.82 | 16.74 | t [33] = 0.05, p = 0.96 |
PM | −15.22 | 16.74 | t [33] = −0.91, p = 0.37 | |
ES+PM | −9.79 | 16.74 | t [33] = −0.59, p = 0.56 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jochumsen, M.; Cremoux, S.; Robinault, L.; Lauber, J.; Arceo, J.C.; Navid, M.S.; Nedergaard, R.W.; Rashid, U.; Haavik, H.; Niazi, I.K. Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced Brain-Computer Interface. Sensors 2018, 18, 3761. https://doi.org/10.3390/s18113761
Jochumsen M, Cremoux S, Robinault L, Lauber J, Arceo JC, Navid MS, Nedergaard RW, Rashid U, Haavik H, Niazi IK. Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced Brain-Computer Interface. Sensors. 2018; 18(11):3761. https://doi.org/10.3390/s18113761
Chicago/Turabian StyleJochumsen, Mads, Sylvain Cremoux, Lucien Robinault, Jimmy Lauber, Juan Carlos Arceo, Muhammad Samran Navid, Rasmus Wiberg Nedergaard, Usman Rashid, Heidi Haavik, and Imran Khan Niazi. 2018. "Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced Brain-Computer Interface" Sensors 18, no. 11: 3761. https://doi.org/10.3390/s18113761
APA StyleJochumsen, M., Cremoux, S., Robinault, L., Lauber, J., Arceo, J. C., Navid, M. S., Nedergaard, R. W., Rashid, U., Haavik, H., & Niazi, I. K. (2018). Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced Brain-Computer Interface. Sensors, 18(11), 3761. https://doi.org/10.3390/s18113761