Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = palladium electro-catalyst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8428 KiB  
Article
The Role of Pd-Pt Bimetallic Catalysts in Ethylene Detection by CMOS-MEMS Gas Sensor Dubbed GMOS
by Hanin Ashkar, Sara Stolyarova, Tanya Blank and Yael Nemirovsky
Micromachines 2025, 16(6), 672; https://doi.org/10.3390/mi16060672 - 31 May 2025
Cited by 1 | Viewed by 2981
Abstract
The importance and challenges of ethylene detection based on combustion-type low-cost commercial sensors for agricultural and industrial applications are well-established. This work summarizes the significant progress in ethylene detection based on an innovative Gas Metal Oxide Semiconductor (GMOS) sensor and a new catalytic [...] Read more.
The importance and challenges of ethylene detection based on combustion-type low-cost commercial sensors for agricultural and industrial applications are well-established. This work summarizes the significant progress in ethylene detection based on an innovative Gas Metal Oxide Semiconductor (GMOS) sensor and a new catalytic composition of metallic nanoparticles. The paper presents a study on ethylene and ethanol sensing using a miniature catalytic sensor fabricated by Complementary Metal Oxide Semiconductor–Silicon-on-Insulator–Micro-Electro-Mechanical System (CMOS-SOI-MEMS) technology. The GMOS performance with bimetallic palladium–platinum (Pd-Pt) and monometallic palladium (Pd) and platinum (Pt) catalysts is compared. The synergetic effect of the Pd-Pt catalyst is observed, which is expressed in the shift of combustion reaction ignition to lower catalyst temperatures as well as increased sensitivity compared to monometallic components. The optimal catalysts and their temperature regimes for low and high ethylene concentrations are chosen, resulting in lower power consumption by the sensor. Full article
(This article belongs to the Collection Women in Micromachines)
Show Figures

Figure 1

15 pages, 2856 KiB  
Article
Insights into Pd-Nb@In2Se3 Electrocatalyst for High-Performance and Selective CO2 Reduction Reaction from DFT
by Lin Ju, Xiao Tang, Yixin Zhang, Mengya Chen, Shuli Liu and Chen Long
Inorganics 2025, 13(5), 146; https://doi.org/10.3390/inorganics13050146 - 5 May 2025
Viewed by 603
Abstract
The electrochemical CO2 reduction reaction (eCO2RR), driven by renewable energy, represents a promising strategy for mitigating atmospheric CO2 levels while generating valuable fuels and chemicals. Its practical implementation hinges on the development of highly efficient electrocatalysts. In this study, [...] Read more.
The electrochemical CO2 reduction reaction (eCO2RR), driven by renewable energy, represents a promising strategy for mitigating atmospheric CO2 levels while generating valuable fuels and chemicals. Its practical implementation hinges on the development of highly efficient electrocatalysts. In this study, a novel dual-metal atomic catalyst (DAC), composed of niobium and palladium single atoms anchored on a ferroelectric α-In2Se3 monolayer (Nb-Pd@In2Se3), is proposed based on density functional theory (DFT) calculations. The investigation encompassed analyses of structural and electronic characteristics, CO2 adsorption configurations, transition-state energetics, and Gibbs free energy changes during the eCO2RR process, elucidating a synergistic catalytic mechanism. The Nb-Pd@In2Se3 DAC system demonstrates enhanced CO2 activation compared to single-atom counterparts, which is attributed to the complementary roles of Nb and Pd sites. Specifically, Nb atoms primarily drive carbon reduction, while neighboring Pd atoms facilitate oxygen species removal through proton-coupled electron transfer. This dual-site interaction lowers the overall reaction barrier, promoting efficient CO2 conversion. Notably, the polarization switching of the In2Se3 substrate dynamically modulates energy barriers and reaction pathways, thereby influencing product selectivity. Our work provides theoretical guidance for designing ferroelectric-supported DACs for the eCO2RR. Full article
Show Figures

Graphical abstract

16 pages, 2932 KiB  
Article
Waste for Product: Pd and Pt Nanoparticle-Modified Ni Foam as a Universal Catalyst for Hydrogen/Oxygen Evolution Reaction and Methyl Orange Degradation
by Julia Druciarek, Dawid Kutyła, Adrianna Pach, Anna Kula and Magdalena Luty-Błocho
Catalysts 2025, 15(2), 133; https://doi.org/10.3390/catal15020133 - 30 Jan 2025
Viewed by 1128
Abstract
Declining natural resources make the recovery of metals from waste solutions a promising alternative. Moreover, processing waste into a finished product has its economic justification and benefits. Thus, the aim of this research was developing a Waste for Product strategy, indicating the possibility [...] Read more.
Declining natural resources make the recovery of metals from waste solutions a promising alternative. Moreover, processing waste into a finished product has its economic justification and benefits. Thus, the aim of this research was developing a Waste for Product strategy, indicating the possibility of processing solutions with a low content of platinum-group metals for catalyst synthesis. The results obtained confirmed that diluted synthetic waste solutions containing trace amount of valuable metal ions (Pd, Pt) can be used for the process of catalyst synthesis. Catalysts produced in the form of palladium and platinum nanoparticles were successfully deposited on a Ni foam due to the galvanic displacement mechanism. Synthesized catalysts were characterized using UV-Vis spectrophotometry, SEM/EDS, and XRD techniques. Electro- and catalytic properties were tested for hydrogen/oxygen evolution reactions and methyl orange degradation, respectively. The results obtained from electrocatalytic tests indicated that the modification of the nickel foam surface by waste solutions consisting of noble metals ions as Pd and Pt can significantly increase the activity in hydrogen and oxygen evolution reactions in comparison to non-treated samples. Catalytic tests performed for the process of methyl orange degradation shorten the time of the process from several hours to 15 min. The most favorable results were obtained for the catalysts in the following order Pd1.0Pt0@Ni > Pd0Pt1.0@Ni > Pd0.5Pt0.5@Ni > Ni foam > no catalyst, indicating the best catalytic performance for catalyst containing pure palladium nanoparticles deposited on the nickel surface. Full article
(This article belongs to the Special Issue Commemorative Special Issue for Prof. Dr. Dion Dionysiou)
Show Figures

Figure 1

15 pages, 5653 KiB  
Article
Thermodynamic Analysis of Size-Dependent Surface Energy in Pd Nanoparticles for Enhanced Alkaline Ethanol Electro-Oxidation
by A. Santoveña-Uribe, J. Maya-Cornejo, M. Estevez and I. Santamaria-Holek
Nanomaterials 2024, 14(23), 1966; https://doi.org/10.3390/nano14231966 - 7 Dec 2024
Cited by 1 | Viewed by 1186
Abstract
This work investigates the relationship between the mean diameter of palladium (Pd) nanoparticles and their surface energy, specifically in the context of alkaline ethanol electro-oxidation for fuel cell applications. Employing a recent generalization of the classical Laviron equation, we derive crucial parameters such [...] Read more.
This work investigates the relationship between the mean diameter of palladium (Pd) nanoparticles and their surface energy, specifically in the context of alkaline ethanol electro-oxidation for fuel cell applications. Employing a recent generalization of the classical Laviron equation, we derive crucial parameters such as surface energy (σ), adsorption–desorption equilibrium constant (Keq), and electron transfer coefficient (α) from linear voltammograms obtained from Pd-based nanoparticles supported on Vulcan carbon. Synthesized using two distinct methods, these nanocatalysts exhibit mean diameters ranging from 10 to 41 nm. Our results indicate that the surface energy of the Pd/C nanocatalysts spans σ ~ 0.5–2.5 J/m2, showing a linear correlation with particle size while remaining independent of ethanol bulk concentration. The adsorption–desorption equilibrium constant varies with nanoparticle size (~0.1–6 × 10−6 mol−1) but is unaffected by ethanol concentration. Significantly, we identify an optimal mean diameter of approximately 28 nm for enhanced electrocatalytic activity, revealing critical size-dependent effects on catalytic efficiency. This research contributes to the ongoing development of cost-effective and durable fuel cell components by optimizing nanoparticle characteristics, thus advancing the performance of Pd-based catalysts in practical applications. Our findings are essential for the continued evolution of nanomaterials in fuel cell technologies, particularly in improving efficiency and reducing reliance on critical raw materials. Full article
(This article belongs to the Special Issue Nanomaterials Applied to Fuel Cells and Catalysts)
Show Figures

Figure 1

30 pages, 7900 KiB  
Article
A Carbon-Particle-Supported Palladium-Based Cobalt Composite Electrocatalyst for Ethanol Oxidation Reaction (EOR)
by Keqiang Ding, Weijia Li, Mengjiao Li, Ying Bai, Xiaoxuan Liang and Hui Wang
Electrochem 2024, 5(4), 506-529; https://doi.org/10.3390/electrochem5040033 - 15 Nov 2024
Cited by 1 | Viewed by 1127
Abstract
For the first time, carbon-particle-supported palladium-based cobalt composite electrocatalysts (abbreviated as PdxCoy/CPs) were prepared using a calcination–hydrothermal process–hydrothermal process (denoted as CHH). The catalysts of PdxCoy/CPs prepared using CoC2O4·2H2O, [...] Read more.
For the first time, carbon-particle-supported palladium-based cobalt composite electrocatalysts (abbreviated as PdxCoy/CPs) were prepared using a calcination–hydrothermal process–hydrothermal process (denoted as CHH). The catalysts of PdxCoy/CPs prepared using CoC2O4·2H2O, (CH3COO)2Co·4H2O, and metallic cobalt were named catalyst c1, c2, and c3, respectively. For comparison, the catalyst prepared in the absence of a Co source (denoted as Pd/CP) was identified as catalyst c0. All fabricated catalysts were thoroughly characterized by XRD, EDS, XPS, and FTIR, indicating that PdO, metallic Pd, carbon particles, and a very small amount of cobalt oxide were the main components of all produced catalysts. As demonstrated by the traditional electrochemical techniques of CV and CA, the electrocatalytic performances of PdxCoy/CP towards the ethanol oxidation reaction (EOR) were significantly superior to that of Pd/CP. In particular, c1 showed an unexpected electrocatalytic activity for EOR; for instance, in the CV test, the peak f current density of EOR on catalyst c1 was 129.3 mA cm−2, being about 10.7 times larger than that measured on Pd/CP, and in the CA test, the polarized current density of EOR recorded for c1 after 7200 s was still about 2.1 mA cm−2, which was larger than that recorded for Pd/CP (0.6 mA cm−2). In the catalyst preparation process, except for the elements of C, O, Co, and Pd, no other elements were involved, which was thought to be the main contribution of this preliminary work, being very meaningful to the further exploration of Pd-based composite EOR catalysts. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

10 pages, 2314 KiB  
Article
Structure-Driven Performance Enhancement in Palladium–Graphene Oxide Catalysts for Electrochemical Hydrogen Evolution
by Krishnamoorthy Sathiyan, Ce Gao, Toru Wada, Poulami Mukherjee, Kalaivani Seenivasan and Toshiaki Taniike
Materials 2024, 17(21), 5296; https://doi.org/10.3390/ma17215296 - 31 Oct 2024
Cited by 3 | Viewed by 1524
Abstract
Graphene oxide (GO) has recently gained significant attention in electrocatalysis as a promising electrode material owing to its unique physiochemical properties such as enhanced electron transfers due to a conjugated π-electron system, high surface area, and stable support for loading electroactive species, including [...] Read more.
Graphene oxide (GO) has recently gained significant attention in electrocatalysis as a promising electrode material owing to its unique physiochemical properties such as enhanced electron transfers due to a conjugated π-electron system, high surface area, and stable support for loading electroactive species, including metal nanoparticles. However, only a few studies have been directed toward the structural characteristics of GO, elaborating on the roles of oxygen-containing functional groups, the presence of defects, interlayer spacing between the layered structure, and nonuniformity in the carbon skeleton along with their influence on electrochemical performance. In this work, we aim to understand these properties in various GO materials derived from different graphitic sources. Both physiochemical and electrochemical characterization were employed to correlate the above-mentioned features and explore the effect of the location of the palladium nanoparticles (Pd NPs) on various GO supports for the hydrogen evolution reaction (HER). The interaction of the functional groups has a crucial role in the Pd dispersion and its electrochemical performance. Among the different GO samples, Pd supported on GO derived from graphene nanoplate (GNP), Pd/GO-GNP, exhibits superior HER performance; this could be attributed to the optimal balance among particle size, defect density, less in-plane functionalities, and higher electrochemical surface area. This study, thus, helps to identify the optimal conditions that lead to the best performance of Pd-loaded GO, contributing to the design of more effective HER electrocatalysts. Full article
Show Figures

Figure 1

17 pages, 5287 KiB  
Article
Exploring the Potential of Bimetallic PtPd/C Cathode Catalysts to Enhance the Performance of PEM Fuel Cells
by Vladimir Guterman, Anastasia Alekseenko, Sergey Belenov, Vladislav Menshikov, Elizaveta Moguchikh, Irina Novomlinskaya, Kirill Paperzh and Ilya Pankov
Nanomaterials 2024, 14(20), 1672; https://doi.org/10.3390/nano14201672 - 18 Oct 2024
Cited by 3 | Viewed by 1862
Abstract
Bimetallic platinum-containing catalysts are deemed promising for electrolyzers and proton-exchange membrane fuel cells (PEMFCs). A significant number of laboratory studies and commercial offers are related to PtNi/C and PtCo/C electrocatalysts. The behavior of PtPd/C catalysts has been studied much less, although palladium itself [...] Read more.
Bimetallic platinum-containing catalysts are deemed promising for electrolyzers and proton-exchange membrane fuel cells (PEMFCs). A significant number of laboratory studies and commercial offers are related to PtNi/C and PtCo/C electrocatalysts. The behavior of PtPd/C catalysts has been studied much less, although palladium itself is the metal closest to platinum in its properties. Using a series of characterization methods, this paper presents a comparative study of structural characteristics of the commercial PtPd/C catalysts containing 38% wt. of precious metals and the well-known HiSpec4000 Pt/C catalyst. The electrochemical behavior of the catalysts was studied both in a three-electrode electrochemical cell and in the membrane electrode assemblies (MEAs) of hydrogen–air PEMFCs. Both PtPd/C samples demonstrated higher values of the electrochemically active surface area, as well as greater specific and mass activity in the oxygen reduction reaction in comparison with conventional Pt/C, while not being inferior to the latter in durability. The MEA based on the best of the PtPd/C catalysts also exhibited higher performance in single tests and long-term durability testing. The results of this study conducted indicate the prospects of using bimetallic PtPd/C materials for cathode catalysts in PEMFCs. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

22 pages, 4471 KiB  
Article
Waste for Product—Synthesis and Electrocatalytic Properties of Palladium Nanopyramid Layer Enriched with PtNPs
by Magdalena Luty-Błocho, Adrianna Pach, Dawid Kutyła, Anna Kula, Stanisław Małecki, Piotr Jeleń and Volker Hessel
Materials 2024, 17(16), 4165; https://doi.org/10.3390/ma17164165 - 22 Aug 2024
Cited by 2 | Viewed by 1154
Abstract
The presented research is the seed of a vision for the development of a waste-for-product strategy. Following this concept, various synthetic solutions containing low concentrations of platinum group metals were used to model their recovery and to produce catalysts. This is also the [...] Read more.
The presented research is the seed of a vision for the development of a waste-for-product strategy. Following this concept, various synthetic solutions containing low concentrations of platinum group metals were used to model their recovery and to produce catalysts. This is also the first report that shows the method for synthesis of a pyramid-like structure deposited on activated carbon composed of Pd and Pt. This unique structure was obtained from a mixture of highly diluted aqueous solutions containing both metals and chloride ions. The presence of functional groups on the carbon surface and experimental conditions allowed for: the adsorption of metal complexes, their reduction to metal atoms and enabled further hierarchical growth of the metal layer on the carbon surface. During experiments, spherical palladium and platinum nanoparticles were obtained. The addition of chloride ions to the solution promoted the hierarchical growth and formation of palladium nanopyramids, which were enriched with platinum nanoparticles. The obtained materials were characterized using UV–Vis, Raman, IR spectroscopy, TGA, SEM/EDS, and XRD techniques. Moreover, Pd@ROY, Pt@ROY, and Pd-Pt@ROY were tested as possible electrocatalysts for hydrogen evolution reactions. Full article
(This article belongs to the Special Issue Advanced Metallurgy Technologies: Physical and Numerical Modelling)
Show Figures

Graphical abstract

12 pages, 2219 KiB  
Article
Phosphorus-Doping Enables the Superior Durability of a Palladium Electrocatalyst towards Alkaline Oxygen Reduction Reactions
by Wen-Yuan Zhao, Miao-Ying Chen, Hao-Ran Wu, Wei-Dong Li and Bang-An Lu
Materials 2024, 17(12), 2879; https://doi.org/10.3390/ma17122879 - 12 Jun 2024
Viewed by 1303
Abstract
The sluggish kinetics of oxygen reduction reactions (ORRs) require considerable Pd in the cathode, hindering the widespread of alkaline fuel cells (AFCs). By alloying Pd with transition metals, the oxygen reduction reaction’s catalytic properties can be substantially enhanced. Nevertheless, the utilization of Pd-transition [...] Read more.
The sluggish kinetics of oxygen reduction reactions (ORRs) require considerable Pd in the cathode, hindering the widespread of alkaline fuel cells (AFCs). By alloying Pd with transition metals, the oxygen reduction reaction’s catalytic properties can be substantially enhanced. Nevertheless, the utilization of Pd-transition metal alloys in fuel cells is significantly constrained by their inadequate long-term durability due to the propensity of transition metals to leach. In this study, a nonmetallic doping strategy was devised and implemented to produce a Pd catalyst doped with P that exhibited exceptional durability towards ORRs. Pd3P0.95 with an average size of 6.41 nm was synthesized by the heat-treatment phosphorization of Pd nanoparticles followed by acid etching. After P-doping, the size of the Pd nanoparticles increased from 5.37 nm to 6.41 nm, and the initial mass activity (MA) of Pd3P0.95/NC reached 0.175 A mgPd−1 at 0.9 V, slightly lower than that of Pd/C. However, after 40,000 cycles of accelerated durability testing, instead of decreasing, the MA of Pd3P0.95/NC increased by 6.3% while the MA loss of Pd/C was 38.3%. The durability was primarily ascribed to the electronic structure effect and the aggregation resistance of the Pd nanoparticles. This research also establishes a foundation for the development of Pd-based ORR catalysts and offers a direction for the future advancement of catalysts designed for practical applications in AFCs. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

22 pages, 3833 KiB  
Article
Sustainable Synthesis of Metal-Doped Lignin-Derived Electrospun Carbon Fibers for the Development of ORR Electrocatalysts
by Cristian Daniel Jaimes-Paez, Francisco José García-Mateos, Ramiro Ruiz-Rosas, José Rodríguez-Mirasol, Tomás Cordero, Emilia Morallón and Diego Cazorla-Amorós
Nanomaterials 2023, 13(22), 2921; https://doi.org/10.3390/nano13222921 - 9 Nov 2023
Cited by 6 | Viewed by 2019
Abstract
The aim of this work is to establish the Oxygen Reduction Reaction (ORR) activity of self-standing electrospun carbon fiber catalysts obtained from different metallic salt/lignin solutions. Through a single-step electrospinning technique, freestanding carbon fiber (CF) electrodes embedded with various metal nanoparticles (Co, Fe, [...] Read more.
The aim of this work is to establish the Oxygen Reduction Reaction (ORR) activity of self-standing electrospun carbon fiber catalysts obtained from different metallic salt/lignin solutions. Through a single-step electrospinning technique, freestanding carbon fiber (CF) electrodes embedded with various metal nanoparticles (Co, Fe, Pt, and Pd), with 8–16 wt% loadings, were prepared using organosolv lignin as the initial material. These fibers were formed from a solution of lignin and ethanol, into which the metallic salt precursors were introduced, without additives or the use of toxic reagents. The resulting non-woven cloths were thermostabilized in air and then carbonized at 900 °C. The presence of metals led to varying degrees of porosity development during carbonization, improving the accessibility of the electrolyte to active sites. The obtained Pt and Pd metal-loaded carbon fibers showed high nanoparticle dispersion. The performance of the electrocatalyst for the oxygen reduction reaction was assessed in alkaline and acidic electrolytes and compared to establish which metals were the most suitable for producing carbon fibers with the highest electrocatalytic activity. In accordance with their superior dispersion and balanced pore size distribution, the carbon fibers loaded with 8 wt% palladium showed the best ORR activity, with onset potentials of 0.97 and 0.95 V in alkaline and acid media, respectively. In addition, this electrocatalyst exhibits good stability and selectivity for the four-electron energy pathway while using lower metal loadings compared to commercial catalysts. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

13 pages, 4295 KiB  
Communication
Methane to Methanol Conversion Using Proton-Exchange Membrane Fuel Cells and PdAu/Antimony-Doped Tin Oxide Nanomaterials
by Victória A. Maia, Julio Nandenha, Marlon H. Gonçalves, Rodrigo F. B. de Souza and Almir O. Neto
Methane 2023, 2(3), 252-264; https://doi.org/10.3390/methane2030017 - 25 Jun 2023
Cited by 2 | Viewed by 2210
Abstract
This study investigates the use of Au-doped Pd anodic electrocatalysts on ATO support for the conversion of methane to methanol. The study uses cyclic voltammetry, in situ Raman spectra, polarization curves, and FTIR analysis to determine the optimal composition of gold and palladium [...] Read more.
This study investigates the use of Au-doped Pd anodic electrocatalysts on ATO support for the conversion of methane to methanol. The study uses cyclic voltammetry, in situ Raman spectra, polarization curves, and FTIR analysis to determine the optimal composition of gold and palladium for enhancing the conversion process. The results demonstrate the potential for utilizing methane as a feedstock for producing sustainable energy sources. The Pd75Au25/ATO electrode exhibited the highest OCP value, and Pd50Au50/ATO had the highest methanol production value at a potential of 0.05 V. Therefore, it can be concluded that an optimal composition of gold and palladium exists to enhance the conversion of methane to methanol. The findings contribute to the development of efficient and sustainable energy sources, highlighting the importance of exploring alternative ways to produce methanol. Full article
Show Figures

Figure 1

12 pages, 2050 KiB  
Article
Phase Transformation during the Selective Dissolution of a Cu85Pd15 Alloy: Nucleation Kinetics and Contribution to Electrocatalytic Activity
by Frol Vdovenkov, Eugenia Bedova and Oleg Kozaderov
Materials 2023, 16(4), 1606; https://doi.org/10.3390/ma16041606 - 15 Feb 2023
Cited by 1 | Viewed by 1583
Abstract
This study determined the critical parameters for the morphological development of the electrode surface (the critical potential and the critical charge) during anodic selective dissolution of a Cu–Pd alloy with a volume concentration of 15 at.% palladium. When the critical values were exceeded, [...] Read more.
This study determined the critical parameters for the morphological development of the electrode surface (the critical potential and the critical charge) during anodic selective dissolution of a Cu–Pd alloy with a volume concentration of 15 at.% palladium. When the critical values were exceeded, a phase transition occurred with the formation of palladium’s own phase. Chronoamperometry aided in the determination of the partial rates of copper ionization and phase transformation of palladium under overcritical selective dissolution conditions. The study determined that the formation of a new palladium phase is controlled by a surface diffusion of the ad-atom to the growing three-dimensional nucleus under instantaneous activation of the nucleation centres. We also identified the role of this process in the formation of the electrocatalytic activity of the anodically modified alloy during electro-oxidation of formic acid. This study demonstrated that HCOOH is only oxidated at a relatively high rate on the surface of the Cu85Pd15 alloy, which is subjected to selective dissolution under overcritical conditions. This can be explained by the fact that during selective dissolution of the alloy, a pure palladium phase is formed on its highly developed surface which has prominent catalytic activity towards the electro-oxidation of formic acid. The rate of electro-oxidation of HCOOH on the surface of the anodically modified alloy increased with the growth of the potential and the charge of selective dissolution, which can be used to obtain an electrode palladium electrocatalyst with a set level of electrocatalytic activity towards the anodic oxidation of formic acid. Full article
(This article belongs to the Special Issue Electrochemical Phase Formation of Materials and Its Modeling)
Show Figures

Figure 1

13 pages, 4449 KiB  
Article
Catalysts for ORR Based on Silver-Modified Graphene Oxide and Carbon Nanotubes
by Kirill Yurievich Vinogradov, Roman Vladimirovich Shafigulin, Elena Olegovna Tokranova, Sergey Vladimirovich Vostrikov, Evgeniya Andreevna Martynenko, Vladimir Vladimirovich Podlipnov, Pavel Vladimirovich Kazakevich, Artem Anatolevich Sheldaisov-Meshcheryakov, Nikolai Aleksandrovich Vinogradov and Andzhela Vladimirovna Bulanova
Energies 2023, 16(3), 1526; https://doi.org/10.3390/en16031526 - 3 Feb 2023
Cited by 3 | Viewed by 2161
Abstract
The main obstacle to the widespread dissemination of fuel cells is the high cost, so researchers are actively searching for ways to replace the expensive platinum catalyst with cheaper analogs. In this paper we studied the Ag- and Pd-containing carbon catalysts based on [...] Read more.
The main obstacle to the widespread dissemination of fuel cells is the high cost, so researchers are actively searching for ways to replace the expensive platinum catalyst with cheaper analogs. In this paper we studied the Ag- and Pd-containing carbon catalysts based on carbon nanotubes and graphene oxide. The study of the textural characteristics of the catalysts showed that the greatest specific surface area has a catalyst based on MWCNT containing 10% silver, all synthesized catalysts are mainly mesoporous, and the content of micropores is insignificant. Raman spectroscopy and SEM data indicate a significant change in the structure of the modified carriers compared to pure MWCNT and GO. An electrochemical experiment was performed and linear voltammetric diagrams were obtained and compared with the voltammetric diagrams obtained on the platinum catalyst. GO_Ag 10% and MWCNT_Ag 10% Pd 10% are closest in the values of kinetic parameters in both kinetic and diffusion regions. GO_Ag 10% has the highest initial potential Eonset = −0.145 V and MWCNT_Ag 10% Pd 10% has the highest half-wave potential E½ = −0.23 V. The studied catalysts have characteristics comparable to those presented in the literature. Full article
Show Figures

Figure 1

14 pages, 6686 KiB  
Article
Ni(1−x)Pdx Alloyed Nanostructures for Electrocatalytic Conversion of Furfural into Fuels
by Aya Aboukhater, Mohammad Abu Haija, Fawzi Banat, Israa Othman, Muhammad Ashraf Sabri and Bharath Govindan
Catalysts 2023, 13(2), 260; https://doi.org/10.3390/catal13020260 - 23 Jan 2023
Cited by 9 | Viewed by 2347
Abstract
A continuous electrocatalytic reactor offers a promising method for producing fuels and value-added chemicals via electrocatalytic hydrogenation of biomass-derived compounds. However, such processes require a better understanding of the impact of different types of active electrodes and reaction conditions on electrocatalytic biomass conversion [...] Read more.
A continuous electrocatalytic reactor offers a promising method for producing fuels and value-added chemicals via electrocatalytic hydrogenation of biomass-derived compounds. However, such processes require a better understanding of the impact of different types of active electrodes and reaction conditions on electrocatalytic biomass conversion and product selectivity. In this work, Ni1−xPdx (x = 0.25, 0.20, and 0.15) alloyed nanostructures were synthesized as heterogeneous catalysts for the electrocatalytic conversion of furfural. Various analytical tools, including XRD, SEM, EDS, and TEM, were used to characterize the Ni1−xPdx catalysts. The alloyed catalysts, with varying Ni to Pd ratios, showed a superior electrocatalytic activity of over 65% for furfural conversion after 4.5 h of reaction. In addition, various experimental parameters on the furfural conversion reactions, including electrolyte pH, furfural (FF) concentration, reaction time, and applied potential, were investigated to tune the hydrogenated products. The results indicated that the production of 2-methylfuran as a primary product (S = 29.78% after 1 h), using Ni0.85Pd0.15 electrocatalyst, was attributed to the incorporation of palladium and thus the promotion of water-assisted proton transfer processes. Results obtained from this study provide evidence that alloying a common catalyst, such as Ni with small amounts of Pd metal, can significantly enhance its electrocatalytic activity and selectivity. Full article
Show Figures

Figure 1

11 pages, 4859 KiB  
Article
Carbon-Supported PdCu Alloy as Extraordinary Electrocatalysts for Methanol Electrooxidation in Alkaline Direct Methanol Fuel Cells
by Guixian Li, Shoudeng Wang, Hongwei Li, Peng Guo, Yanru Li, Dong Ji and Xinhong Zhao
Nanomaterials 2022, 12(23), 4210; https://doi.org/10.3390/nano12234210 - 26 Nov 2022
Cited by 10 | Viewed by 2421
Abstract
Palladium (Pd) nanostructures are highly active non-platinum anodic electrocatalysts in alkaline direct methanol fuel cells (DMFCs), and their electrocatalytic performance relies highly on their morphology and composition. This study reports the preparation, characterizations, and electrocatalytic properties of palladium-copper alloys loaded on the carbon [...] Read more.
Palladium (Pd) nanostructures are highly active non-platinum anodic electrocatalysts in alkaline direct methanol fuel cells (DMFCs), and their electrocatalytic performance relies highly on their morphology and composition. This study reports the preparation, characterizations, and electrocatalytic properties of palladium-copper alloys loaded on the carbon support. XC-72 was used as a support, and hydrazine hydrate served as a reducing agent. PdxCuy/XC-72 nanoalloy catalysts were prepared in a one-step chemical reduction process with different ratios of Pd and Cu. A range of analytical techniques was used to characterize the microstructure and electronic properties of the catalysts, including transmission electron microscopy (TEM), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma emission spectroscopy (ICP-OES). Benefiting from excellent electronic structure, Pd3Cu2/XC-72 achieves higher mass activity enhancement and improves durability for MOR. Considering the simple synthesis, excellent activity, and long-term stability, PdxCuy/XC-72 anodic electrocatalysts will be highly promising in alkaline DMFCs. Full article
Show Figures

Graphical abstract

Back to TopTop