Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = paracrine crosstalk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2411 KB  
Article
Selective Paracrine Modulation of Stromal Cells: Wharton’s Jelly MSC Secretome Enhances Adipose-Derived MSC Functionality While Maintaining Dermal Fibroblast Quiescence
by Tanya Stoyanova, Lora Topalova, Stanimir Kyurkchiev, Regina Komsa-Penkova, Svetla Todinova and George Altankov
Int. J. Mol. Sci. 2025, 26(20), 10095; https://doi.org/10.3390/ijms262010095 - 16 Oct 2025
Viewed by 365
Abstract
Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) secrete a rich array of paracrine factors including growth factors, cytokines, and extracellular vesicles that hold promises for regenerative medicine. This study evaluated the effects of WJ-MSC-derived secretome on adipose-derived mesenchymal stem cells (AD-MSCs) and human dermal [...] Read more.
Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) secrete a rich array of paracrine factors including growth factors, cytokines, and extracellular vesicles that hold promises for regenerative medicine. This study evaluated the effects of WJ-MSC-derived secretome on adipose-derived mesenchymal stem cells (AD-MSCs) and human dermal fibroblasts (HDFs), focusing on their adhesion, spreading, proliferation, endogenous collagen secretion, and migration. Morphometric analysis revealed that the secretome enhanced cell adhesion and spreading on rat tail collagen (RTC) substrates after 24 h. AD-MSCs showed a ~30% increase in the cell spreading area (from 4007 μm2 to 5081 μm2p < 0.05), though without notable shape changes. In contrast, fetal bovine serum (FBS) promoted cell elongation with a reduced aspect ratio. Proliferation assays demonstrated a selective stimulatory effect of the secretome on AD-MSCs with a significant increase at day 3, while HDFs’ proliferation remained unchanged. Cell cycle profiling showed transient S-phase accumulation in AD-MSCs (24–48 h), followed by G0/G1 arrest (72 h), while HDFs remained in G0/G1. Immunofluorescence analysis confirmed the enhanced extracellular deposition of endogenously synthesized collagen in AD-MSCs, while no comparable response was observed in HDFs. Scratch assays showed increased migration in both cell types upon secretome exposure compared to collagen-only controls, suggesting a paracrine-mediated pro-migratory effect. These results demonstrate that WJ-MSC secretome boosts the regenerative capacity in AD-MSCs while keeping fibroblasts quiescent, highlighting its strong potential for cell-free therapies in tissue engineering, wound repair, and regenerative medicine. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

20 pages, 1335 KB  
Review
Advances in Epicardial Biology: Insights from Development, Regeneration, and Human Cardiac Organoids
by Shasha Lyu, Alvin Gea Chen Yao, Yu Xia and Jingli Cao
J. Cardiovasc. Dev. Dis. 2025, 12(10), 389; https://doi.org/10.3390/jcdd12100389 - 2 Oct 2025
Viewed by 637
Abstract
The epicardium plays a pivotal role in heart development, regeneration, and disease response through its contributions to multiple cardiac lineages and its dynamic paracrine signaling. Recent advances in lineage tracing, single-cell technologies, and, particularly, human pluripotent stem cell (hPSC)-derived cardiac organoid models have [...] Read more.
The epicardium plays a pivotal role in heart development, regeneration, and disease response through its contributions to multiple cardiac lineages and its dynamic paracrine signaling. Recent advances in lineage tracing, single-cell technologies, and, particularly, human pluripotent stem cell (hPSC)-derived cardiac organoid models have illuminated the cellular heterogeneity, developmental plasticity, and intercellular crosstalk of epicardial cells with other cardiac cell types. These models have revealed conserved and divergent mechanisms of epicardial function across species, offering new insights into epicardial–myocardial–endothelial–immune interactions and the regulation of cardiac repair. This review highlights recent key findings from developmental and regenerative studies, integrating them with emerging data from human cardiac organoids to provide an updated framework for understanding epicardial biology and its therapeutic potential. Full article
(This article belongs to the Section Cardiac Development and Regeneration)
Show Figures

Graphical abstract

20 pages, 994 KB  
Perspective
Endocrinology and the Lung: Exploring the Bidirectional Axis and Future Directions
by Pedro Iglesias
J. Clin. Med. 2025, 14(19), 6985; https://doi.org/10.3390/jcm14196985 - 2 Oct 2025
Viewed by 838
Abstract
The lung is increasingly recognized as an organ with dual endocrine and respiratory roles, participating in a complex bidirectional crosstalk with systemic hormones and local/paracrine activity. Endocrine and paracrine pathways regulate lung development, ventilation, immunity, and repair, while pulmonary cells express hormone receptors [...] Read more.
The lung is increasingly recognized as an organ with dual endocrine and respiratory roles, participating in a complex bidirectional crosstalk with systemic hormones and local/paracrine activity. Endocrine and paracrine pathways regulate lung development, ventilation, immunity, and repair, while pulmonary cells express hormone receptors and secrete mediators with both local and systemic effects, defining the concept of the “endocrine lung”. This narrative review summarizes current evidence on the endocrine–pulmonary axis. Thyroid hormones, glucocorticoids, sex steroids, and metabolic hormones (e.g., insulin, leptin, adiponectin) critically influence alveologenesis, surfactant production, ventilatory drive, airway mechanics, and immune responses. Conversely, the lung produces mediators such as serotonin, calcitonin gene-related peptide, endothelin-1, leptin, and keratinocyte growth factor, which regulate vascular tone, alveolar homeostasis, and immune modulation. We also describe the respiratory manifestations of major endocrine diseases, including obstructive sleep apnea and lung volume alterations in acromegaly, immunosuppression and myopathy in Cushing’s syndrome, hypoventilation in hypothyroidism, restrictive “diabetic lung”, and obesity-related phenotypes. In parallel, chronic pulmonary diseases such as chronic obstructive pulmonary disease, interstitial lung disease, and sleep apnea profoundly affect endocrine axes, promoting insulin resistance, hypogonadism, GH/IGF-1 suppression, and bone metabolism alterations. Pulmonary neuroendocrine tumors further highlight the interface, frequently presenting with paraneoplastic endocrine syndromes. Finally, therapeutic interactions are discussed, including the risks of hypothalamic–pituitary–adrenal axis suppression with inhaled corticosteroids, immunotherapy-induced endocrinopathies, and inhaled insulin. Future perspectives emphasize mapping pulmonary hormone networks, endocrine phenotyping of chronic respiratory diseases, and developing hormone-based interventions. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

26 pages, 2412 KB  
Review
Functional Complexity of Thermogenic Adipose Tissue: From Thermogenesis to Metabolic and Fibroinflammatory Crosstalk
by Wael Jalloul, Irena Cristina Grierosu, Despina Jalloul, Cipriana Stefanescu and Vlad Ghizdovat
Int. J. Mol. Sci. 2025, 26(18), 9045; https://doi.org/10.3390/ijms26189045 - 17 Sep 2025
Viewed by 1152
Abstract
Brown adipose tissue (BAT) has shifted from being considered a transient thermogenic organ of infancy to a metabolically dynamic and multifunctional tissue throughout life. Histologically and developmentally distinct from white and beige adipocytes, BAT originates from a myogenic lineage and is characterised by [...] Read more.
Brown adipose tissue (BAT) has shifted from being considered a transient thermogenic organ of infancy to a metabolically dynamic and multifunctional tissue throughout life. Histologically and developmentally distinct from white and beige adipocytes, BAT originates from a myogenic lineage and is characterised by a high mitochondrial density, multilocular lipid droplets, and abundant sympathetic innervation. Its defining function, non-shivering thermogenesis, is mediated by uncoupling protein 1 (UCP1) and complemented by alternative mechanisms such as futile creatine and calcium cycling. Beyond heat production, thermogenic fat is crucial in regulating whole-body metabolism. It contributes to glucose, lipid, and branched-chain amino acid homeostasis, and engages in endocrine and paracrine signalling through a rich secretome of batokines, lipid mediators, and extracellular vesicle-bound microRNAs. These signals orchestrate crosstalk with the liver, skeletal muscle, pancreas, and immune system, enhancing insulin sensitivity, vascularisation, and anti-inflammatory responses. Brown/Beige fat also exhibits notable anti-fibrotic properties and supports adipose tissue remodelling, maintaining structural and functional plasticity under metabolic stress. This review offers a comprehensive synthesis of thermogenic adipose tissue biology, integrating its structural, developmental, and molecular features with its expanding physiological functions, highlighting its pivotal role in energy balance as well as its emerging therapeutic potential in obesity, type 2 diabetes, and related metabolic disorders. Full article
Show Figures

Figure 1

41 pages, 2467 KB  
Review
Crosstalk Between Skeletal Muscle and Proximal Connective Tissues in Lipid Dysregulation in Obesity and Type 2 Diabetes
by Nataša Pollak, Efua Gyakye Janežič, Žiga Šink and Chiedozie Kenneth Ugwoke
Metabolites 2025, 15(9), 581; https://doi.org/10.3390/metabo15090581 - 30 Aug 2025
Viewed by 1444
Abstract
Background/Objectives: Obesity and type 2 diabetes mellitus (T2DM) profoundly disrupt lipid metabolism within local microenvironments of skeletal muscle and its associated connective tissues, including adipose tissue, bone, and fascia. However, the role of local communication between skeletal muscle and its proximal connective tissues [...] Read more.
Background/Objectives: Obesity and type 2 diabetes mellitus (T2DM) profoundly disrupt lipid metabolism within local microenvironments of skeletal muscle and its associated connective tissues, including adipose tissue, bone, and fascia. However, the role of local communication between skeletal muscle and its proximal connective tissues in propagating metabolic dysfunction is incompletely understood. This narrative review synthesizes current evidence on these local metabolic interactions, highlighting novel insights and existing gaps. Methods: We conducted a comprehensive literature analysis of primary research published in the last decade, sourced from PubMed, Web of Science, and ScienceDirect. Studies were selected for relevance to skeletal muscle, adipose tissue, fascia, and bone lipid metabolism in the context of obesity and T2DM, with emphasis on molecular, cellular, and paracrine mechanisms of local crosstalk. Findings were organized into thematic sections addressing physiological regulation, pathological remodeling, and inter-organ signaling pathways. Results: Our synthesis reveals that local lipid dysregulation in obesity and T2DM involves altered fatty acid transporter dynamics, mitochondrial overload, fibro-adipogenic remodeling, and compartment-specific adipose tissue dysfunction. Crosstalk via myokines, adipokines, osteokines, bioactive lipids, and exosomal miRNAs integrates metabolic responses across these tissues, amplifying insulin resistance and lipotoxic stress. Emerging evidence highlights the underappreciated roles of fascia and marrow adipocytes in regional lipid handling. Conclusions: Collectively, these insights underscore the pivotal role of inter-tissue crosstalk among skeletal muscle, adipose tissue, bone, and fascia in orchestrating lipid-induced insulin resistance, and highlight the need for integrative strategies that target this multicompartmental network to mitigate metabolic dysfunction in obesity and T2DM. Full article
(This article belongs to the Special Issue Lipid Metabolism Disorders in Obesity)
Show Figures

Graphical abstract

29 pages, 14681 KB  
Article
Single-Nucleus RNA Sequencing and Spatial Transcriptomics Reveal Cellular Heterogeneity and Intercellular Communication Networks in the Hypothalamus–Pituitary–Ovarian Axis of Pregnant Mongolian Cattle
by Yanchun Bao, Fengying Ma, Chenxi Huo, Hongxia Jia, Yunhan Li, Xiaoyi Yang, Jiajing Liu, Pengbo Gu, Caixia Shi, Mingjuan Gu, Lin Zhu, Yu Wang, Bin Liu, Risu Na and Wenguang Zhang
Animals 2025, 15(15), 2277; https://doi.org/10.3390/ani15152277 - 4 Aug 2025
Viewed by 1261
Abstract
The hypothalamus–pituitary–ovarian (HPO) axis orchestrates reproductive functions through intricate neuroendocrine crosstalk. Here, we integrated single-nucleus RNA sequencing (snRNA-seq) and spatial transcriptomics (ST) to decode the cellular heterogeneity and intercellular communication networks in the reproductive systems of pregnant Mongolian cattle. We retained a total [...] Read more.
The hypothalamus–pituitary–ovarian (HPO) axis orchestrates reproductive functions through intricate neuroendocrine crosstalk. Here, we integrated single-nucleus RNA sequencing (snRNA-seq) and spatial transcriptomics (ST) to decode the cellular heterogeneity and intercellular communication networks in the reproductive systems of pregnant Mongolian cattle. We retained a total of 6161 high-quality nuclei from the hypothalamus, 14,715 nuclei from the pituitary, and 26,072 nuclei from the ovary, providing a comprehensive cellular atlas across the HPO axis. In the hypothalamus, neurons exhibited synaptic and neuroendocrine specialization, with glutamatergic subtype Glut4 serving as a TGFβ signaling hub to regulate pituitary feedback, while GABAergic GABA1 dominated PRL signaling, likely adapting maternal behavior. Pituitary stem cells dynamically replenished endocrine populations via TGFβ, and lactotrophs formed a PRLPRLR paracrine network with stem cells, synergizing mammary development. Ovarian luteal cells exhibited steroidogenic specialization and microenvironmental synergy: endothelial cells coregulated TGFβ-driven angiogenesis and immune tolerance, while luteal–stromal PRLPRLR interactions amplified progesterone synthesis and nutrient support. Granulosa cells (GCs) displayed spatial-functional stratification, with steroidogenic GCs persisting across pseudotime as luteinization precursors, while atretic GCs underwent apoptosis. Spatial mapping revealed GCs’ annular follicular distribution, mediating oocyte–somatic crosstalk, and luteal–endothelial colocalization supporting vascularization. This study unveils pregnancy-specific HPO axis regulation, emphasizing multi-organ crosstalk through TGFβ/PRL pathways and stem cell-driven plasticity, offering insights into reproductive homeostasis and pathologies. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

20 pages, 1008 KB  
Review
Hepato-Renal Crosstalk in Acute and Chronic Disease: From Shared Pathways to Therapeutic Targets
by Anna Clementi, Grazia Maria Virzì, Massimiliano Sorbello, Nenzi Marzano, Paola Monciino, Jose Said Cabrera-Aguilar, Giovanni Giorgio Battaglia, Claudio Ronco and Monica Zanella
Biomedicines 2025, 13(7), 1618; https://doi.org/10.3390/biomedicines13071618 - 1 Jul 2025
Viewed by 1046
Abstract
Hepato-renal crosstalk is a complex biological communication between liver and kidneys mediated by various factors, including cellular, endocrine, and paracrine molecules. This interaction highlights the functional consequences that damage in one organ can have on the other. In particular, the liver and kidney [...] Read more.
Hepato-renal crosstalk is a complex biological communication between liver and kidneys mediated by various factors, including cellular, endocrine, and paracrine molecules. This interaction highlights the functional consequences that damage in one organ can have on the other. In particular, the liver and kidney play a pivotal role in maintaining body homeostasis, as they are both involved in the excretion of toxic bioproducts and drugs. The overlap of liver and kidney disease has both therapeutic and prognostic implications. Therefore, a better understanding of the mechanisms involved in the pathogenesis of this bidirectional crosstalk is essential for improving the management of these clinical conditions and patient outcomes. Specifically, a multidisciplinary approach involving hepatologists and nephrologists is crucial to reduce the long-term burden of these clinical settings. This review focuses on the hepato-renal crosstalk in the context of liver and kidney disease, with particular attention to acute kidney injury associated with liver injury, hepatorenal syndrome and, chronic kidney disease in the context of liver fibrosis. Full article
Show Figures

Figure 1

21 pages, 908 KB  
Review
The Critical Role of Adipocytes in Leukemia
by Romane Higos, Kevin Saitoski, Mathieu Hautefeuille, Geneviève Marcelin, Karine Clément, Nadine Varin-Blank, Christophe Breton, Simon Lecoutre and Mélanie Lambert
Biology 2025, 14(6), 624; https://doi.org/10.3390/biology14060624 - 28 May 2025
Viewed by 1476
Abstract
The bone marrow microenvironment is a dynamic and complex niche that plays a central role in the development, progression, and therapeutic resistance of leukemia. Among the various stromal and immune cells that compose this microenvironment, adipocytes are increasingly recognized as active participants rather [...] Read more.
The bone marrow microenvironment is a dynamic and complex niche that plays a central role in the development, progression, and therapeutic resistance of leukemia. Among the various stromal and immune cells that compose this microenvironment, adipocytes are increasingly recognized as active participants rather than passive bystanders. These cells contribute to leukemia pathophysiology by supplying leukemic cells with vital metabolic fuels such as free fatty acids and glutamine, which support cellular bioenergetics and biosynthesis. Furthermore, adipocytes secrete adipokines—including leptin, adiponectin, and others—that influence leukemic cell proliferation, apoptosis, and chemoresistance. Leukemic cells, in turn, are not merely recipients of these signals, but actively remodel the marrow niche to their advantage. They can suppress adipogenesis, inhibit the differentiation of mesenchymal stem cells into adipocytes, or reprogram existing adipocytes to adopt a tumor-supportive phenotype. These transformed adipocytes may enhance leukemic cell survival, dampen immune responses, and create a metabolic sanctuary that enables resistance to standard chemotherapies. This reciprocal and dynamic interaction between leukemic cells and adipocytes contributes significantly to minimal residual disease and relapse, posing a major challenge for durable remission. Recent advances in tissue engineering—such as organ-on-chip and 3D co-culture systems—offer promising platforms to recapitulate and study these leukemia–adipocyte interactions with high fidelity. These models facilitate mechanistic insights and provide a foundation for developing novel therapeutic strategies aimed at disrupting the metabolic and paracrine crosstalk within the leukemic niche. Targeting the adipocyte–leukemia axis represents a compelling and underexplored avenue for improving leukemia treatment by sensitizing malignant cells to existing therapies and overcoming the protective influence of the bone marrow microenvironment. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

21 pages, 4963 KB  
Article
Cell Ratio-Dependent Osteoblast–Endothelial Cell Crosstalk Promoting Osteogenesis–Angiogenesis Coupling via Regulation of Microfluidic Perfusion and Paracrine Signaling
by Yuexin Wang, Shu Chen, Wenwen Fan, Sixian Zhang and Xi Chen
Micromachines 2025, 16(5), 539; https://doi.org/10.3390/mi16050539 - 30 Apr 2025
Viewed by 1285
Abstract
Osteogenesis–angiogenesis coupling, a dynamic and coordinated interaction between skeletal and vascular cells, is essential for fracture healing. However, the effects of these cell ratios and their interactions under microfluidic perfusion and paracrine signaling on osteogenesis–angiogenesis coupling have rarely been reported. In this study, [...] Read more.
Osteogenesis–angiogenesis coupling, a dynamic and coordinated interaction between skeletal and vascular cells, is essential for fracture healing. However, the effects of these cell ratios and their interactions under microfluidic perfusion and paracrine signaling on osteogenesis–angiogenesis coupling have rarely been reported. In this study, dynamic and static models of osteogenesis–angiogenesis coupling were developed and the osteogenic and angiogenic effects of the two models were compared. Static co-cultures of MC3T3-E1 and bEnd.3 cells in Transwell inserts showed a cell ratio-dependent reciprocal relation: a ratio of 1:1 (MC3T3-E1:bEnd.3) favored osteogenesis, whereas a ratio of 2:1 (MC3T3-E1:bEnd.3) promoted angiogenesis. On that basis, we developed an osteogenesis–angiogenesis coupling chip based on microfluidic technology. The microfluidic perfusion within the chip further enhanced the mineralizing effect of osteoblasts and the angiogenic effect of endothelial cells, respectively, and increased the secretion of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2 (BMP-2) compared to the static Transwell insert model. The results suggest that the microfluidic chip enhanced the potential of osteogenesis–angiogenesis coupling mediated by paracrine signaling. Overall, the chip is not only a powerful model for understanding bone–vascular interaction but also a scalable platform for high-throughput drug screening and personalized therapy development for fractures. Full article
Show Figures

Figure 1

15 pages, 861 KB  
Review
The Covert Side of Ascites in Cirrhosis: Cellular and Molecular Aspects
by Carlo Airola, Simone Varca, Angelo Del Gaudio and Fabrizio Pizzolante
Biomedicines 2025, 13(3), 680; https://doi.org/10.3390/biomedicines13030680 - 10 Mar 2025
Cited by 1 | Viewed by 1943
Abstract
Ascites, a common complication of portal hypertension in cirrhosis, is characterized by the accumulation of fluid within the peritoneal cavity. While traditional theories focus on hemodynamic alterations and renin–angiotensin–aldosterone system (RAAS) activation, recent research highlights the intricate interplay of molecular and cellular mechanisms. [...] Read more.
Ascites, a common complication of portal hypertension in cirrhosis, is characterized by the accumulation of fluid within the peritoneal cavity. While traditional theories focus on hemodynamic alterations and renin–angiotensin–aldosterone system (RAAS) activation, recent research highlights the intricate interplay of molecular and cellular mechanisms. Inflammation, mediated by cytokines (interleukin-1, interleukin-4, interleukin-6, tumor necrosis factor-α), chemokines (chemokine ligand 21, C-X-C motif chemokine ligand 12), and reactive oxygen species (ROS), plays a pivotal role. Besides pro-inflammatory cytokines, hepatic stellate cells (HSCs), sinusoidal endothelial cells (SECs), and smooth muscle cells (SMCs) contribute to the process through their activation and altered functions. Once activated, these cell types can worsen ascites accumulationthrough extracellular matrix (ECM) deposition and paracrine signals. Besides this, macrophages, both resident and infiltrating, through their plasticity, participate in this complex crosstalk by promoting inflammation and dysregulating lymphatic system reabsorption. Indeed, the lymphatic system and lymphangiogenesis, essential for fluid reabsorption, is dysregulated in cirrhosis, exacerbating ascites. The gut microbiota and intestinal barrier alterations which occur in cirrhosis and portal hypertension also play a role by inducing inflammation, creating a vicious circle which worsens portal hypertension and fluid accumulation. This review aims to gather these aspects of ascites pathophysiology which are usually less considered and to date have not been addressed using specific therapy. Nonetheless, it emphasizes the need for further research to understand the complex interactions among these mechanisms, ultimately leading to targeted interventions in specific molecular pathways, aiming towards the development of new therapeutic strategies. Full article
Show Figures

Figure 1

18 pages, 2931 KB  
Article
E. coli Biomolecules Increase Glycolysis and Invasive Potential in Lung Adenocarcinoma
by Alexis A. Vega, Parag P. Shah, Eric C. Rouchka, Brian F. Clem, Calista R. Dean, Natassja Woodrum, Preeti Tanwani, Leah J. Siskind and Levi J. Beverly
Cancers 2025, 17(3), 380; https://doi.org/10.3390/cancers17030380 - 24 Jan 2025
Viewed by 1419
Abstract
Introduction: Recent studies have discovered that lung cancer subtypes possess distinct microbiome profiles within their tumor microenvironment. Additionally, the tumor-associated microbiome exhibits altered bacterial pathways, suggesting that certain bacterial families are more capable of facilitating tumor progression than others. We hypothesize that there [...] Read more.
Introduction: Recent studies have discovered that lung cancer subtypes possess distinct microbiome profiles within their tumor microenvironment. Additionally, the tumor-associated microbiome exhibits altered bacterial pathways, suggesting that certain bacterial families are more capable of facilitating tumor progression than others. We hypothesize that there exists a crosstalk between lung adenocarcinoma (LUAD) cells and bacterial cells. Methods and Materials: RNA sequencing (RNA-seq) was performed on LUAD cell lines to explore the paracrine signaling effects of bacterial biomolecules. Based on our RNA-seq data, we investigated glycolysis by measuring glucose uptake and lactate production, invasive potential through invasion assays, and epithelial-to-mesenchymal transition (EMT) markers. Since lipopolysaccharides (LPS), abundant on the cell walls of Gram-negative bacteria, can activate toll-like receptor 4 (TLR4), we inhibited TLR4 with C34 to assess its relationship with the observed phenotypic changes. To identify the bacterial biomolecules responsible for these changes, we treated the media with RNAse enzyme, charcoal or dialyzed away molecules larger than 3 kDa. Results and Discussion: RNA-seq revealed 948 genes upregulated in the presence of E. coli biomolecules. Among these, we observed increased expression of Hexokinase II (HKII), JUN proto-oncogene, and Snail Family Transcriptional Repressor 1. We verified the elevation of glycolytic enzymes through Western blot and saw elevation of 2-deoxyglucose uptake and lactate production in LUAD cell lines incubated in E. coli biomolecules. In addition to E. coli elevating glycolysis in LUAD cell lines, E. coli exposure enhanced invasive potential as demonstrated by Boyden chamber assays. Notably, inhibition of TLR4 did not reduce the impact of E. coli biomolecules on glycolysis or the invasive potential of LUAD. Modulating the E. coli-supplemented media with RNAse enzyme or dextran-coated charcoal or using a spin column to remove biomolecules smaller than 3 kDa resulted in changes in HKII and Claudin protein expression. These findings suggest a direct relationship between E. coli and LUAD, wherein several cancer hallmarks are upregulated. Future studies should further investigate these bacterial biomolecules and their role in the tumor microenvironment to fully understand the impact of microbial shifts on cancer progression. Full article
(This article belongs to the Special Issue Lung Cancer—Molecular Insights and Targeted Therapies (Volume II))
Show Figures

Figure 1

16 pages, 982 KB  
Review
Targeted Therapy for Severe Sjogren’s Syndrome: A Focus on Mesenchymal Stem Cells
by Carl Randall Harrell, Ana Volarevic, Aleksandar Arsenijevic, Valentin Djonov and Vladislav Volarevic
Int. J. Mol. Sci. 2024, 25(24), 13712; https://doi.org/10.3390/ijms252413712 - 22 Dec 2024
Cited by 4 | Viewed by 3651
Abstract
Primary Sjögren’s syndrome (pSS) is an autoimmune disease characterized by the infiltration of lymphocytes on salivary and lacrimal glands, resulting in their dysfunction. Patients suffering from severe pSS have an increased risk of developing multi-organ dysfunction syndrome due to the development of systemic [...] Read more.
Primary Sjögren’s syndrome (pSS) is an autoimmune disease characterized by the infiltration of lymphocytes on salivary and lacrimal glands, resulting in their dysfunction. Patients suffering from severe pSS have an increased risk of developing multi-organ dysfunction syndrome due to the development of systemic inflammatory response, which results in immune cell-driven injury of the lungs, kidneys, liver, and brain. Therapeutic agents that are used for the treatment of severe pSS encounter various limitations and challenges that can impact their effectiveness. Accordingly, there is a need for targeted, personalized therapy that could address the underlying detrimental immune response while minimizing side effects. Results obtained in a large number of recently published studies have demonstrated the therapeutic efficacy of mesenchymal stem cells (MSCs) in the treatment of severe pSS. MSCs, in a juxtacrine and paracrine manner, suppressed the generation of inflammatory Th1 and Th17 lymphocytes, induced the expansion of immunosuppressive cells, impaired the cross-talk between auto-reactive T and B cells, and prevented the synthesis and secretion of auto-antibodies. Additionally, MSC-derived growth and trophic factors promoted survival and prevented apoptosis of injured cells in inflamed lacrimal and salivary glands, thereby enhancing their repair and regeneration. In this review article, we summarized current knowledge about the molecular mechanisms that are responsible for the beneficial effects of MSCs in the suppression of immune cell-driven injury of exocrine glands and vital organs, paving the way for a better understanding of their therapeutic potential in the targeted therapy of severe pSS. Full article
(This article belongs to the Special Issue Biomedical Applications of Mesenchymal Stem Cells)
Show Figures

Figure 1

22 pages, 3326 KB  
Article
Bioengineering the Human Intestinal Mucosa and the Importance of Stromal Support for Pharmacological Evaluation In Vitro
by Matthew Freer, Jim Cooper, Kirsty Goncalves and Stefan Przyborski
Cells 2024, 13(22), 1859; https://doi.org/10.3390/cells13221859 - 8 Nov 2024
Viewed by 1829
Abstract
Drug discovery is associated with high levels of compound elimination in all stages of development. The current practices for the pharmacokinetic testing of intestinal absorption combine Transwell® inserts with the Caco-2 cell line and are associated with a wide range of limitations. [...] Read more.
Drug discovery is associated with high levels of compound elimination in all stages of development. The current practices for the pharmacokinetic testing of intestinal absorption combine Transwell® inserts with the Caco-2 cell line and are associated with a wide range of limitations. The improvement of pharmacokinetic research relies on the development of more advanced in vitro intestinal constructs that better represent human native tissue and its response to drugs, providing greater predictive accuracy. Here, we present a humanized, bioengineered intestinal construct that recapitulates aspects of intestinal microanatomy. We present improved histotypic characteristics reminiscent of the human intestine, such as a reduction in transepithelial electrical resistance (TEER) and the formation of a robust basement membrane, which are contributed to in-part by a strong stromal foundation. We explore the link between stromal–epithelial crosstalk, paracrine communication, and the role of the keratinocyte growth factor (KGF) as a soluble mediator, underpinning the tissue-specific role of fibroblast subpopulations. Permeability studies adapted to a 96-well format allow for high throughput screening and demonstrate the role of the stromal compartment and tissue architecture on permeability and functionality, which is thought to be one of many factors responsible for unexpected drug outcomes using current approaches for pharmacokinetic testing. Full article
Show Figures

Figure 1

12 pages, 1583 KB  
Article
In Vitro Bioassay for Damage-Associated Molecular Patterns Arising from Injured Oral Cells
by Layla Panahipour, Chiara Micucci, Benedetta Gelmetti and Reinhard Gruber
Bioengineering 2024, 11(7), 687; https://doi.org/10.3390/bioengineering11070687 - 5 Jul 2024
Cited by 3 | Viewed by 1573
Abstract
Gingival fibroblasts are a significant source of paracrine signals required to maintain periodontal homeostasis and to mediate pathological events linked to periodontitis and oral squamous cell carcinomas. Among the potential paracrine signals are stanniocalcin-1 (STC1), involved in oxidative stress and cellular survival; amphiregulin [...] Read more.
Gingival fibroblasts are a significant source of paracrine signals required to maintain periodontal homeostasis and to mediate pathological events linked to periodontitis and oral squamous cell carcinomas. Among the potential paracrine signals are stanniocalcin-1 (STC1), involved in oxidative stress and cellular survival; amphiregulin (AREG), a growth factor that mediates the cross-talk between immune cells and epithelial cells; chromosome 11 open reading frame 96 (C11orf96) with an unclear biologic function; and the inflammation-associated prostaglandin E synthase (PTGES). Gingival fibroblasts increasingly express these genes in response to bone allografts containing remnants of injured cells. Thus, the gene expression might be caused by the local release of damage-associated molecular patterns arising from injured cells. The aim of this study is consequently to use the established gene panel as a bioassay to measure the damage-associated activity of oral cell lysates. To this aim, we have exposed gingival fibroblasts to lysates prepared from the squamous carcinoma cell lines TR146 and HSC2, oral epithelial cells, and gingival fibroblasts. We report here that all lysates significantly increased the transcription of the entire gene panel, supported for STC1 at the protein level. Blocking TGF-β receptor 1 kinase with SB431542 only partially reduced the forced expression of STC1, AREG, and C11orf96. SB431542 even increased the PTGES expression. Together, these findings suggest that the damage signals originating from oral cells can change the paracrine activity of gingival fibroblasts. Moreover, the expression panel of genes can serve as a bioassay for testing the biocompatibility of materials for oral application. Full article
(This article belongs to the Special Issue Tissue Engineering for Regenerative Dentistry)
Show Figures

Figure 1

30 pages, 1375 KB  
Review
Mesenchymal Stem Cells and Purinergic Signaling in Autism Spectrum Disorder: Bridging the Gap between Cell-Based Strategies and Neuro-Immune Modulation
by Agata Wikarska, Kacper Roszak and Katarzyna Roszek
Biomedicines 2024, 12(6), 1310; https://doi.org/10.3390/biomedicines12061310 - 13 Jun 2024
Cited by 2 | Viewed by 4206
Abstract
The prevalence of autism spectrum disorder (ASD) is still increasing, which means that this neurodevelopmental lifelong pathology requires special scientific attention and efforts focused on developing novel therapeutic approaches. It has become increasingly evident that neuroinflammation and dysregulation of neuro-immune cross-talk are specific [...] Read more.
The prevalence of autism spectrum disorder (ASD) is still increasing, which means that this neurodevelopmental lifelong pathology requires special scientific attention and efforts focused on developing novel therapeutic approaches. It has become increasingly evident that neuroinflammation and dysregulation of neuro-immune cross-talk are specific hallmarks of ASD, offering the possibility to treat these disorders by factors modulating neuro-immunological interactions. Mesenchymal stem cell-based therapy has already been postulated as one of the therapeutic approaches for ASD; however, less is known about the molecular mechanisms of stem cell influence. One of the possibilities, although still underestimated, is the paracrine purinergic activity of MSCs, by which stem cells ameliorate inflammatory reactions. Modulation of adenosine signaling may help restore neurotransmitter balance, reduce neuroinflammation, and improve overall brain function in individuals with ASD. In our review article, we present a novel insight into purinergic signaling, including but not limited to the adenosinergic pathway and its role in neuroinflammation and neuro-immune cross-talk modulation. We anticipate that by achieving a greater understanding of the purinergic signaling contribution to ASD and related disorders, novel therapeutic strategies may be devised for patients with autism in the near future. Full article
Show Figures

Figure 1

Back to TopTop