Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = parallel ankle rehabilitation robots

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1321 KB  
Review
Advancements in State-of-the-Art Ankle Rehabilitation Robotic Devices: A Review of Design, Actuation and Control Strategies
by Asna Kalsoom, Muhammad Faizan Shah and Muhammad Umer Farooq
Machines 2025, 13(5), 429; https://doi.org/10.3390/machines13050429 - 19 May 2025
Cited by 4 | Viewed by 4533
Abstract
Neurological disorders like stroke are one of the main causes of motor dysfunction and gait function disabilities in humans. These disorders impact the mobility of patients often leading to weakened and impaired ankle joints which further compromise their balance and walking abilities. Over [...] Read more.
Neurological disorders like stroke are one of the main causes of motor dysfunction and gait function disabilities in humans. These disorders impact the mobility of patients often leading to weakened and impaired ankle joints which further compromise their balance and walking abilities. Over the span of the last twenty years, there has been a rising interest in designing, developing, and using rehabilitative robots for patients suffering from various ankle joint disabilities. These robotic devices are developed by employing diverse mechanical designs, materials, and control strategies. The aim of this study is to provide a detailed overview of the recent developments in mechanical design, actuation, and control strategies of ankle rehabilitation robots. Experimental evaluation of the discussed ankle robots has also been carried out discussing their results and limitations. This article concludes by highlighting future challenges and opportunities for the advancement of ankle rehabilitation robots, stressing the need for robust and effective devices to better serve patients. Full article
(This article belongs to the Special Issue Recent Advances in Medical Robotics)
Show Figures

Figure 1

26 pages, 8227 KB  
Article
Enhancing Robotic-Assisted Lower Limb Rehabilitation Using Augmented Reality and Serious Gaming
by Calin Vaida, Gabriela Rus, Paul Tucan, José Machado, Adrian Pisla, Ionut Zima, Iosif Birlescu and Doina Pisla
Appl. Sci. 2024, 14(24), 12029; https://doi.org/10.3390/app142412029 - 23 Dec 2024
Cited by 7 | Viewed by 3593
Abstract
Stroke, amyotrophic lateral sclerosis (ALS), and Parkinson’s disease are some of the conditions that can lead to neuromotor disabilities requiring rehabilitation. To address the socio-economic burden that is amplified by the rapidly increasing elderly population, traditional rehabilitation techniques have recently been complemented by [...] Read more.
Stroke, amyotrophic lateral sclerosis (ALS), and Parkinson’s disease are some of the conditions that can lead to neuromotor disabilities requiring rehabilitation. To address the socio-economic burden that is amplified by the rapidly increasing elderly population, traditional rehabilitation techniques have recently been complemented by technological advancements, particularly Robot-Assisted Therapy (RAT). RAT enhances motor learning by improving both accuracy and consistency. This study proposes an innovative rehabilitation system that combines serious gaming and augmented reality (AR) with the LegUp parallel robot, developed for the spatial rehabilitation of the hip, knee, and ankle in bed-ridden patients. The system aims to improve patient outcomes and actively involve patients in their therapy. Electro-goniometers and a HoloLens 2 device are used to provide immediate feedback about the position of the patient’s joints, forming the basis of an interactive game in which the patient moves their leg to reach various targets. Two game modes were developed, each targeting different aspects of neuromotor rehabilitation, such as coordination, strength, and flexibility. Preliminary findings suggest that combining RAT with augmented reality-based serious gaming can increase patient motivation and engagement. Furthermore, the personalized and interactive nature of the therapy holds the potential to improve rehabilitation outcomes by fostering sustained engagement and effort. Full article
(This article belongs to the Special Issue Virtual Reality (VR) in Healthcare)
Show Figures

Figure 1

20 pages, 6815 KB  
Article
Development of a Virtual Reality-Based Environment for Telerehabilitation
by Florin Covaciu, Calin Vaida, Bogdan Gherman, Adrian Pisla, Paul Tucan and Doina Pisla
Appl. Sci. 2024, 14(24), 12022; https://doi.org/10.3390/app142412022 - 22 Dec 2024
Cited by 1 | Viewed by 2719
Abstract
The paper presents an innovative virtual reality (VR)-based environment for personalized telerehabilitation programs. This environment integrates a parallel robotic structure designed for the lower limb rehabilitation of patients with neuromotor disabilities and a virtual patient. The robotic structure is controlled via a user [...] Read more.
The paper presents an innovative virtual reality (VR)-based environment for personalized telerehabilitation programs. This environment integrates a parallel robotic structure designed for the lower limb rehabilitation of patients with neuromotor disabilities and a virtual patient. The robotic structure is controlled via a user interface (UI) that communicates with the VR environment via the TCP/IP protocol. The robotic structure can also be operated using two controllers that communicate with a VR headset via the Bluetooth protocol. Through these two controllers, the therapist demonstrates to the patient various exercises that the robotic system can perform. With the right-hand controller, the therapist guides exercises for the hip and knee, while the left-hand controller manages ankle exercises. The therapist remotely designs a rehabilitation plan for patients at home, defining exercises, interacting with the rehabilitation robot in real-time via the VR headset and the two controllers, and initiating therapy sessions. The user interface allows monitoring of patient progress through video feedback, electromyography (EMG) sensors, and session recording. Full article
Show Figures

Figure 1

20 pages, 8568 KB  
Article
Applying Screw Theory to Design the Turmell-Bot: A Cable-Driven, Reconfigurable Ankle Rehabilitation Parallel Robot
by Julio Vargas-Riaño, Óscar Agudelo-Varela and Ángel Valera
Robotics 2023, 12(6), 154; https://doi.org/10.3390/robotics12060154 - 14 Nov 2023
Cited by 2 | Viewed by 3541
Abstract
The ankle is a complex joint with a high injury incidence. Rehabilitation Robotics applied to the ankle is a very active research field. We present the kinematics and statics of a cable-driven reconfigurable ankle rehabilitation robot. First, we studied how the tendons pull [...] Read more.
The ankle is a complex joint with a high injury incidence. Rehabilitation Robotics applied to the ankle is a very active research field. We present the kinematics and statics of a cable-driven reconfigurable ankle rehabilitation robot. First, we studied how the tendons pull mid-foot bones around the talocrural and subtalar axes. We proposed a hybrid serial-parallel mechanism analogous to the ankle. Then, using screw theory, we synthesized a cable-driven robot with the human ankle in the closed-loop kinematics. We incorporated a draw-wire sensor to measure the axes’ pose and compute the product of exponentials. We also reconfigured the cables to balance the tension and pressure forces using the axis projection on the base and platform planes. Furthermore, we computed the workspace to show that the reconfigurable design fits several sizes. The data used are from anthropometry and statistics. Finally, we validated the robot’s statics with MuJoCo for various cable length groups corresponding to the axes’ range of motion. We suggested a platform adjusting system and an alignment method. The design is lightweight, and the cable-driven robot has advantages over rigid parallel robots, such as Stewart platforms. We will use compliant actuators for enhancing human–robot interaction. Full article
(This article belongs to the Special Issue Kinematics and Robot Design VI, KaRD2023)
Show Figures

Figure 1

39 pages, 2158 KB  
Review
A Review of Parallel Robots: Rehabilitation, Assistance, and Humanoid Applications for Neck, Shoulder, Wrist, Hip, and Ankle Joints
by Victoria E. Abarca and Dante A. Elias
Robotics 2023, 12(5), 131; https://doi.org/10.3390/robotics12050131 - 20 Sep 2023
Cited by 26 | Viewed by 13316
Abstract
This review article presents an in-depth examination of research and development in the fields of rehabilitation, assistive technologies, and humanoid robots. It focuses on parallel robots designed for human body joints with three degrees of freedom, specifically the neck, shoulder, wrist, hip, and [...] Read more.
This review article presents an in-depth examination of research and development in the fields of rehabilitation, assistive technologies, and humanoid robots. It focuses on parallel robots designed for human body joints with three degrees of freedom, specifically the neck, shoulder, wrist, hip, and ankle. A systematic search was conducted across multiple databases, including Scopus, Web of Science, PubMed, IEEE Xplore, ScienceDirect, the Directory of Open Access Journals, and the ASME Journal. This systematic review offers an updated overview of advancements in the field from 2012 to 2023. After applying exclusion criteria, 93 papers were selected for in-depth review. This cohort included 13 articles focusing on the neck joint, 19 on the shoulder joint, 22 on the wrist joint, 9 on the hip joint, and 30 on the ankle joint. The article discusses the timeline and advancements of parallel robots, covering technology readiness levels (TRLs), design, the number of degrees of freedom, kinematics structure, workspace assessment, functional capabilities, performance evaluation methods, and material selection for the development of parallel robotics. It also examines critical technological challenges and future prospects in rehabilitation, assistance, and humanoid robots. Full article
(This article belongs to the Special Issue Robotics and Parallel Kinematic Machines)
Show Figures

Figure 1

23 pages, 14034 KB  
Article
CNC Machines for Rehabilitation: Ankle and Shoulder
by Andrés Blanco Ortega, Andrea Magadán Salazar, César. H. Guzmán Valdivia, Fabio Abel Gómez Becerra, Manuel J. Palacios Gallegos, Miguel A. García Velarde and José Alfonso Santana Camilo
Machines 2022, 10(11), 1055; https://doi.org/10.3390/machines10111055 - 10 Nov 2022
Cited by 5 | Viewed by 3775
Abstract
Continuous passive motion (CPM) machines are used in the rehabilitation of members that have been injured to recover their range of motion and prevent stiffness. Nowadays, some CPM machines for the knee, ankle, arm, and elbow are available commercially. In this paper, ankle [...] Read more.
Continuous passive motion (CPM) machines are used in the rehabilitation of members that have been injured to recover their range of motion and prevent stiffness. Nowadays, some CPM machines for the knee, ankle, arm, and elbow are available commercially. In this paper, ankle and shoulder rehabilitation robots, based on an X-Y table, are presented. The novelty of these rehabilitation robots is that they have a computerized numerical control system, resulting in low-cost machines. Some G-codes for basic and combined movement routines for ankle and shoulder rehabilitation are presented. In addition, the use of a robust generalized PI controller is also proposed to guarantee safe rehabilitation movements and compensate for passive stiffness in the ankle joint of stroke survivors. Some numerical simulations are included to illustrate the dynamic performance of the robust Generalized Proportional Integral (GPI) controller using the virtual prototype. Full article
(This article belongs to the Special Issue State-of-the-Art in Service and Rehabilitation Machines)
Show Figures

Figure 1

28 pages, 1005 KB  
Review
Ankle Injury Rehabilitation Robot (AIRR): Review of Strengths and Opportunities Based on a SWOT (Strengths, Weaknesses, Opportunities, Threats) Analysis
by Muhammad N. Shah, Shafriza N. Basah, Khairul S. Basaruddin, Hiroshi Takemura, Ewe J. Yeap and Chee C. Lim
Machines 2022, 10(11), 1031; https://doi.org/10.3390/machines10111031 - 4 Nov 2022
Cited by 6 | Viewed by 4865
Abstract
Generally, severity, any additional damage to the joint surface, and the optimal rehabilitation influence the recovery of an ankle injury. Optimal rehabilitation is the only approach for a human to heal as soon as possible. Ankle injury rehabilitation robots (AIRRs) are designed to [...] Read more.
Generally, severity, any additional damage to the joint surface, and the optimal rehabilitation influence the recovery of an ankle injury. Optimal rehabilitation is the only approach for a human to heal as soon as possible. Ankle injury rehabilitation robots (AIRRs) are designed to fulfil the ideal rehabilitation by providing the required accuracy, consistency, and repeatability, compared to conventional rehabilitation methods. This review is to explore the performance of the existing AIRR using a SWOT analysis with a focus on the strengths and opportunities of an AIRR. Sources from journals and conference papers are selected for review after several screenings, according to the search conditions set by the authors. The results have shown a large group of AIRRs could accomplish all basic ankle motions and select parallel mechanisms to drive the foot platform. Most AIRRs provides crucial feedback sensors, such as position, torque, and angle. These factors determine the accuracy of the foot platform. Both the electrical/pneumatic actuation and wearable/platform-based AIRRs have their purpose for rehabilitation and must be considered as equal contributions to ankle injury rehabilitation research using robots. Opportunities to provide innovation to the already established AIRR research still exist in the ability to accommodate complex motion ankle rehabilitation exercises and to establish teaching and playback into the rehabilitation procedures for AIRRs. In general, the existing strengths of AIRRs provide advantages to patients where they can enhance the rehabilitation procedures while opportunities and knowledge gaps for AIRR research are still open to improvement. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

16 pages, 5467 KB  
Article
Mechanism Design and Performance Analysis of a Sitting/Lying Lower Limb Rehabilitation Robot
by Fangyan Dong, Haoyu Li and Yongfei Feng
Machines 2022, 10(8), 674; https://doi.org/10.3390/machines10080674 - 10 Aug 2022
Cited by 5 | Viewed by 2886
Abstract
To meet the various need of stroke patients’ rehabilitation training and carry out complex task training in real scenes, the structure of a lower limb rehabilitation robot with movements in the sagittal plane and coronal plane is usually complicated. A new sitting/lying lower [...] Read more.
To meet the various need of stroke patients’ rehabilitation training and carry out complex task training in real scenes, the structure of a lower limb rehabilitation robot with movements in the sagittal plane and coronal plane is usually complicated. A new sitting/lying lower limb rehabilitation robot (LOBO) with a simple mechanism form is proposed, which is designed based on a 2-PRR parallel mechanism. First, the kinematics, singularity, and condition number of the 2-PRR parallel mechanism are analyzed, which provides the basis for mechanism parameter design. Then, through the proportional–derivative control principle, real-time tracking of LOBO’s designed trajectory is realized. Finally, the length parameters of volunteers’ lower limbs are collected, and experimental verification is conducted in LOBO’s passive training mode. The experimental results show the feasibility of LOBO’s movement in the human sagittal and coronal planes. LOBO will help human lower limbs realize the synchronous continuous rehabilitation training of hip, knee, and ankle joints spatially, which could drive the rehabilitation movement of patients’ lower limbs in the sagittal plane and coronal plane in future clinical research. LOBO can also be applied to muscle strength training for the elderly to combat the effects of aging. Full article
(This article belongs to the Special Issue State-of-the-Art in Service and Rehabilitation Machines)
Show Figures

Figure 1

15 pages, 9672 KB  
Article
Design and Experimental Research of 3-RRS Parallel Ankle Rehabilitation Robot
by Yupeng Zou, Andong Zhang, Qiang Zhang, Baolong Zhang, Xiangshu Wu and Tao Qin
Micromachines 2022, 13(6), 950; https://doi.org/10.3390/mi13060950 - 16 Jun 2022
Cited by 35 | Viewed by 4796
Abstract
The ankle is a crucial joint that supports the human body weight. An ankle sprain will adversely affect the patient’s daily life, so it is of great significance to ensure its strength. To help patients with ankle dysfunction to carry out effective rehabilitation [...] Read more.
The ankle is a crucial joint that supports the human body weight. An ankle sprain will adversely affect the patient’s daily life, so it is of great significance to ensure its strength. To help patients with ankle dysfunction to carry out effective rehabilitation training, the bone structure and motion mechanism of the ankle were analyzed in this paper. Referring to the configuration of the lower-mobility parallel mechanism, a 3-RRS (R and S denote revolute and spherical joint respectively) parallel ankle rehabilitation robot (PARR) was proposed. The robot can realize both single and compound ankle rehabilitation training. The structure of the robot was introduced, and the kinematics model was established. The freedom of movement of the robot was analyzed using the screw theory, and the robot kinematics were analyzed using spherical analytics theory. A circular composite rehabilitation trajectory was planned, and the accuracy of the kinematics model was verified by virtual prototype simulation. The Multibody simulation results show that the trajectory of the target point is basically the same as the expected trajectory. The maximum trajectory error is about 2.5 mm in the simulation process, which is within the controllable range. The experimental results of the virtual prototype simulation show that the maximum angular deflection error of the three motors is 2° when running a circular trajectory, which meets the experimental requirements. Finally, a control strategy for passive rehabilitation training was designed, and the effectiveness of this control strategy was verified by a prototype experiment. Full article
Show Figures

Figure 1

23 pages, 9129 KB  
Article
Passive Exercise Adaptation for Ankle Rehabilitation Based on Learning Control Framework
by Fares J. Abu-Dakka, Angel Valera, Juan A. Escalera, Mohamed Abderrahim, Alvaro Page and Vicente Mata
Sensors 2020, 20(21), 6215; https://doi.org/10.3390/s20216215 - 31 Oct 2020
Cited by 20 | Viewed by 7392
Abstract
Ankle injuries are among the most common injuries in sport and daily life. However, for their recovery, it is important for patients to perform rehabilitation exercises. These exercises are usually done with a therapist’s guidance to help strengthen the patient’s ankle joint and [...] Read more.
Ankle injuries are among the most common injuries in sport and daily life. However, for their recovery, it is important for patients to perform rehabilitation exercises. These exercises are usually done with a therapist’s guidance to help strengthen the patient’s ankle joint and restore its range of motion. However, in order to share the load with therapists so that they can offer assistance to more patients, and to provide an efficient and safe way for patients to perform ankle rehabilitation exercises, we propose a framework that integrates learning techniques with a 3-PRS parallel robot, acting together as an ankle rehabilitation device. In this paper, we propose to use passive rehabilitation exercises for dorsiflexion/plantar flexion and inversion/eversion ankle movements. The therapist is needed in the first stage to design the exercise with the patient by teaching the robot intuitively through learning from demonstration. We then propose a learning control scheme based on dynamic movement primitives and iterative learning control, which takes the designed exercise trajectory as a demonstration (an input) together with the recorded forces in order to reproduce the exercise with the patient for a number of repetitions defined by the therapist. During the execution, our approach monitors the sensed forces and adapts the trajectory by adding the necessary offsets to the original trajectory to reduce its range without modifying the original trajectory and subsequently reducing the measured forces. After a predefined number of repetitions, the algorithm restores the range gradually, until the patient is able to perform the originally designed exercise. We validate the proposed framework with both real experiments and simulation using a Simulink model of the rehabilitation parallel robot that has been developed in our lab. Full article
(This article belongs to the Special Issue Human-Robot Interaction)
Show Figures

Figure 1

19 pages, 2316 KB  
Article
Wearable Biofeedback Improves Human-Robot Compliance during Ankle-Foot Exoskeleton-Assisted Gait Training: A Pre-Post Controlled Study in Healthy Participants
by Cristiana Pinheiro, Joana Figueiredo, Nuno Magalhães and Cristina P. Santos
Sensors 2020, 20(20), 5876; https://doi.org/10.3390/s20205876 - 17 Oct 2020
Cited by 13 | Viewed by 4834
Abstract
The adjunctive use of biofeedback systems with exoskeletons may accelerate post-stroke gait rehabilitation. Wearable patient-oriented human-robot interaction-based biofeedback is proposed to improve patient-exoskeleton compliance regarding the interaction torque’s direction (joint motion strategy) and magnitude (user participation strategy) through auditory and vibrotactile cues during [...] Read more.
The adjunctive use of biofeedback systems with exoskeletons may accelerate post-stroke gait rehabilitation. Wearable patient-oriented human-robot interaction-based biofeedback is proposed to improve patient-exoskeleton compliance regarding the interaction torque’s direction (joint motion strategy) and magnitude (user participation strategy) through auditory and vibrotactile cues during assisted gait training, respectively. Parallel physiotherapist-oriented strategies are also proposed such that physiotherapists can follow in real-time a patient’s motor performance towards effective involvement during training. A preliminary pre-post controlled study was conducted with eight healthy participants to conclude about the biofeedback’s efficacy during gait training driven by an ankle-foot exoskeleton and guided by a technical person. For the study group, performance related to the interaction torque’s direction increased during (p-value = 0.07) and after (p-value = 0.07) joint motion training. Further, the performance regarding the interaction torque’s magnitude significantly increased during (p-value = 0.03) and after (p-value = 68.59 × 10−3) user participation training. The experimental group and a technical person reported promising usability of the biofeedback and highlighted the importance of the timely cues from physiotherapist-oriented strategies. Less significant improvements in patient–exoskeleton compliance were observed in the control group. The overall findings suggest that the proposed biofeedback was able to improve the participant-exoskeleton compliance by enhancing human-robot interaction; thus, it may be a powerful tool to accelerate post-stroke ankle-foot deformity recovery. Full article
(This article belongs to the Special Issue Smart Sensors: Applications and Advances in Human Motion Analysis)
Show Figures

Graphical abstract

16 pages, 2777 KB  
Article
Analysis of a Wearable Robotic System for Ankle Rehabilitation
by Matteo Russo and Marco Ceccarelli
Machines 2020, 8(3), 48; https://doi.org/10.3390/machines8030048 - 27 Aug 2020
Cited by 51 | Viewed by 7858
Abstract
As one of the most commonly injured joints of the human body, the ankle is often subject to sprains or fractures that require motion assistance to recover mobility. Whereas physiotherapists usually perform rehabilitation in one-on-one sessions with patients, several successful robotic rehabilitation solutions [...] Read more.
As one of the most commonly injured joints of the human body, the ankle is often subject to sprains or fractures that require motion assistance to recover mobility. Whereas physiotherapists usually perform rehabilitation in one-on-one sessions with patients, several successful robotic rehabilitation solutions have been proposed in the last years. However, their design is usually bulky and requires the patient to sit or stand in a static position. A lightweight wearable device for ankle motion assistance, the CABLEankle, is here proposed for motion ankle exercising in rehabilitation and training. The CABLEankle is based on a cable-driven S-4SPS parallel architecture, which enables motion assistance over the large motion range of the human ankle in a walking gait. The proposed mechanism design is analyzed with kinematic and static models, and the force closure workspace of the mechanism is discussed with analytical results. Finally, the feasibility of the proposed design is investigated through numerical simulations over the ankle motion range as a characterization of the peculiar motion. Full article
(This article belongs to the Special Issue Italian Advances on MMS)
Show Figures

Graphical abstract

21 pages, 3263 KB  
Article
Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot
by Qingsong Ai, Chengxiang Zhu, Jie Zuo, Wei Meng, Quan Liu, Sheng Q. Xie and Ming Yang
Sensors 2018, 18(1), 66; https://doi.org/10.3390/s18010066 - 28 Dec 2017
Cited by 50 | Viewed by 6974
Abstract
A rehabilitation robot plays an important role in relieving the therapists’ burden and helping patients with ankle injuries to perform more accurate and effective rehabilitation training. However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of complex [...] Read more.
A rehabilitation robot plays an important role in relieving the therapists’ burden and helping patients with ankle injuries to perform more accurate and effective rehabilitation training. However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles’ good flexibility and light weight, we developed a novel two degrees of freedom (2-DOF) parallel compliant ankle rehabilitation robot actuated by pneumatic muscles (PMs). To solve the PM’s nonlinear characteristics during operation and to tackle the human-robot uncertainties in rehabilitation, an adaptive backstepping sliding mode control (ABS-SMC) method is proposed in this paper. The human-robot external disturbance can be estimated by an observer, who is then used to adjust the robot output to accommodate external changes. The system stability is guaranteed by the Lyapunov stability theorem. Experimental results on the compliant ankle rehabilitation robot show that the proposed ABS-SMC is able to estimate the external disturbance online and adjust the control output in real time during operation, resulting in a higher trajectory tracking accuracy and better response performance especially in dynamic conditions. Full article
(This article belongs to the Special Issue Assistance Robotics and Biosensors)
Show Figures

Figure 1

Back to TopTop