Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = partial-integro differential equation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 303 KiB  
Article
Remarks on a New Variable-Coefficient Integro-Differential Equation via Inverse Operators
by Chenkuan Li, Nate Fingas and Ying Ying Ou
Fractal Fract. 2025, 9(7), 404; https://doi.org/10.3390/fractalfract9070404 - 23 Jun 2025
Viewed by 945
Abstract
In this paper, we investigate functional inverse operators associated with a class of fractional integro-differential equations. We further explore the existence, uniqueness, and stability of solutions to a new integro-differential equation featuring variable coefficients and a functional boundary condition. To demonstrate the applicability [...] Read more.
In this paper, we investigate functional inverse operators associated with a class of fractional integro-differential equations. We further explore the existence, uniqueness, and stability of solutions to a new integro-differential equation featuring variable coefficients and a functional boundary condition. To demonstrate the applicability of our main theorems, we provide several examples in which we compute values of the two-parameter Mittag–Leffler functions. The proposed approach is particularly effective for addressing a wide range of integral and fractional nonlinear differential equations with initial or boundary conditions—especially those involving variable coefficients, which are typically challenging to treat using classical integral transform methods. Finally, we demonstrate a significant application of the inverse operator approach by solving a Caputo fractional convection partial differential equation in Rn with an initial condition. Full article
25 pages, 5123 KiB  
Article
Analytical and Numerical Treatment of Evolutionary Time-Fractional Partial Integro-Differential Equations with Singular Memory Kernels
by Kamel Al-Khaled, Isam Al-Darabsah, Amer Darweesh and Amro Alshare
Fractal Fract. 2025, 9(6), 392; https://doi.org/10.3390/fractalfract9060392 - 19 Jun 2025
Viewed by 407
Abstract
Evolution equations with fractional-time derivatives and singular memory kernels are used for modeling phenomena exhibiting hereditary properties, as they effectively incorporate memory effects into their formulation. Time-fractional partial integro-differential equations (FPIDEs) represent a significant class of such evolution equations and are widely used [...] Read more.
Evolution equations with fractional-time derivatives and singular memory kernels are used for modeling phenomena exhibiting hereditary properties, as they effectively incorporate memory effects into their formulation. Time-fractional partial integro-differential equations (FPIDEs) represent a significant class of such evolution equations and are widely used in diverse scientific and engineering fields. In this study, we use the sinc-collocation and iterative Laplace transform methods to solve a specific FPIDE with a weakly singular kernel. Specifically, the sinc-collocation method is applied to discretize the spatial domain, while a combination of numerical techniques is utilized for temporal discretization. Then, we prove the convergence analytically. To compare the two methods, we provide two examples. We notice that both the sinc-collocation and iterative Laplace transform methods provide good approximations. Moreover, we find that the accuracy of the methods is influenced by fractional order α(0,1) and the memory-kernel parameter β(0,1). We observe that the error decreases as β increases, where the kernel becomes milder, which extends the single-value study of β=1/2 in the literature. Full article
(This article belongs to the Special Issue Applications of Fractional Calculus in Modern Mathematical Modeling)
Show Figures

Figure 1

27 pages, 11022 KiB  
Article
Mathematical Modeling of Impurity Diffusion Processes in a Multiphase Randomly Inhomogeneous Body Using Feynman Diagrams
by Petro Pukach, Yurii Chernukha, Olha Chernukha, Yurii Bilushchak and Myroslava Vovk
Symmetry 2025, 17(6), 920; https://doi.org/10.3390/sym17060920 - 10 Jun 2025
Viewed by 315
Abstract
Modeling of impurity diffusion processes in a multiphase randomly inhomogeneous body is performed using the Feynman diagram technique. The impurity diffusion equations are formulated for each of the phases separately. Their random boundaries are subject to non-ideal contact conditions for concentration. The contact [...] Read more.
Modeling of impurity diffusion processes in a multiphase randomly inhomogeneous body is performed using the Feynman diagram technique. The impurity diffusion equations are formulated for each of the phases separately. Their random boundaries are subject to non-ideal contact conditions for concentration. The contact mass transfer problem is reduced to a partial differential equation describing diffusion in the body as a whole, which accounts for jump discontinuities in the searched function as well as in its derivative at the stochastic interfaces. The obtained problem is transformed into an integro-differential equation involving a random kernel, whose solution is constructed as a Neumann series. Averaging over the ensemble of phase configurations is performed. The Feynman diagram technique is developed to investigate the processes described by parabolic partial differential equations. The mass operator kernel is constructed as a sum of strongly connected diagrams. An integro-differential Dyson equation is obtained for the concentration field. In the Bourret approximation, the Dyson equation is specified for a multiphase randomly inhomogeneous medium with uniform phase distribution. The problem solution, obtained using Feynman diagrams, is compared with the solutions of diffusion problems for a homogeneous layer, one having the coefficients of the base phase and the other having the characteristics averaged over the body volume. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

17 pages, 281 KiB  
Article
Fuzzy Double Yang Transform and Its Application to Fuzzy Parabolic Volterra Integro-Differential Equation
by Atanaska Georgieva, Slav I. Cholakov, Maria Vasileva and Yordanka Gudalova
Symmetry 2025, 17(4), 606; https://doi.org/10.3390/sym17040606 - 16 Apr 2025
Viewed by 345
Abstract
This article introduces a new fuzzy double integral transformation called fuzzy double Yang transformation. We review some of the main properties of the transformation and find the conditions for its existence. We prove the theorems for partial derivatives and fuzzy unitary convolution. All [...] Read more.
This article introduces a new fuzzy double integral transformation called fuzzy double Yang transformation. We review some of the main properties of the transformation and find the conditions for its existence. We prove the theorems for partial derivatives and fuzzy unitary convolution. All of the new results are applied to find an analytical solution to the fuzzy parabolic Volterra integro-differential equation (FPVIDE) with a suitably selected memory kernel. In addition, a numerical example is provided to illustrate how the proposed method might be helpful for solving FPVIDE utilizing symmetric triangular fuzzy numbers. Compared with other symmetric transforms, we conclude that our new approach is simpler and needs less calculations. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Fuzzy Control)
39 pages, 391 KiB  
Article
Applications of Inverse Operators to a Fractional Partial Integro-Differential Equation and Several Well-Known Differential Equations
by Chenkuan Li and Wenyuan Liao
Fractal Fract. 2025, 9(4), 200; https://doi.org/10.3390/fractalfract9040200 - 25 Mar 2025
Cited by 3 | Viewed by 379
Abstract
This paper mainly consists of two parts: (i) We study the uniqueness, existence, and stability of a new fractional nonlinear partial integro-differential equation in Rn with three-point conditions and variable coefficients in a Banach space using inverse operators containing multi-variable functions, a [...] Read more.
This paper mainly consists of two parts: (i) We study the uniqueness, existence, and stability of a new fractional nonlinear partial integro-differential equation in Rn with three-point conditions and variable coefficients in a Banach space using inverse operators containing multi-variable functions, a generalized Mittag-Leffler function, as well as a few popular fixed-point theorems. These studies have good applications in general since uniqueness, existence and stability are key and important topics in many fields. Several examples are presented to demonstrate applications of results obtained by computing approximate values of the generalized Mittag-Leffler functions. (ii) We use the inverse operator method and newly established spaces to find analytic solutions to a number of notable partial differential equations, such as a multi-term time-fractional convection problem and a generalized time-fractional diffusion-wave equation in Rn with initial conditions only, which have never been previously considered according to the best of our knowledge. In particular, we deduce the uniform solution to the non-homogeneous wave equation in n dimensions for all n1, which coincides with classical results such as d’Alembert and Kirchoff’s formulas but is much easier in the computation of finding solutions without any complicated integrals on balls or spheres. Full article
28 pages, 3393 KiB  
Article
An Improved Numerical Scheme for 2D Nonlinear Time-Dependent Partial Integro-Differential Equations with Multi-Term Fractional Integral Items
by Fan Ouyang, Hongyan Liu and Yanying Ma
Fractal Fract. 2025, 9(3), 167; https://doi.org/10.3390/fractalfract9030167 - 11 Mar 2025
Viewed by 689
Abstract
This paper is dedicated to investigating a highly accurate numerical solution for a class of 2D nonlinear time-dependent partial integro-differential equations with multi-term fractional integral items. These integrals are weakly singular with respect to time, which are handled using the product integration rule [...] Read more.
This paper is dedicated to investigating a highly accurate numerical solution for a class of 2D nonlinear time-dependent partial integro-differential equations with multi-term fractional integral items. These integrals are weakly singular with respect to time, which are handled using the product integration rule on graded meshes to compensate for the influence generated by the initial weak singular nature of the exact solution. The temporal derivative is approximated by a generalized Crank–Nicolson difference scheme, while the nonlinear term is approximated by a linearized method. Furthermore, the stability and convergence of the derived time semi-discretization scheme are strictly proved by revising the finite discrete parameters. Meanwhile, the differential matrices of the spatial high-order derivatives based on barycentric rational interpolation are utilized to obtain the fully discrete scheme. Finally, the effectiveness and reliability of the proposed method are validated by means of several numerical experiments. Full article
Show Figures

Figure 1

20 pages, 1481 KiB  
Article
Analytical Pricing of Commodity Futures with Correlated Jumps and Seasonal Effects: An Empirical Study of Thailand’s Natural Rubber Market
by Athinan Sutchada, Sanae Rujivan and Boualem Djehiche
Mathematics 2025, 13(5), 770; https://doi.org/10.3390/math13050770 - 26 Feb 2025
Viewed by 817
Abstract
This paper presents a novel multivariate mean-reverting jump-diffusion model that incorporates correlated jumps and seasonal effects to capture the complex dynamics of commodity prices. The model also accounts for the interplay between price volatility and convenience yield, offering a comprehensive framework for commodity [...] Read more.
This paper presents a novel multivariate mean-reverting jump-diffusion model that incorporates correlated jumps and seasonal effects to capture the complex dynamics of commodity prices. The model also accounts for the interplay between price volatility and convenience yield, offering a comprehensive framework for commodity futures pricing. By leveraging the Feynman–Kac theorem, we derive a partial integro-differential equation for the conditional moment generating function of the log price, enabling an analytical solution for pricing commodity futures. This solution is validated against Monte Carlo simulations, demonstrating high accuracy and computational efficiency. The model is empirically applied to historical futures prices of natural rubber from the Thailand Futures Exchange. Key parameters—including commodity price dynamics, convenience yields, and seasonal factors—are estimated, revealing the critical role of jumps and seasonality in influencing market behavior. Notably, our findings show that convenience yields are negative, reflecting higher inventory costs, and tend to increase with rising spot prices. These results provide actionable insights for traders, risk managers, and policymakers in commodity markets, emphasizing the importance of correlated jumps and seasonal patterns in pricing and risk assessment. Full article
(This article belongs to the Special Issue Stochastic Analysis and Applications in Financial Mathematics)
Show Figures

Figure 1

17 pages, 949 KiB  
Article
Adaptive Control for Multi-Agent Systems Governed by Fractional-Order Space-Varying Partial Integro-Differential Equations
by Zhen Liu, Yingying Wen, Bin Zhao and Chengdong Yang
Mathematics 2025, 13(1), 112; https://doi.org/10.3390/math13010112 - 30 Dec 2024
Viewed by 787
Abstract
This paper investigates a class of multi-agent systems (MASs) governed by nonlinear fractional-order space-varying partial integro-differential equations (SVPIDEs), which incorporate both nonlinear state terms and integro terms. Firstly, a distributed adaptive control protocol is developed for leaderless fractional-order SVPIDE-based MASs, aiming to achieve [...] Read more.
This paper investigates a class of multi-agent systems (MASs) governed by nonlinear fractional-order space-varying partial integro-differential equations (SVPIDEs), which incorporate both nonlinear state terms and integro terms. Firstly, a distributed adaptive control protocol is developed for leaderless fractional-order SVPIDE-based MASs, aiming to achieve consensus among all agents without a leader. Then, for leader-following fractional-order SVPIDE-based MASs, the protocol is extended to account for communication between the leader and follower agents, ensuring that the followers reach consensus with the leader. Finally, three examples are presented to illustrate the effectiveness of the proposed distributed adaptive control protocols. Full article
(This article belongs to the Special Issue Dynamic Modeling and Simulation for Control Systems, 3rd Edition)
Show Figures

Figure 1

19 pages, 1007 KiB  
Article
An RBF Method for Time Fractional Jump-Diffusion Option Pricing Model under Temporal Graded Meshes
by Wenxiu Gong, Zuoliang Xu and Yesen Sun
Axioms 2024, 13(10), 674; https://doi.org/10.3390/axioms13100674 - 29 Sep 2024
Cited by 2 | Viewed by 967
Abstract
This paper explores a numerical method for European and American option pricing under time fractional jump-diffusion model in Caputo scene. The pricing problem for European options is formulated using a time fractional partial integro-differential equation, whereas the pricing of American options is described [...] Read more.
This paper explores a numerical method for European and American option pricing under time fractional jump-diffusion model in Caputo scene. The pricing problem for European options is formulated using a time fractional partial integro-differential equation, whereas the pricing of American options is described by a linear complementarity problem. For European option, we present nonuniform discretization along time and the radial basis function (RBF) method for spatial discretization. The stability and convergence analysis of the discrete scheme are carried out in the case of European options. For American option, the operator splitting method is adopted which split linear complementary problem into two simple equations. The numerical results confirm the accuracy of the proposed method. Full article
(This article belongs to the Special Issue Fractional Calculus and the Applied Analysis)
Show Figures

Figure 1

18 pages, 3476 KiB  
Article
Exploring New Traveling Wave Solutions to the Nonlinear Integro-Partial Differential Equations with Stability and Modulation Instability in Industrial Engineering
by J. R. M. Borhan, I. Abouelfarag, K. El-Rashidy, M. Mamun Miah, M. Ashik Iqbal and Mohammad Kanan
Computation 2024, 12(8), 161; https://doi.org/10.3390/computation12080161 - 9 Aug 2024
Viewed by 1407
Abstract
In this research article, we demonstrate the generalized expansion method to investigate nonlinear integro-partial differential equations via an efficient mathematical method for generating abundant exact solutions for two types of applicable nonlinear models. Moreover, stability analysis and modulation instability are also studied for [...] Read more.
In this research article, we demonstrate the generalized expansion method to investigate nonlinear integro-partial differential equations via an efficient mathematical method for generating abundant exact solutions for two types of applicable nonlinear models. Moreover, stability analysis and modulation instability are also studied for two types of nonlinear models in this present investigation. These analyses have several applications including analyzing control systems, engineering, biomedical engineering, neural networks, optical fiber communications, signal processing, nonlinear imaging techniques, oceanography, and astrophysical phenomena. To study nonlinear PDEs analytically, exact traveling wave solutions are in high demand. In this paper, the (1 + 1)-dimensional integro-differential Ito equation (IDIE), relevant in various branches of physics, statistical mechanics, condensed matter physics, quantum field theory, the dynamics of complex systems, etc., and also the (2 + 1)-dimensional integro-differential Sawda–Kotera equation (IDSKE), providing insights into the several physical fields, especially quantum gravity field theory, conformal field theory, neural networks, signal processing, control systems, etc., are investigated to obtain a variety of wave solutions in modern physics by using the mentioned method. Since abundant exact wave solutions give us vast information about the physical phenomena of the mentioned models, our analysis aims to determine various types of traveling wave solutions via a different integrable ordinary differential equation. Furthermore, the characteristics of the obtained new exact solutions have been illustrated by some figures. The method used here is candid, convenient, proficient, and overwhelming compared to other existing computational techniques in solving other current world physical problems. This article provides an exemplary practice of finding new types of analytical equations. Full article
Show Figures

Figure 1

15 pages, 905 KiB  
Article
Several Characterizations of the Generalized 1-Parameter 3-Variable Hermite Polynomials
by Shahid Ahmad Wani, Khalil Hadi Hakami and Hamad Zogan
Mathematics 2024, 12(16), 2459; https://doi.org/10.3390/math12162459 - 8 Aug 2024
Cited by 1 | Viewed by 995
Abstract
This paper presents a novel framework for introducing generalized 1-parameter 3-variable Hermite polynomials. These polynomials are characterized through generating functions and series definitions, elucidating their fundamental properties. Moreover, utilising a factorisation method, this study establishes recurrence relations, shift operators, and various differential equations, [...] Read more.
This paper presents a novel framework for introducing generalized 1-parameter 3-variable Hermite polynomials. These polynomials are characterized through generating functions and series definitions, elucidating their fundamental properties. Moreover, utilising a factorisation method, this study establishes recurrence relations, shift operators, and various differential equations, including differential, integro-differential, and partial differential equations. Full article
Show Figures

Figure 1

16 pages, 2249 KiB  
Article
Integrating Genomic, Climatic, and Immunological Factors to Analyze Seasonal Patterns of Influenza Variants
by Anass Bouchnita and Behzad Djafari-Rouhani
Symmetry 2024, 16(8), 943; https://doi.org/10.3390/sym16080943 - 23 Jul 2024
Cited by 2 | Viewed by 1685
Abstract
Influenza, often referred to as the flu, is an extremely contagious respiratory illness caused by influenza viruses, impacting populations globally with significant health consequences annually. A hallmark of influenza is its seasonal patterns, influenced by a mix of geographic, evolutionary, immunological, and environmental [...] Read more.
Influenza, often referred to as the flu, is an extremely contagious respiratory illness caused by influenza viruses, impacting populations globally with significant health consequences annually. A hallmark of influenza is its seasonal patterns, influenced by a mix of geographic, evolutionary, immunological, and environmental factors. Understanding these seasonal trends is crucial for informing public health decisions, including the planning of vaccination campaigns and their formulation. In our study, we introduce a genotype-structured infectious disease model for influenza transmission, immunity, and evolution. In this model, the population of infected individuals is structured according to the virus they harbor. It considers a symmetrical fitness landscape where the influenza A and B variants are considered. The model incorporates the effects of population immunity, climate, and epidemic heterogeneity, which makes it suitable for investigating influenza seasonal dynamics. We parameterize the model to the genomic surveillance data of flu in the US and use numerical simulations to elucidate the scenarios that result in the alternating or consecutive prevalence of flu variants. We show that the speed of virus evolution determines the alternation and co-circulation patterns of seasonal influenza. Our simulations indicate that slow immune waning reduces how often variants change, while cross-immunity regulates the co-circulation of variants. The framework can be used to predict the composition of future influenza outbreaks and guide the development of cocktail vaccines and antivirals that mitigate influenza in both the short and long term. Full article
(This article belongs to the Special Issue Mathematical Modeling in Biology and Life Sciences)
Show Figures

Figure 1

22 pages, 645 KiB  
Article
A Preconditioned Policy–Krylov Subspace Method for Fractional Partial Integro-Differential HJB Equations in Finance
by Xu Chen, Xin-Xin Gong, Youfa Sun and Siu-Long Lei
Fractal Fract. 2024, 8(6), 316; https://doi.org/10.3390/fractalfract8060316 - 27 May 2024
Cited by 1 | Viewed by 1247
Abstract
To better simulate the prices of underlying assets and improve the accuracy of pricing financial derivatives, an increasing number of new models are being proposed. Among them, the Lévy process with jumps has received increasing attention because of its capacity to model sudden [...] Read more.
To better simulate the prices of underlying assets and improve the accuracy of pricing financial derivatives, an increasing number of new models are being proposed. Among them, the Lévy process with jumps has received increasing attention because of its capacity to model sudden movements in asset prices. This paper explores the Hamilton–Jacobi–Bellman (HJB) equation with a fractional derivative and an integro-differential operator, which arise in the valuation of American options and stock loans based on the Lévy-α-stable process with jumps model. We design a fast solution strategy that includes the policy iteration method, Krylov subspace method, and banded preconditioner, aiming to solve this equation rapidly. To solve the resulting HJB equation, a finite difference method including an upwind scheme, shifted Grünwald approximation, and trapezoidal method is developed with stability and convergence analysis. Then, an algorithmic framework involving the policy iteration method and the Krylov subspace method is employed. To improve the performance of the above solver, a banded preconditioner is proposed with condition number analysis. Finally, two examples, sugar option pricing and stock loan valuation, are provided to illustrate the effectiveness of the considered model and the efficiency of the proposed preconditioned policy–Krylov subspace method. Full article
(This article belongs to the Topic Advances in Nonlinear Dynamics: Methods and Applications)
Show Figures

Figure 1

26 pages, 366 KiB  
Article
Dynamic Analysis of the M/G/1 Stochastic Clearing Queueing Model in a Three-Phase Environment
by Nurehemaiti Yiming
Mathematics 2024, 12(6), 805; https://doi.org/10.3390/math12060805 - 8 Mar 2024
Cited by 2 | Viewed by 915
Abstract
In this paper, we consider the M/G/1 stochastic clearing queueing model in a three-phase environment, which is described by integro-partial differential equations (IPDEs). Our first result is semigroup well-posedness for the dynamic system. Utilizing a C0—semigroup theory, we prove that the [...] Read more.
In this paper, we consider the M/G/1 stochastic clearing queueing model in a three-phase environment, which is described by integro-partial differential equations (IPDEs). Our first result is semigroup well-posedness for the dynamic system. Utilizing a C0—semigroup theory, we prove that the system has a unique positive time-dependent solution (TDS) that satisfies the probability condition. As our second result, we prove that the TDS of the system strongly converges to its steady-state solution (SSS) if the service rates of the servers are constants. For this asymptotic behavior, we analyze the spectrum of the system operator associated with the system. Additionally, the stability of the semigroup generated by the system operator is also discussed. Full article
(This article belongs to the Special Issue Research on Dynamical Systems and Differential Equations)
15 pages, 842 KiB  
Article
Exact Solutions of Population Balance Equation with Aggregation, Nucleation, Growth and Breakage Processes, Using Scaling Group Analysis
by Fubiao Lin, Yang Yang and Xinxia Yang
Symmetry 2024, 16(1), 65; https://doi.org/10.3390/sym16010065 - 4 Jan 2024
Cited by 2 | Viewed by 2012
Abstract
Population balance equations may be employed to handle a wide variety of particle processes has certainly received unprecedented attention, but the absence of explicit exact solutions necessitates the use of numerical approaches. In this paper, a (2 + 1) dimensional population balance equation [...] Read more.
Population balance equations may be employed to handle a wide variety of particle processes has certainly received unprecedented attention, but the absence of explicit exact solutions necessitates the use of numerical approaches. In this paper, a (2 + 1) dimensional population balance equation with aggregation, nucleation, growth and breakage processes is solved analytically by use of the methods of scaling transformation group, observation and trial function. Symmetries, reduced equations, invariant solutions, exact solutions, existence of solutions, evolution analysis of dynamic behavior for solutions are presented. The exact solutions obtained can be compared with the numerical scheme. The obtained results also show that the method of scaling transformation group can be applied to study integro-partial differential equations. Full article
Show Figures

Figure 1

Back to TopTop