Exploring New Traveling Wave Solutions to the Nonlinear Integro-Partial Differential Equations with Stability and Modulation Instability in Industrial Engineering
Abstract
:1. Introduction
2. Elucidation of the Generalized (G′/G)-Expansion Process
- Step 1
- In this stage, we combine all the independent variables with the dependent ones,
- Step 2
- Integrate Equation (3) as much as we need, upon observing the necessity, and for minimalism, all integral constants are assumed to be zero.
- Step 3
- Guess the wave solution of the above ODE is as follows,
- Step 4
- The homogeneous balance principle will give us the value of from Equation (3).
- Step 5
- Combining Equations (4)–(6) in Equation (3) along with the calculated value of , we have a system of algebraic equations, and then assembling the coefficient of , , and , from each side of the resultant polynomial equals to zero. Currently, one could see a set of under-determined algebraic equations for ,, , and .
- Step 6
- After entering the values of , , , and into Equation (4), we obtain the traveling wave solution of Equation (1) because the general solution of Equation (6) is well-known to us previously.
- Step 7
- With the aid of the general solution of Equation (6) or the general solutions to a Riccati equation by (40)–(42) in [48], we succeed in obtaining the following solutions of Equation (6):
3. Applications of the Proposed Method
3.1. Traveling Wave Solutions to the IDIE
3.2. Traveling Wave Solutions to the IDSKE
4. Stability Analysis
4.1. Stability Analysis of the IDIE
4.2. Stability Analysis of the IDSKE
5. Modulation Instability
5.1. Modulation Instability of the IDIE
5.2. Modulation Instability of the IDSKE
6. Graphical Revelation and Physical Demonstrations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, W.X.; Zhou, D.T. Solitary wave solutions to a generalized KdV equation. Acta Phys. Sin. 1993, 42, 1731–1734. [Google Scholar]
- Wang, M.L. Solitary wave solutions for variant Boussinesq equations. Phys. Lett. A 1995, 199, 169–172. [Google Scholar] [CrossRef]
- Sakhnovich, A. Iterated Backlund-Darboux transformation and transfer matrix-function (nonisospectral case). Chaos Solitons Fractals 1996, 7, 1251–1259. [Google Scholar] [CrossRef]
- Yan, Z. Abundant families of Jacobi elliptic function solutions of the (2 + 1)-dimensional integrable Davey-Stewartson-type equation via a new method. Chaos Solitons Fractals 2003, 18, 299–309. [Google Scholar] [CrossRef]
- He, J.H.; Wu, X.H. Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 2006, 30, 700–708. [Google Scholar] [CrossRef]
- Ma, W.X.; Huang, T.; Zhang, Y. A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 2010, 82, 065003. [Google Scholar] [CrossRef]
- Ma, W.X.; Lee, J.H. A transformed rational function method and exact solutions to the 3+1-dimensional Jimbo-Miwa equation. Chaos Solitons Fractals 2009, 42, 1356–1363. [Google Scholar] [CrossRef]
- Wang, M.L.; Li, X.Z.; Zhang, J.L. The -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 2008, 372, 417–423. [Google Scholar]
- Bekir, A.; Cevikel, A.C. New exact travelling wave solutions of nonlinear physical models. Chaos Solitons Fractals 2009, 41, 1733–1739. [Google Scholar] [CrossRef]
- Ziliang, L.; Gang, F.; Jing, C. Periodic structure of atmospheric internal gravity wave under the influence of air-sea interaction. Chaos Solitons Fractals 2009, 40, 530–537. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, F.; Zhao, X. An improved (G′/G)-expansion method for solving nonlinear evolution equations. Int. J. Comput. Math. 2010, 87, 1716–1725. [Google Scholar] [CrossRef]
- Din, S.T.M.; Yildirim, A.; Sariavdin, S. Numerical soliton solution of the Kaup-Kupershmidt equation. Int. J. Numer. Methods Heat Fluid Flow 2011, 21, 272. [Google Scholar]
- Din, S.T.M.; Yildirim, A.; Sariavdin, S. Numerical soliton solutions of improved Boussinesq equation. Int. J. Numer. Methods Heat Fluid Flow 2011, 21, 822. [Google Scholar]
- Mahmood, A.; Srivastava, H.M.; Abbas, M.; Abdullah, F.A.; Mohammed, P.O.; Baleanu, D.; Chorfi, N. Optical soliton solutions of the coupled Radhakrishnan-Kundu-Lakshmanan equation by using the extended direct algebraic approach. Heliyon 2023, 9, e20852. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Almusawa, H.; Kumar, S.; Wazwaz, A.M.; Osman, M.S. A (2 + 1)-dimensional Kadomtsev–Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions. Results Phys. 2021, 23, 104043. [Google Scholar] [CrossRef]
- Naher, H.; Abdullah, F.A. New approach of (G′/G)-expansion method and new approach of generalized (G′/G)-expansion method for nonlinear evolution equation. AIP Adv. 2013, 3, 032116. [Google Scholar] [CrossRef]
- Hossain, M.D.; Alam, M.K.; Akbar, M.A. Abundant wave solutions of the Boussinesq equation and the (2+1)-dimensional extended shallow water wave equation. Ocean Eng. 2018, 165, 69–76. [Google Scholar] [CrossRef]
- Ita, B.I.; Tchoua, P. The solution of nonlinear Klein-Gordon equation using Reduced differential transform method. Res. J. Phys. Sci. 2013, 1, 21–23. [Google Scholar]
- Acan, O.; Keskin, Y. Reduced differential transform method for (2 + 1) dimensional type of the Zakharov-Kuznetsov ZK (n, n) equations. AIP Conf. Proc. 2014, 1648, 370015. [Google Scholar]
- Bulut, H.; Baskonus, H.M. New complex hyperbolic Function Solutions for the (2 + 1)-Dimensional Dispersive Long Water-Wave System. Math. Comput. Appl. 2016, 21, 6. [Google Scholar] [CrossRef]
- Aasaraai, A. The application of modified F-expansion method solving the Maccari’s system. J. Adv. Math. Comput. Sci. 2015, 11, 1–14. [Google Scholar] [CrossRef]
- Diennadi, S.; Shawagfeh, N.; Osman, M.S.; Gomez-Aguilar, J.F.; Arqub, O.A. The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique. Phys. Scr. 2021, 96, 094006. [Google Scholar] [CrossRef]
- Liu, J.G.; Eslami, M.; Rezazadeh, H.; Mirzazadeh, M. Rational solutions and lump solutions to a non-isospectraland generalized variable-coefficient Kadomtsev–Petviashvili equation. Nonlinear Dyn. 2019, 95, 1027–1033. [Google Scholar] [CrossRef]
- Saeed, U. Sine-cosine wavelets operational matrix method for fractional nonlinear differential equation. Int. J. Wavelets Multiresolution Inf. Process. 2019, 17, 1950026. [Google Scholar] [CrossRef]
- Sabis, J.; Jibril, A.; Gadu, A.M. New exact solution for the (3 + 1) conformable space-time fractional modified Korteweg-de-Vries equations via Sine-Cosine Method. J. Taibah Univ. Sci. 2019, 13, 91–95. [Google Scholar]
- Osman, M.S. New analytical study of water waves described by coupled fractional variant Boussinesq equation in fluid dynamics. Pramana J. Phys. 2019, 93, 26. [Google Scholar] [CrossRef]
- Bibi, S.; Ahmed, N.; Khan, U.; Mohyud-Din, S.T. Auxiliary equation method for ill-posed Boussinesq equation. Phys. Scr. 2019, 94, 8. [Google Scholar] [CrossRef]
- Kim, H.; Bae, J.H.; Sakthivel, R. Exact travelling wave solutions of two important nonlinear partial differential equations. Z. Naturforsch. A 2014, 69, 155–162. [Google Scholar] [CrossRef]
- Ali, H.M.S.; Habib, M.A.; Miah, M.M.; Akbar, M.A. A modification of the generalized Kudryshov method for the system of some nonlinear evolution equations. J. Mech. Continua. Math. Sci. 2019, 14, 91–109. [Google Scholar]
- Ali, K.K.; Osman, M.S.; Abdel-Aty, M. New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method. Alex. Eng. J. 2020, 59, 1191–1196. [Google Scholar] [CrossRef]
- Xiao, Y.; Fan, E.; Liu, P. Inverse scattering transform for the coupled modified Korteweg-de Vries equation with nonzero boundary conditions. J. Math. Anal. Appl. 2021, 504, 125567. [Google Scholar] [CrossRef]
- Liu, N.; Xuan, Z.; Sun, J. Triple-pole soliton solutions of the derivative nonlinear Schrodinger equation via inverse scattering transform. Appl. Math. Lett. 2021, 125, 107741. [Google Scholar] [CrossRef]
- Miah, M.M.; Ali, H.M.S.; Akbar, M.A.; Seadawy, A.R. New applications of the two variable (G′/G, 1/G)-expansion method for closed form traveling wave solutions of integro-differential equations. J. Ocean Eng. Sci. 2019, 4, 132–143. [Google Scholar] [CrossRef]
- Miah, M.M. New exact traveling wave solutions to the Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation. AIP Conf. Proc. 2023, 2901, 030002. [Google Scholar]
- Siddique, I.; Jaradat, M.M.; Zafar, A.; Mehdi, K.B.; Osman, M.S. Exact traveling wave solutions for two prolific conformable M-Fractional differential equations via three diverse approaches. Results Phys. 2021, 28, 104557. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Miah, M.M.; Ali, H.M.S.; Chu, Y.-M.; Osman, M.S. An investigation to the nonlinear (2 + 1)-dimensional soliton equation for discovering explicit and periodic wave solutions. Results Phys. 2021, 23, 104013. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Miah, M.M.; Iqbal, M.A.; Alshehri, H.M.; Baleanu, D.; Osman, M.S. Advanced exact solutions to the nano-ionic currents equation through MTs and the soliton equation containing the RLC transmission line. Eur. Phys. J. Plus 2023, 138, 502. [Google Scholar] [CrossRef]
- Ma, W.X. Soliton solutions to constrained nonlocal integrable nonlinear Schrodinger hierarchies of type (−λ, λ). Int. J. Geom. Methods Mod. Phys. 2023, 20, 2350098. [Google Scholar] [CrossRef]
- Ma, W.X. AKNS type reduced integrable bi-Hamiltonian hierarchies with four potentials. Appl. Math. Lett. 2023, 145, 108775. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Wang, Y.; Miah, M.M.; Osman, M.S. Study on Date-Jimbo-Kashiwara-Miwa Equation with Conformable Derivative Dependent on Time Parameter to find the Exact Dynamic Wave Solutions. Fractal Fract. 2022, 6, 4. [Google Scholar] [CrossRef]
- Wang, H.; Alam, M.N.; Ilhan, O.A.; Singh, G.; Manafian, J. New complex wave structure to the complex Ginzburg-Landau model. AIMS Math. 2021, 6, 8883–8894. [Google Scholar] [CrossRef]
- Ullah, N.; Asjad, M.I.; Iqbal, A.; Rehman, H.U.; Hassan, A.; Gia, T.N. Analysis of optical soliton solutions of two nonlinear models using analytical technique. AIMS Math. 2021, 6, 13258–13271. [Google Scholar] [CrossRef]
- Kallel, W.; Almusawa, H.; Alizamini, S.M.M. Optical soliton solutions for the coupled conformable Fokas-Lenells equation with spatio-temporal dispersion. Results Phys. 2021, 26, 104388. [Google Scholar] [CrossRef]
- Liu, J.G.; Zhu, W.H. Multiple rouge wave, breather wave and interaction solutions of a generalized (3+1)-dimensional variable-coefficient nonlinear wave equation. Nonlinear Dyn. 2021, 103, 1841. [Google Scholar] [CrossRef]
- Kumar, S.; Mohan, B. A novel and efficient method for obtaining Hirota’s bilinear form for the nonlinear evolution equation in (n + 1) dimensions. Partial Diff. Equ. Appl. Math. 2022, 5, 100274. [Google Scholar]
- Ahmed, M.S.; Zaghrout, A.A.S.; Ahmed, H. Travelling wave solutions for the doubly dispersive equation using improved modified extended tanh-function method. Alex. Eng. J. 2022, 61, 4–5. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, H.; Sakthivel, R. Periodic and solitary wave solutions of some important physical models with variable coefficients. Waves Random Complex Media 2019, 31, 891–910. [Google Scholar] [CrossRef]
- Ma, W.X.; Fuchssteiner, B. Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation. Int. J. Non-Linear Mech. 1996, 31, 329–338. [Google Scholar] [CrossRef]
- Arshad, M.; Seadawy, A.R.; Lu, D. Modulation stability and optical soliton solutions of nonlinear Schrodinger equation with higher order dispersion and nonlinear terms and its applications. Superlattices Microstruct. 2017, 112, 422–434. [Google Scholar] [CrossRef]
- Aliahdaly, N.H.; Aloufi, R.G.; Seadawy, A.R. Stability analysis and soliton solutions for the longitudinal wave equation in magneto electro-elastic circular rod. Results Phys. 2021, 26, 104329. [Google Scholar] [CrossRef]
- Tariq, K.U.; Inc, M.; Kazmi, S.M.R.; Alhefthi, R.K. Modulation instability, stability analysis and soliton solutions to the resonance nonlinear Schrodinger model with Kerr law nonlinearity. Opt. Quantum Electron. 2023, 55, 838. [Google Scholar] [CrossRef]
- Hossain, M.N.; Miah, M.M.; Abbas, M.S.; Rashidy, K.E.; Borhan, J.R.M.; Kanan, M. An Analytical Study of the Mikhailov-Novikov-Wang Equation with Stability and Modulation Instability Analysis in Industrial Engineering via Multiple Methods. Symmetry 2024, 16, 879. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Manafian, J.; Alharthi, M.; Alrashedi, Y. Stability Analysis, Modulation Instability, and Beta-Time Fractional Exact Soliton Solutions to the Van der Waals Equation. Mathematics 2024, 12, 2257. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Miah, M.M.; Rasid, M.M.; Rehman, S.; Borhan, J.R.M.; Wazwaz, A.M.; Kanan, M. Further quality analytical investigation on soliton solutions of some nonlinear PDEs with analyses: Bifurcation, sensitivity, and chaotic phenomena. Alex. Eng. J. 2024, 103, 74–87. [Google Scholar] [CrossRef]
- Borhan, J.R.M.; Miah, M.M.; Alsharif, F.; Kanan, M. Abundant Closed-Form Soliton Solutions to the Fractional Stochastic Kraenkel-Manna-Merle System with Bifurcation, Chaotic, Sensitivity, and Modulation Instability Analysis. Fractal Fract. 2024, 8, 327. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borhan, J.R.M.; Abouelfarag, I.; El-Rashidy, K.; Miah, M.M.; Iqbal, M.A.; Kanan, M. Exploring New Traveling Wave Solutions to the Nonlinear Integro-Partial Differential Equations with Stability and Modulation Instability in Industrial Engineering. Computation 2024, 12, 161. https://doi.org/10.3390/computation12080161
Borhan JRM, Abouelfarag I, El-Rashidy K, Miah MM, Iqbal MA, Kanan M. Exploring New Traveling Wave Solutions to the Nonlinear Integro-Partial Differential Equations with Stability and Modulation Instability in Industrial Engineering. Computation. 2024; 12(8):161. https://doi.org/10.3390/computation12080161
Chicago/Turabian StyleBorhan, J. R. M., I. Abouelfarag, K. El-Rashidy, M. Mamun Miah, M. Ashik Iqbal, and Mohammad Kanan. 2024. "Exploring New Traveling Wave Solutions to the Nonlinear Integro-Partial Differential Equations with Stability and Modulation Instability in Industrial Engineering" Computation 12, no. 8: 161. https://doi.org/10.3390/computation12080161
APA StyleBorhan, J. R. M., Abouelfarag, I., El-Rashidy, K., Miah, M. M., Iqbal, M. A., & Kanan, M. (2024). Exploring New Traveling Wave Solutions to the Nonlinear Integro-Partial Differential Equations with Stability and Modulation Instability in Industrial Engineering. Computation, 12(8), 161. https://doi.org/10.3390/computation12080161