Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (187)

Search Parameters:
Keywords = partial lead substitution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2157 KiB  
Article
WEEE Glass as a Sustainable Supplementary Cementitious Material: Experimental Analysis on Strength, Durability and Ecotoxic Performance of Mortars
by Raphaele Malheiro, André Lemos, Aires Camões, Duarte Ferreira, Juliana Alves and Cristina Quintelas
Sci 2025, 7(3), 107; https://doi.org/10.3390/sci7030107 (registering DOI) - 2 Aug 2025
Abstract
This study investigates the use of waste glass powder derived from fluorescent lamps as a partial replacement for cement in mortar production, aiming to valorize this Waste from Electrical and Electronic Equipment (WEEE) and enhance sustainability in the construction sector. Mortars were formulated [...] Read more.
This study investigates the use of waste glass powder derived from fluorescent lamps as a partial replacement for cement in mortar production, aiming to valorize this Waste from Electrical and Electronic Equipment (WEEE) and enhance sustainability in the construction sector. Mortars were formulated by substituting 25% of cement by volume with glass powders from fluorescent lamp glass and green bottle glass. The experimental program evaluated mechanical strength, durability parameters and ecotoxicological performance. Results revealed that clean fluorescent lamp mortars showed the most promising mechanical behavior, exceeding the reference in long-term compressive (54.8 MPa) and flexural strength (10.0 MPa). All glass mortars exhibited significantly reduced chloride diffusion coefficients (85–89%) and increased electrical resistivity (almost 4 times higher), indicating improved durability. Leaching tests confirmed that the incorporation of fluorescent lamp waste did not lead to hazardous levels of heavy metals in the cured mortars, suggesting effective encapsulation. By addressing both technical (mechanical and durability) and ecotoxic performance, this research contributes in an original and relevant way to the development of more sustainable building materials. Full article
Show Figures

Figure 1

26 pages, 4775 KiB  
Article
Effects of Partial Replacement of Cement with Fly Ash on the Mechanical Properties of Fiber-Reinforced Rubberized Concrete Containing Waste Tyre Rubber and Macro-Synthetic Fibers
by Mizan Ahmed, Nusrat Jahan Mim, Wahidul Biswas, Faiz Shaikh, Xihong Zhang and Vipulkumar Ishvarbhai Patel
Buildings 2025, 15(15), 2685; https://doi.org/10.3390/buildings15152685 - 30 Jul 2025
Viewed by 172
Abstract
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, [...] Read more.
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, and 50%), rubber aggregate contents (0%, 10%, and 20% by volume of fine aggregate), and macro-synthetic fiber dosages (0% to 1% by total volume). The fresh properties were evaluated through slump tests, while hardened properties including compressive strength, splitting tensile strength, and flexural strength were systematically assessed. Results demonstrated that fly ash substitution up to 25% improved the interfacial bonding between rubber particles, fibers, and the cementitious matrix, leading to enhanced tensile and flexural performance without significantly compromising compressive strength. However, at 50% replacement, strength reductions were more pronounced due to slower pozzolanic reactions and reduced cement content. The inclusion of MSF effectively mitigated strength loss induced by rubber aggregates, improving post-cracking behavior and toughness. Overall, an optimal balance was achieved at 25% fly ash replacement combined with 10% rubber and 0.5% fiber content, producing a more sustainable composite with favorable mechanical properties while reducing carbon and ecological footprints. These findings highlight the potential of integrating industrial by-products and waste materials to develop eco-friendly, high-performance FRRC for structural applications, supporting circular economy principles and reducing the carbon footprint of concrete infrastructure. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

25 pages, 4639 KiB  
Article
Investigation of the Mechanical and Physical Properties of Acidic Pumice Aggregate-Reinforced Lightweight Concrete Under High-Temperature Exposure
by Belkis Elyigit and Cevdet Emin Ekinci
Buildings 2025, 15(14), 2505; https://doi.org/10.3390/buildings15142505 - 17 Jul 2025
Viewed by 314
Abstract
This study examines the mechanical and physical performance of lightweight concretes incorporating acidic pumice aggregate, with a particular focus on their behavior under thermal exposure. Pumice sourced from the Bitlis-Tatvan region was used as a partial replacement for limestone aggregate at volumetric substitution [...] Read more.
This study examines the mechanical and physical performance of lightweight concretes incorporating acidic pumice aggregate, with a particular focus on their behavior under thermal exposure. Pumice sourced from the Bitlis-Tatvan region was used as a partial replacement for limestone aggregate at volumetric substitution levels of 50%, 60%, and 70% (designated LC50, LC60, and LC70, respectively), alongside a conventional control mix (NC). Experimental investigations included flexural and compressive strength tests, capillary water absorption measurements, and mass loss assessments at elevated temperatures (100 °C, 200 °C, and 300 °C). The results indicate that increasing pumice content leads to a significant reduction in mechanical strength, as evidenced by a strong negative correlation (e.g., −0.994 for compressive strength), and results in increased water absorption due to the higher porosity of pumice. Thermal exposure caused more pronounced weight loss in pumice-rich mixtures, primarily attributable to moisture evaporation and the formation of surface voids, particularly in LC60 and LC70 specimens. Although the incorporation of pumice effectively reduces the unit weight of concrete, it compromises both strength and durability, highlighting a critical trade-off between weight reduction and structural performance. Future studies are recommended to quantitatively assess the relationship between compressive and flexural strengths to address current limitations. Additionally, advanced microstructural analyses (e.g., SEM, XRD), fire resistance evaluations at higher temperatures, and the development of hybrid mixes incorporating supplementary cementitious materials (SCMs) should be further explored. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 4284 KiB  
Article
Monitoring of Corrosion in Reinforced E-Waste Concrete Subjected to Chloride-Laden Environment Using Embedded Piezo Sensor
by Gaurav Kumar, Tushar Bansal and Dayanand Sharma
Constr. Mater. 2025, 5(3), 46; https://doi.org/10.3390/constrmater5030046 - 16 Jul 2025
Viewed by 446
Abstract
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction [...] Read more.
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction practices, printed circuit board (PCB) materials were incorporated as partial replacements for coarse aggregates in concrete. The experiment utilized M30-grade concrete mixes, substituting 15% of natural coarse aggregates with E-waste, aiming to assess both sustainability and structural performance without compromising durability. EPS configured with Lead Zirconate Titanate (PZT) patches were embedded into both conventional and E-waste concrete specimens. The EPS monitored the changes in the form of conductance and susceptance signatures across a 100–400 kHz frequency range during accelerated corrosion exposure over a 60-day period in a 3.5% NaCl solution. The corrosion progression was evaluated qualitatively through electrical impedance signatures, visually via rust formation and cracking, and quantitatively using the Root Mean Square Deviation (RMSD) of EMI signatures. The results showed that the EMI technique effectively captured the initiation and propagation stages of corrosion. E-waste concrete exhibited earlier and more severe signs of corrosion compared to conventional concrete, indicated by faster increases and subsequent declines in conductance and susceptance and higher RMSD values during the initiation phase. The EMI-based system demonstrated its capability to detect microstructural changes at early stages, making it a promising method for Structural Health Monitoring (SHM) of sustainable concretes. The study concludes that while the use of E-waste in concrete contributes positively to sustainability, it may compromise long-term durability in aggressive environments. However, the integration of EPS and EMI offers a reliable, non-destructive, and sensitive technique for real-time corrosion monitoring, supporting preventive maintenance and improved infrastructure longevity. Full article
Show Figures

Figure 1

18 pages, 2337 KiB  
Article
Effects of Partial Organic Fertilizer Substitution on Grain Yield, Nitrogen Use Efficiency, and Physiological Traits of Rice in Northeastern China
by Shimeng Guo, Yimeng Li, Zhouzhou Wu, Jiaxin Liu, Chao Liang, Yue Wang, Shu Wang, Chanchan Zhou, Junfeng Liu and Jingyi Mu
Agronomy 2025, 15(7), 1576; https://doi.org/10.3390/agronomy15071576 - 27 Jun 2025
Viewed by 280
Abstract
In China, agriculture is currently highly dependent on chemical nitrogen. This leads to low nitrogen use efficiency and high nitrogen losses. Considering the issues caused by excessive chemical fertilizer, integrated nutrient management using organic and chemical fertilizer sources is important. To clarify how [...] Read more.
In China, agriculture is currently highly dependent on chemical nitrogen. This leads to low nitrogen use efficiency and high nitrogen losses. Considering the issues caused by excessive chemical fertilizer, integrated nutrient management using organic and chemical fertilizer sources is important. To clarify how partial substitution of chemical fertilizer by organic fertilizer affects rice yield, physiological traits, and nitrogen use efficiency, we conducted a two-year field trial in 2021 and 2022, and used two rice cultivars, Shendao47 (SD47) and Shendao505 (SD505), which were grown in the field with five fertilization treatments: (1) CK (zero N application); (2) CF (100% chemical fertilizer); (3) OR10 (10% organic fertilizer + 90% chemical fertilizer); (4) OR20 (20% organic fertilizer + 80% chemical fertilizer); and (5) OR30 (30% organic fertilizer + 70% chemical fertilizer). The results show that the partial organic substitution (OR) treatments improved the yield by 1–10% for two cultivars by increasing effective panicles and grain filling. The increase in grain filling was related to the photosynthetic parameters, including LAI, chlorophyll content, and net photosynthetic rate during the grain-filling stage. The photosynthetic parameters of OR treatments were higher than those of CF treatment. Additionally, with the increase in organic fertilizer application rates, the grain yield, agronomic N use efficiency, partial factor productivity of applied N, and physiological N use efficiency increased at first and then decreased, peaking in OR20 treatment. Conclusively, the 20% organic fertilizer with 80% chemical fertilizer is a promising option for higher yield and improved N utilization for both cultivars. This study provides a sustainable nutrient management strategy to improve crop yield with high nutrient use efficiency. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 2092 KiB  
Article
An Investigation of 5-Halogenated N-Indolylsulfonyl-2-fluorophenol Derivatives as Aldose Reductase Inhibitors
by Antonios Kousaxidis, Konstantina-Malamati Kalfagianni, Eleni Seretouli and Ioannis Nicolaou
Medicines 2025, 12(3), 16; https://doi.org/10.3390/medicines12030016 - 23 Jun 2025
Viewed by 690
Abstract
Background/Objectives: Diabetes mellitus is a group of chronic metabolic disorders characterized by persistent hyperglycemia. Aldose reductase, the first enzyme in the polyol pathway, plays a key role in the onset of long-term diabetic complications. Aldose reductase inhibition has been widely established as a [...] Read more.
Background/Objectives: Diabetes mellitus is a group of chronic metabolic disorders characterized by persistent hyperglycemia. Aldose reductase, the first enzyme in the polyol pathway, plays a key role in the onset of long-term diabetic complications. Aldose reductase inhibition has been widely established as a potential pharmacotherapeutic approach to prevent and treat diabetes mellitus-related comorbidities. Although several promising aldose reductase inhibitors have been developed over the past few decades, they have failed in clinical trials due to unacceptable pharmacokinetic properties and severe side effects. This paper describes the design, synthesis, and pharmacological evaluation of four novel 5-halogenated N-indolylsulfonyl-2-fluorophenol derivatives (3a-d) as aldose reductase inhibitors. Methods: The design of compounds was based on a previously published lead compound (IIc) developed by our research group to enhance its inhibitory capacity. Compounds 3a-d were screened for their ability to inhibit in vitro partially purified aldose reductase from rat lenses, and their binding modes were investigated through molecular docking. Results: The presence of a sulfonyl linker between indole and o-fluorophenol aromatic rings is mandatory for potent aldose reductase inhibition. The 5-substitution of the indole core with halogens resulted in a slight decrease in the inhibitory power of 3a-c compared to IIc. Among halogens, bromine was the most capable of filling the selectivity pocket through hydrophobic interactions with Thr113 and Phe115 residues. Conclusions: Although our strategy to optimize the inhibitory potency of IIc via inserting halogen atoms in the indole scaffold was not fruitful, aromatic ring halogenation can be still utilized as a promising approach for designing more potent aldose reductase inhibitors. Full article
Show Figures

Figure 1

14 pages, 3381 KiB  
Article
Reducing Mineral Fertilizer Can Improve the Soil Quality and Increase the Wheat Yield and Nutrient Utilization Efficiency: The Fertilizing Effect of Organic–Inorganic Compound Fertilizers
by Ping Bo, Qingyang He, Yubin Lan, Jiankun Li, Haiteng Liu, Xinlong Li and Huizheng Wang
Agriculture 2025, 15(12), 1294; https://doi.org/10.3390/agriculture15121294 - 16 Jun 2025
Cited by 1 | Viewed by 566
Abstract
Replacing chemical fertilizers with organic alternatives represents a viable strategy for enhancing agricultural productivity. The optimized integration of both fertilizer types can reduce the chemical input while improving soil conditions. However, the specific impacts of combined organic and inorganic fertilization on soil quality [...] Read more.
Replacing chemical fertilizers with organic alternatives represents a viable strategy for enhancing agricultural productivity. The optimized integration of both fertilizer types can reduce the chemical input while improving soil conditions. However, the specific impacts of combined organic and inorganic fertilization on soil quality and crop performance require further investigation. To address this, a two-year field experiment was conducted to examine the effects of varying ratios of organic fertilizer substitution on wheat growth, grain yield, nutrient uptake, and soil quality. The results showed that the application of a 100% organic fertilizer combined with a 90% chemical fertilizer significantly increased the wheat biomass and grain yield. In terms of the nutrient uptake efficiency, the aboveground uptake of nitrogen (N), phosphorus (P), and potassium (K) increased significantly by 29.2%, 29.0%, and 56.5%, respectively. The nutrient use efficiency was also improved, with increases of 30.4% for N, 21.1% for P, and 47.7% for K. The partial factor productivity, total nutrient uptake, and the translocation efficiency of N, P, and K were all significantly enhanced. The soil quality was also markedly improved, with increases in both the soil organic matter and nutrient content. In conclusion, substituting chemical fertilizers with organic fertilizers improves the soil moisture and organic matter content, thereby enhancing the total uptake and translocation efficiency of nitrogen, phosphorus, and potassium. This leads to increased nutrient content in wheat grains, resulting in higher yields and improved grain quality. Moreover, this study provides practical guidance for wheat production and supports policy objectives related to sustainable agriculture, reduced chemical fertilizer use, and improved food security. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 6228 KiB  
Article
Alkali-Activated Slag–Fly Ash–Desert Sand Mortar for Building Applications: Flowability, Mechanical Properties, Sulfate Resistance, and Microstructural Analysis
by Wenlong Yan, Haoran Cheng, Meng Zhang, Yongjun Qin, Jianqing Cao and Xuyang Cao
Buildings 2025, 15(12), 2069; https://doi.org/10.3390/buildings15122069 - 16 Jun 2025
Viewed by 362
Abstract
This study investigates the performance of alkali-activated mortar incorporating slag, fly ash, and desert sand, with a focus on flowability, mechanical properties, sulfate resistance, and microstructural characteristics. A four-factor, three-level orthogonal experimental design was used to analyze the effects of the fly ash [...] Read more.
This study investigates the performance of alkali-activated mortar incorporating slag, fly ash, and desert sand, with a focus on flowability, mechanical properties, sulfate resistance, and microstructural characteristics. A four-factor, three-level orthogonal experimental design was used to analyze the effects of the fly ash substitution rate, alkali content (Na2O/b), activator modulus, and desert sand replacement rate for natural sand. The results indicate that increased slag and desert sand contents reduce mortar flowability. Despite this, the mortar exhibits excellent mechanical strength, with compressive strength reaching 77.7 MPa at 28 days and increasing to 89.34 MPa under sulfate exposure. However, after 120 days of sulfate erosion, a decline in strength is observed due to the formation of expansive products such as gypsum and caliche, leading to cracking. Microstructural analyses (XRD, SEM/EDS, MIP) reveal partial dissolution of desert sand under alkali activation, enhancing gel formation and reducing cumulative porosity. The pore structure predominantly consists of harmless pores. These findings demonstrate the potential of slag–fly ash–desert sand alkali-activated mortar as a durable and sustainable material for structural and construction engineering applications, especially in sulfate-rich environments or arid regions where desert sand is abundant. Full article
(This article belongs to the Topic Resilient Civil Infrastructure, 2nd Edition)
Show Figures

Figure 1

21 pages, 3889 KiB  
Article
Effects of Organic Acidic Products from Discharge-Induced Decomposition of the FRP Matrix on ECR Glass Fibers in Composite Insulators
by Dandan Zhang, Zhiyu Wan, Kexin Shi, Ming Lu and Chao Gao
Polymers 2025, 17(11), 1540; https://doi.org/10.3390/polym17111540 - 31 May 2025
Viewed by 587
Abstract
This study investigates the degradation mechanisms of fiber-reinforced polymer (FRP) matrices in composite insulators under partial discharge (PD) conditions. The degradation products may further cause deterioration of the electrical and chemical resistance (ECR) glass fibers. Using pyrolysis–gas chromatography-mass spectrometry (PY-GC-MS) and high-performance liquid [...] Read more.
This study investigates the degradation mechanisms of fiber-reinforced polymer (FRP) matrices in composite insulators under partial discharge (PD) conditions. The degradation products may further cause deterioration of the electrical and chemical resistance (ECR) glass fibers. Using pyrolysis–gas chromatography-mass spectrometry (PY-GC-MS) and high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS-MS), the thermal degradation gas and liquid products of the degraded FRP matrix were analyzed, revealing the presence of organic acids. These acids form when the epoxy resin’s cross-linked bonds break at high temperatures, generating anhydrides that hydrolyze into carboxylic acids in the presence of moisture. The hydrolyzation process is accelerated by hydroxyl radicals produced during PD. The resulting carboxylic acids deteriorate the glass fibers within the FRP matrix by degrading surface coupling agents and reacting with the alkali metal–silica network, leading to the substitution and precipitation of metal ions. Organic acids, particularly carboxylic acids, were found to have a more severe deteriorating effect on glass fibers compared to inorganic acids, with high temperatures exacerbating this process. These findings provide critical insights into the deterioration mechanisms of FRP under operational conditions, offering valuable guidance for optimizing manufacturing processes and enhancing the longevity of composite insulators. Full article
(This article belongs to the Special Issue New Insights into Fiber-Reinforced Polymer Composites)
Show Figures

Figure 1

23 pages, 2876 KiB  
Article
Pyrometallurgical Recycling of Electric Motors for Sustainability in End-of-Life Vehicle Metal Separation Planning
by Erdenebold Urtnasan, Jeong-Hoon Park, Yeon-Jun Chung and Jei-Pil Wang
Processes 2025, 13(6), 1729; https://doi.org/10.3390/pr13061729 - 31 May 2025
Viewed by 868
Abstract
Rapid progress in lithium-ion batteries and AI-powered autonomous driving is poised to propel electric vehicles to a 50% share of the global automotive market by the year 2035. Today, there is a major focus on recycling electric vehicle motors, particularly on extracting rare [...] Read more.
Rapid progress in lithium-ion batteries and AI-powered autonomous driving is poised to propel electric vehicles to a 50% share of the global automotive market by the year 2035. Today, there is a major focus on recycling electric vehicle motors, particularly on extracting rare earth elements (REEs) from NdFeB permanent magnets (PMs). This research is based on a single-furnace process concept designed to separate metal components within PM motors by exploiting the varying melting points of the constituent materials, simultaneously extracting REEs present within the PMs and transferring them into the slag phase. Thermodynamic modeling, via Factsage Equilib stream calculations, optimized the experimental process. Simulated materials substituted the PM motor, which optimized modeling-directed melting within an induction furnace. The 2FeO·SiO2 fayalite flux can oxidize rare earth elements, resulting in slag. The neodymium oxidation reaction by fayalite exhibits a ΔG° of −427 kJ when subjected to an oxygen partial pressure (PO2) of 1.8 × 10−9, which is lower than that required for FeO decomposition. Concerning the FeO–SiO2 system, neodymium, in Nd3+, exhibits a strong bonding with the SiO44 matrix, leading to its incorporation within the slag as the silicate compound, Nd2Si2O7. When 30 wt.% fayalite flux was added, the resulting experiment yielded a neodymium extraction degree of 91%, showcasing the effectiveness of this fluxing agent in the extraction process. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 1513 KiB  
Article
The Nutritional Profile of Spanish Beverages: A Comparative Evaluation of the Original and Updated Nutri-Score Algorithm
by Sara de las Heras-Delgado, Sangeetha Shyam, Lucía Iglesias-Vázquez, Nadine Khoury, Jordi Salas-Salvadó and Nancy Babio
Nutrients 2025, 17(9), 1521; https://doi.org/10.3390/nu17091521 - 30 Apr 2025
Viewed by 781
Abstract
Background: In response to criticism and limitations of the Nutri-Score Nutrient Profiling Model (NS-NPM), the algorithm was updated in 2023. However, its impact on beverage classification remains partially assessed. Objective: This study aimed to compare the nutritional profiles of beverages marketed [...] Read more.
Background: In response to criticism and limitations of the Nutri-Score Nutrient Profiling Model (NS-NPM), the algorithm was updated in 2023. However, its impact on beverage classification remains partially assessed. Objective: This study aimed to compare the nutritional profiles of beverages marketed in Spain using the original and updated NS-NPM algorithms. Methods: Nutritional data for 3432 beverages in the “Drink Base” database were analyzed using both the 2015 (original) and 2023 (updated) NS-NPM versions. Results: The 2023 update showed significant changes compared to the 2015 version. Updated scores particularly increased for artificially sweetened beverages (+190.3%), milkshakes (+98.9%), nut-based beverages (+343.9%), cereal-based beverages (+651.3%), and the mix of plant-based beverages (+733%), leading to a less healthy classification. Conversely, scores decreased for fruit juices (−12.7%) and alcohol-substitute beverages (−8.2%), while legume-based beverages maintained their classification with minimal score variation (−1.4%), raising questions about the treatment of free sugars. The remaining beverage categories experienced score changes that did not alter their classification. Conclusions: The 2023 NS-NPM algorithm improves beverage classification by refining the differentiation of sugar-sweetened and artificially sweetened beverages, improving consumer guidance. While it increases discrimination, challenges remain in the classification of plant-based beverages and fruit juices. These findings highlight Nutri-Score’s impact on industry reformulation and its potential as a public health tool to promote healthier beverage choices. This study provides novel evidence on how the updated Nutri-Score algorithm may influence consumer perception and food policy in the Spanish context. Full article
(This article belongs to the Section Nutrition Methodology & Assessment)
Show Figures

Figure 1

30 pages, 2375 KiB  
Systematic Review
Building a Hand-Curated ceRNET for Endometrial Cancer, Striving for Clinical as Well as Medicolegal Soundness: A Systematic Review
by Roberto Piergentili, Stefano Sechi, Lina De Paola, Simona Zaami and Enrico Marinelli
Non-Coding RNA 2025, 11(3), 34; https://doi.org/10.3390/ncrna11030034 - 30 Apr 2025
Cited by 1 | Viewed by 2754
Abstract
Background/Objectives: Competing endogenous RNAs (ceRNA) are molecules that compete for the binding to a microRNA (miR). Usually, there are two ceRNA, one of which is a protein-coding RNA (mRNA), with the other being a long non-coding RNA (lncRNA). The miR role is to [...] Read more.
Background/Objectives: Competing endogenous RNAs (ceRNA) are molecules that compete for the binding to a microRNA (miR). Usually, there are two ceRNA, one of which is a protein-coding RNA (mRNA), with the other being a long non-coding RNA (lncRNA). The miR role is to inhibit mRNA expression, either promoting its degradation or impairing its translation. The lncRNA can “sponge” the miR, thus impeding its inhibitory action on the mRNA. In their easier configuration, these three molecules constitute a regulatory axis for protein expression. However, each RNA can interact with multiple targets, creating branched and intersected axes that, all together, constitute what is known as a competing endogenous RNA network (ceRNET). Methods: In this systematic review, we collected all available data from PubMed about experimentally verified (by luciferase assay) regulatory axes in endometrial cancer (EC), excluding works not using this test; Results: This search allowed the selection of 172 bibliographic sources, and manually building a series of ceRNETs of variable complexity showed the known axes and the deduced intersections. The main limitation of this search is the highly stringent selection criteria, possibly leading to an underestimation of the complexity of the networks identified. However, this work allows us not only to hypothesize possible gap fillings but also to set the basis to instruct artificial intelligence, using adequate prompts, to expand the EC ceRNET by comparing it with ceRNETs of other cancers. Moreover, these networks can be used to inform and guide research toward specific, though still unidentified, axes in EC, to complete parts of the network that are only partially described, or even to integrate low complexity subnetworks into larger more complex ones. Filling the gaps among the existing EC ceRNET will allow physicians to hypothesize new therapeutic strategies that may either potentiate or substitute existing ones. Conclusions: These ceRNETs allow us to easily visualize long-distance interactions, thus helping to select the best treatment, depending on the molecular profile of each patient, for personalized medicine. This would yield higher efficiency rates and lower toxicity levels, both of which are extremely relevant factors not only for patients’ wellbeing, but also for the legal, regulatory, and ethical aspects of miR-based innovative treatments and personalized medicine as a whole. This systematic review has been registered in PROSPERO (ID: PROSPERO 2025 CRD420251035222). Full article
(This article belongs to the Special Issue Non-coding RNA as Biomarker in Cancer)
Show Figures

Figure 1

17 pages, 4847 KiB  
Article
Comparative Evaluation of Various ABO3 Perovskites (A = La, Ca, Sr; B = Mn, Fe) as Oxygen Carrier Materials in Chemical Looping Hydrogen Production
by Antigoni Evdou and Vassilis Zaspalis
Hydrogen 2025, 6(2), 27; https://doi.org/10.3390/hydrogen6020027 - 17 Apr 2025
Viewed by 1179
Abstract
This study comparatively evaluates the performance of ABO3 perovskite materials (A = La, Ca, Sr; B = Mn, Fe) as oxygen carriers in three-step Chemical Looping Hydrogen (CLH) technology, focusing on redox behavior, oxygen transport capacity, hydrogen production, and selectivity under controlled [...] Read more.
This study comparatively evaluates the performance of ABO3 perovskite materials (A = La, Ca, Sr; B = Mn, Fe) as oxygen carriers in three-step Chemical Looping Hydrogen (CLH) technology, focusing on redox behavior, oxygen transport capacity, hydrogen production, and selectivity under controlled pulse-mode conditions. The redox behavior of the materials is analyzed in relation to their defect chemistry. Perovskites such as (La1−xCax)MnO3, (La1−xSrx)MnO3, and (La0.6Ca0.4)(Mn1−xFex)O3 were synthesized via wet chemical methods and tested in chemical looping cycles. Doping A-site cations with Ca or Sr enhanced oxygen delivery capacity by more than 100% upon reduction with CH4 when dopant content (x) increased from 0 to 0.5. However, H2 selectivity decreased from 52% to 2.5% for (La1−xCax)MnO3 and from 46% to 14% for (La1−xSrx)MnO3 under the same conditions. In contrast, substituting Mn with Fe significantly improved hydrogen production, particularly in LaFeO3, which exhibited the highest hydrogen selectivity and yield. At 1000 °C, LaFeO3 produced nearly 10 mmol H2 g−1, with 80% generated during the reduction step at 99.9% selectivity and the remaining 20% during the water-splitting step at 100% selectivity. These results are linked to the extent of B-site cation reduction reactions (i) B4+ → B3+, which facilitates complete fuel oxidation and (ii) B3+ → B2+, which leads to partial fuel oxidation. The reverse of (ii) also contributes to H2 production during water splitting. Additionally, the study assesses the materials’ microstructure and stability over prolonged cycles. The findings highlight Fe-based perovskites, particularly LaFeO3, as promising candidates for CLH applications, emphasizing the need for structural and compositional optimization to enhance hydrogen production efficiency. Full article
Show Figures

Figure 1

20 pages, 1533 KiB  
Article
Low-Carbon Slag Concrete Design Optimization Method Considering the Coupled Effects of Formwork Stripping, Strength Progress, and Carbonation Durability
by Li-Na Zhang, Seung-Jun Kwon and Xiao-Yong Wang
Buildings 2025, 15(8), 1316; https://doi.org/10.3390/buildings15081316 - 16 Apr 2025
Viewed by 423
Abstract
Partially substituting cement with slag is an efficient approach to lowering the carbon footprint of concrete. Earlier research on low-carbon slag concrete has primarily concentrated on the optimization of material strength without considering the coupled effects of formwork stripping time, strength progress, and [...] Read more.
Partially substituting cement with slag is an efficient approach to lowering the carbon footprint of concrete. Earlier research on low-carbon slag concrete has primarily concentrated on the optimization of material strength without considering the coupled effects of formwork stripping time, strength progress, and carbonation durability, which may lead to the risk of steel reinforcement corrosion. To address this limitation, this study introduces an optimized design approach for low-carbon slag concrete that simultaneously accounts for the formwork stripping time and carbonation durability. First, based on strength test results, a strength prediction equation which incorporates the curing age, water-to-(cement+slag) mass ratio, and slag-to-(cement+slag) mass ratio is developed. As such, the coefficients of the equation have clear physical meanings. Both the cement and slag strength coefficients increase with curing age, with the slag strength coefficient exhibiting a greater growth rate than that of cement. Second, an evaluation of concrete’s carbon emissions per 1 MPa increase in strength reveals that, for a given curing age, adopting a low water-to-(cement+slag) mass ratio and a high slag-to-(cement+slag) mass ratio effectively reduces these emissions. Parameter analysis of the carbonation model reveals that increasing the curing time before the onset of carbonation reduces the carbonation depth. Furthermore, four design scenarios are considered in this study: scenario C1 does not consider carbonation durability, with a specified strength of 30 MPa at 28 days; scenario C2 considers carbonation durability, with the same specified strength of 30 MPa at 28 days; scenario C3 does not consider carbonation durability but requires formwork stripping at 7 days; and scenario C4 considers carbonation durability and also requires formwork stripping at 7 days. Through the formulation of constraints for optimization using a genetic algorithm, the appropriate mix proportions for each design scenario are obtained. Finally, the optimization results reveal that, when transitioning from C1 to C2, the actual 28-day concrete compressive strength rises from 30 MPa to 65.139 MPa; when transitioning from C1 to C3, the actual 28-day concrete compressive strength slightly rises from 30 MPa to 30.122 MPa; and when transitioning from C3 to C4, the actual 28-day concrete compressive strength significantly rises from 30.122 MPa to 80.890 MPa. In summary, this study introduces a new approach to the material design of low-carbon slag concrete. In particular, prolonging the curing period plays a crucial role in optimizing low-carbon slag concrete mixtures. Full article
(This article belongs to the Special Issue Development in Low-Carbon, High-Performance Concrete Technology)
Show Figures

Figure 1

17 pages, 5369 KiB  
Article
Analysis of the Impact of the Addition of Alphitobius diaperinus Larval Powder on the Physicochemical, Textural, and Sensorial Properties of Shortbread Cookies
by Sylwia Mierzejewska, Zdzisław Domiszewski, Joanna Piepiórka-Stepuk, Anna Bielicka, Arkadiusz Szpicer and Iwona Wojtasik-Kalinowska
Appl. Sci. 2025, 15(8), 4269; https://doi.org/10.3390/app15084269 - 12 Apr 2025
Cited by 1 | Viewed by 520
Abstract
Based on the EFSA opinion dated 4 July 2022, the safety of frozen and freeze-dried larvae of Alphitobius diaperinus for human consumption was confirmed, leading to their approval as a novel food in the European Union. Given the increasing demand for sustainable protein [...] Read more.
Based on the EFSA opinion dated 4 July 2022, the safety of frozen and freeze-dried larvae of Alphitobius diaperinus for human consumption was confirmed, leading to their approval as a novel food in the European Union. Given the increasing demand for sustainable protein sources and alternative foods, studies explored the application of A. diaperinus larval powder as an additive in shortbread cookie production. In this experiment, wheat flour was partially replaced with insect powder at varying levels (10%, 20%, 30%, and 50% w/w), while butter was substituted with margarine. The analysis covered the protein content, moisture, ash, color, textural properties, and sensorial evaluation of the baked products. The results indicated that increasing the proportion of insect powder significantly raised the protein content and reduced moisture, impacting the cookie structure and brittleness. The sensorial evaluation indicated that incorporating up to 20% insect powder produced cookies with an optimal flavor, aroma, and texture balance, assessed at the level of 4.5 points and 11.7 N, respectively. Storage studies revealed that higher insect powder levels slowed moisture loss and reduced hardness over a 14-day period, stabilizing texture. However, excessive insect powder incorporation led to reduced consumer acceptability. These findings confirm the potential of A. diaperinus powder as an innovative additive to enhance the nutritional value of traditional baked goods, while also underscoring the need to modify technological parameters during production. Full article
Show Figures

Figure 1

Back to TopTop