Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = p27/KIP1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2648 KiB  
Review
CSN-CRL Complexes: New Regulators of Adipogenesis
by Dawadschargal Dubiel, Michael Naumann and Wolfgang Dubiel
Biomolecules 2025, 15(3), 372; https://doi.org/10.3390/biom15030372 - 5 Mar 2025
Viewed by 940
Abstract
Recent discoveries revealed mechanistic insights into the control of adipogenesis by the Constitutive Photomorphogenesis 9 Signalosome (CSN) and its variants, CSNCSN7A and CSNCSN7B, which differ in the paralog subunits, CSN7A and CSN7B. CSNCSN7A and CSNCSN7B variants form permanent [...] Read more.
Recent discoveries revealed mechanistic insights into the control of adipogenesis by the Constitutive Photomorphogenesis 9 Signalosome (CSN) and its variants, CSNCSN7A and CSNCSN7B, which differ in the paralog subunits, CSN7A and CSN7B. CSNCSN7A and CSNCSN7B variants form permanent complexes with cullin-RING-ubiquitin ligases 3 and 4A (CRL3 and CRL4A), respectively. These complexes can be found in most eukaryotic cells and represent a critical reservoir for cellular functions. In an early stage of adipogenesis, mitotic clonal expansion (MCE), CSN-CRL1, and CSNCSN7B-CRL4A are blocked to ubiquitinate the cell cycle inhibitor p27KIP, leading to cell cycle arrest. In addition, in MCE CSN-CRL complexes rearrange the cytoskeleton for adipogenic differentiation and CRL3KEAP1 ubiquitylates the inhibitor of adipogenesis C/EBP homologous protein (CHOP) for degradation by the 26S proteasome, an adipogenesis-specific proteolysis. During terminal adipocyte differentiation, the CSNCSN7A-CRL3 complex is recruited to a lipid droplet (LD) membrane by RAB18. Currently, the configuration of the substrate receptors of CSNCSN7A-CRL3 on LDs is unclear. CSNCSN7A-CRL3 is activated by neddylation on the LD membrane, an essential adipogenic step. Damage to CSN/CUL3/CUL4A genes is associated with diverse diseases, including obesity. Due to the tremendous impact of CSN-CRLs on adipogenesis, we need strategies for adequate treatment in the event of malfunctions. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 3557 KiB  
Article
Mitoregulin Promotes Cell Cycle Progression in Non-Small Cell Lung Cancer Cells
by Colleen S. Stein, Connor R. Linzer, Collin D. Heer, Nathan H. Witmer, Jesse D. Cochran, Douglas R. Spitz and Ryan L. Boudreau
Int. J. Mol. Sci. 2025, 26(5), 1939; https://doi.org/10.3390/ijms26051939 - 24 Feb 2025
Viewed by 1052
Abstract
Mitoregulin (MTLN) is a 56-amino-acid mitochondrial microprotein known to modulate mitochondrial energetics. MTLN gene expression is elevated broadly across most cancers and has been proposed as a prognostic biomarker for non-small cell lung cancer (NSCLC). In addition, lower MTLN expression in lung adenocarcinoma [...] Read more.
Mitoregulin (MTLN) is a 56-amino-acid mitochondrial microprotein known to modulate mitochondrial energetics. MTLN gene expression is elevated broadly across most cancers and has been proposed as a prognostic biomarker for non-small cell lung cancer (NSCLC). In addition, lower MTLN expression in lung adenocarcinoma (LUAD) correlates with significantly improved patient survival. In our studies, we have found that MTLN silencing in A549 NSCLC cells slowed proliferation and, in accordance with this, we observed the following: (1) increased proportion of cells in the G1 phase of cell cycle; (2) protein changes consistent with G1 arrest (e.g., reduced levels and/or reduced phosphorylation of ERK, MYC, CDK2, and RB, and elevated p27Kip1); (3) reduction in clonogenic cell survival and; (4) lower steady-state cytosolic and mitochondrial H2O2 levels as indicated by use of the roGFP2-Orp1 redox sensor. Conflicting with G1 arrest, we observed a boost in cyclin D1 abundance. We also tested MTLN silencing in combination with buthionine sulfoximine (BSO) and auranofin (AF), drugs that inhibit GSH synthesis and thioredoxin reductase, respectively, to elevate the reactive oxygen species (ROS) amount to a toxic range. Interestingly, clonogenic survival after drug treatment was greater for MTLN-silenced cultures versus the control cultures. Lower H2O2 output and reduced vulnerability to ROS damage due to G1 status may have jointly contributed to the partial BSO + AF resistance. Overall, our results provide evidence that MTLN fosters H2O2 signaling to propel G1/S transition and suggest MTLN silencing as a therapeutic strategy to limit NSCLC growth. Full article
(This article belongs to the Special Issue Role of Mitochondria in Cancer)
Show Figures

Graphical abstract

28 pages, 5502 KiB  
Article
p27Kip1 and Tumors: Characterization of CDKN1B Variants Identified in MEN4 and Breast Cancer
by Debora Bencivenga, Emanuela Stampone, Jahanzaib Azhar, Daniela Parente, Waqar Ali, Vitale Del Vecchio, Fulvio Della Ragione and Adriana Borriello
Cells 2025, 14(3), 188; https://doi.org/10.3390/cells14030188 - 26 Jan 2025
Viewed by 1429
Abstract
p27Kip1 is a key cell cycle gatekeeper governing the timing of Cyclin-dependent kinase (CDK) activation/inactivation and, consequently, cell proliferation. Structurally, the protein is largely unfolded, a feature that strongly increases its plasticity and interactors and enhances the number of regulated cellular processes. [...] Read more.
p27Kip1 is a key cell cycle gatekeeper governing the timing of Cyclin-dependent kinase (CDK) activation/inactivation and, consequently, cell proliferation. Structurally, the protein is largely unfolded, a feature that strongly increases its plasticity and interactors and enhances the number of regulated cellular processes. p27Kip1, like other intrinsically unstructured proteins, is post-translationally modified on several residues. These modifications affect its cellular localization and address p27Kip1 for specific interactions/functions. Several germline or somatic CDKN1B (the p27Kip1 encoding gene) mutations have been demonstrated to be associated with multiple endocrine neoplasia type 4 (MEN4), hairy cell leukemia, small-intestine neuroendocrine tumors, and breast and prostate cancers. Here, we analyzed the effect of four CDKN1B missense and nonsense mutations found in patients affected by MEN4 or cancers, namely, c.349C>T, p.P117S; c.397C>A, p.P133T; c.487C>T, p.Q163*; and c.511G>T, p.E171*. By transfecting breast cancer cell lines, we observed increased growth and cell motility for all the investigated mutants compared to wild-type p27Kip1 transfected cells. Furthermore, we discovered that the mutant forms exhibited altered phosphorylation on key residues and different localization or degradation mechanisms in comparison to the wild-type protein and suggested a possible region as crucial for the lysosome-dependent degradation of the protein. Finally, the loss of p27Kip1 ability in blocking cell proliferation was in part explained through the different binding efficiency that mutant p27Kip1 forms exhibited with Cyclin/Cyclin-dependent Kinase complexes (or proteins involved indirectly in that binding) with respect to the WT. Full article
Show Figures

Figure 1

10 pages, 974 KiB  
Article
Beta-Alanine Supplementation for CrossFit® Performance
by Hannah Verity, Darren Candow and Philip D. Chilibeck
Nutraceuticals 2024, 4(4), 673-682; https://doi.org/10.3390/nutraceuticals4040037 - 27 Nov 2024
Viewed by 5287
Abstract
This study aimed to investigate whether beta-alanine supplementation (BA) improves performance and rating of perceived exertion (RPE) and reduces the respiratory exchange ratio (RER) during a CrossFit® workout. Fourteen participants were randomized in a double-blind design to either BA or placebo, with [...] Read more.
This study aimed to investigate whether beta-alanine supplementation (BA) improves performance and rating of perceived exertion (RPE) and reduces the respiratory exchange ratio (RER) during a CrossFit® workout. Fourteen participants were randomized in a double-blind design to either BA or placebo, with 12 participants (7 males, 5 females, 32 ± 9.2 y) completing the study. Participants performed two tests, separated by three weeks of supplementing with either 6.4 g/day of BA or placebo. Performance tests involved time to complete an adapted CrossFit® “Fran” Workout of the Day: 21-15-9 repetition scheme alternating between dumbbell thrusters and kipping pull-ups. No significant differences between the BA group and the placebo group were observed for performance time improvement (−13.4 s vs. −12.9 s, p = 0.97), change in mean RER (0.06 vs. 0.05, p = 0.84), or change in RPE (10-point scale) (−0.4 vs. −0.07, p = 0.56). There was a group × time × time during test interaction for RER (p = 0.021). Compared to pre-testing, post-testing RER was higher at the 25% time point of the test for the BA group and at the 75% and 100% time points in the placebo group (p < 0.05). Beta-alanine did not show significant ergogenic effects during an adapted version of the CrossFit® workout “Fran”, although it might have helped with the buffering of acidity later in the test, based on RER. Full article
Show Figures

Figure 1

22 pages, 6785 KiB  
Article
BRAF-Mutated Melanoma Cell Lines Develop Distinct Molecular Signatures After Prolonged Exposure to AZ628 or Dabrafenib: Potential Benefits of the Antiretroviral Treatments Cabotegravir or Doravirine on BRAF-Inhibitor-Resistant Cells
by Valentina Zanrè, Francesco Bellinato, Alessia Cardile, Carlotta Passarini, Stefano Di Bella and Marta Menegazzi
Int. J. Mol. Sci. 2024, 25(22), 11939; https://doi.org/10.3390/ijms252211939 - 6 Nov 2024
Cited by 2 | Viewed by 1891
Abstract
Melanoma is an aggressive cancer characterized by rapid growth, early metastasis, and poor prognosis, with resistance to current therapies being a significant issue. BRAF mutations drive uncontrolled cell division by activating the MAPK pathway. In this study, A375 and FO-1, BRAF-mutated melanoma cell [...] Read more.
Melanoma is an aggressive cancer characterized by rapid growth, early metastasis, and poor prognosis, with resistance to current therapies being a significant issue. BRAF mutations drive uncontrolled cell division by activating the MAPK pathway. In this study, A375 and FO-1, BRAF-mutated melanoma cell lines, were treated for 4–5 months with RAF inhibitor dabrafenib or AZ628, leading to drug resistance over time. The resistant cells showed altered molecular signatures, with differences in cell cycle regulation and the propensity of cell death. Dabrafenib-resistant cells maintained high proliferative activity, while AZ628-resistant cells, especially A375 cells, exhibited slow-cycling, and a senescent-like phenotype with high susceptibility to ferroptosis, a form of cell death driven by iron. Antiretroviral drugs doravirine and cabotegravir, known for their effects on human endogenous retroviruses, were tested for their impact on these resistant melanoma cells. Both drugs reduced cell viability and colony formation in resistant cell lines. Doravirine was particularly effective in reactivating apoptosis and reducing cell growth in highly proliferative resistant cells by increasing tumor-suppressor proteins p16Ink4a and p27Kip1. These findings suggest that antiretroviral drugs can influence apoptosis and cell proliferation in RAF-inhibitor-resistant melanoma cells, offering potential therapeutic strategies for overcoming drug resistance. Full article
(This article belongs to the Special Issue Melanoma: From Molecular Pathology to Therapeutic Approaches)
Show Figures

Figure 1

22 pages, 1438 KiB  
Article
Association of Genetic Variants at the CDKN1B and CCND2 Loci Encoding p27Kip1 and Cyclin D2 Cell Cycle Regulators with Susceptibility and Clinical Course of Chronic Lymphocytic Leukemia
by Lidia Ciszak, Agata Kosmaczewska, Edyta Pawlak, Irena Frydecka, Aleksandra Szteblich and Dariusz Wołowiec
Int. J. Mol. Sci. 2024, 25(21), 11705; https://doi.org/10.3390/ijms252111705 - 31 Oct 2024
Cited by 2 | Viewed by 1186
Abstract
Beyond the essential role of p27Kip1 and cyclin D2 in cell cycle progression, they are also shown to confer an anti-apoptotic function in peripheral blood (PB) lymphocytes. Although the aberrant longevity and expression of p27Kip1 and cyclin D2 in leukemic cells [...] Read more.
Beyond the essential role of p27Kip1 and cyclin D2 in cell cycle progression, they are also shown to confer an anti-apoptotic function in peripheral blood (PB) lymphocytes. Although the aberrant longevity and expression of p27Kip1 and cyclin D2 in leukemic cells is well documented, the exact mechanisms responsible for this phenomenon have yet to be elucidated. This study was undertaken to determine the associations between polymorphisms in the CDKN1B and CCND2 genes (encoding p27Kip1 and cyclin D2, respectively) and susceptibility to chronic lymphocytic leukemia (CLL), as well as their influence on the expression of both cell cycle regulators in PB leukemic B cells and non-malignant T cells from untreated CLL patients divided according to the genetic determinants studied. Three CDKN1B single-nucleotide polymorphisms (SNPs), rs36228499, rs34330, and rs2066827, and three CCND2 SNPs, rs3217933, rs3217901, and rs3217810, were genotyped using a real-time PCR system. The expression of p27Kip1 and cyclin D2 proteins in both leukemic B cells and non-malignant T cells was determined using flow cytometry. We found that the rs36228499A and rs34330T alleles in CDKN1B and the rs3217810T allele in the CCND2 gene were more frequent in patients and were associated with increased CLL risk. Moreover, we observed that patients possessing the CCND2rs3217901G allele had lower susceptibility to CLL (most pronounced in the AG genotype). We also noticed that the presence of the CDKN1Brs36228499CC, CDKN1Brs34330CC, CDKN1Brs2066827TT, and CCND2rs3217901AG genotypes shortened the time to CLL progression. Statistically significant functional relationships were limited to T cells and assigned to CDKN1B polymorphic variants; carriers of the polymorphisms rs34330CC and rs36228499CC (determining the aggressive course of CLL) expressed a decrease in p27Kip1 and cyclin D2 levels, respectively. We indicate for the first time that genetic variants at the CDKN1B and CCND2 loci may be considered as a potentially low-penetrating risk factor for CLL and determining the clinical outcome. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

23 pages, 2522 KiB  
Article
p57Kip2 Phosphorylation Modulates Its Localization, Stability, and Interactions
by Emanuela Stampone, Debora Bencivenga, Luisa Dassi, Sara Sarnelli, Luisa Campagnolo, Valentina Lacconi, Fulvio Della Ragione and Adriana Borriello
Int. J. Mol. Sci. 2024, 25(20), 11176; https://doi.org/10.3390/ijms252011176 - 17 Oct 2024
Cited by 1 | Viewed by 1381
Abstract
p57Kip2 is a member of the cyclin-dependent kinase (CDK) Interacting Protein/Kinase Inhibitory Protein (CIP/Kip) family that also includes p21Cip1/WAF1 and p27Kip1. Different from its siblings, few data are available about the p57Kip2 protein, especially in humans. Structurally, p57 [...] Read more.
p57Kip2 is a member of the cyclin-dependent kinase (CDK) Interacting Protein/Kinase Inhibitory Protein (CIP/Kip) family that also includes p21Cip1/WAF1 and p27Kip1. Different from its siblings, few data are available about the p57Kip2 protein, especially in humans. Structurally, p57Kip2 is an intrinsically unstructured protein, a characteristic that confers functional flexibility with multiple transient interactions influencing the metabolism and roles of the protein. Being an IUP, its localization, stability, and binding to functional partners might be strongly modulated by post-translational modifications, especially phosphorylation. In this work, we investigated by two-dimensional analysis the phosphorylation pattern of p57Kip2 in different cellular models, revealing how the human protein appears to be extensively phosphorylated, compared to p21Cip1/WAF1 and p27Kip1. We further observed clear differences in the phosphoisoforms distributed in the cytosolic and nuclear compartments in asynchronous and synchronized cells. Particularly, the unmodified form is detectable only in the nucleus, while the more acidic forms are present in the cytoplasm. Most importantly, we found that the phosphorylation state of p57Kip2 influences the binding with some p57Kip2 partners, such as CDKs, LIMK1 and CRM1. Thus, it is necessary to completely identify the phosphorylated residues of the protein to fully unravel the roles of this CIP/Kip protein, which are still partially identified. Full article
Show Figures

Figure 1

18 pages, 3914 KiB  
Article
Overcoming Irinotecan Resistance by Targeting Its Downstream Signaling Pathways in Colon Cancer
by Shashank Saurav, Sourajeet Karfa, Trung Vu, Zhipeng Liu, Arunima Datta, Upender Manne, Temesgen Samuel and Pran K. Datta
Cancers 2024, 16(20), 3491; https://doi.org/10.3390/cancers16203491 - 15 Oct 2024
Cited by 4 | Viewed by 2885
Abstract
Among the most popular chemotherapeutic agents, irinotecan, regarded as a prodrug belonging to the camptothecin family that inhibits topoisomerase I, is widely used to treat metastatic colorectal cancer (CRC). Although immunotherapy is promising for several cancer types, only microsatellite-instable (~7%) and not microsatellite-stable [...] Read more.
Among the most popular chemotherapeutic agents, irinotecan, regarded as a prodrug belonging to the camptothecin family that inhibits topoisomerase I, is widely used to treat metastatic colorectal cancer (CRC). Although immunotherapy is promising for several cancer types, only microsatellite-instable (~7%) and not microsatellite-stable CRCs are responsive to it. Therefore, it is important to investigate the mechanism of irinotecan function to identify cellular proteins and/or pathways that could be targeted for combination therapy. Here, we have determined the effect of irinotecan treatment on the expression/activation of tumor suppressor genes (including p15Ink4b, p21Cip1, p27Kip1, and p53) and oncogenes (including OPN, IL8, PD-L1, NF-κB, ISG15, Cyclin D1, and c-Myc) using qRT-PCR, Western blotting, immunofluorescence (IF), and RNA sequencing of tumor specimens. We employed stable knockdown, neutralizing antibodies (Abs), and inhibitors of OPN, p53, and NF-κB to establish downstream signaling and sensitivity/resistance to the cytotoxic activities of irinotecan. Suppression of secretory OPN and NF-κB sensitized colon cancer cells to irinotecan. p53 inhibition or knockdown was not sufficient to block or potentiate SN38-regulated signaling, suggesting p53-independent effects. Irinotecan treatment inhibited tumor growth in syngeneic mice. Analyses of allograft tumors from irinotecan-treated mice validated the cell culture results. RNA-seq data suggested that irinotecan-mediated activation of NF-κB signaling modulated immune and inflammatory genes in mice, which may compromise drug efficacy and promote resistance. In sum, these results suggest that, for CRCs, targeting OPN, NF-κB, PD-L1, and/or ISG15 signaling may provide a potential strategy to overcome resistance to irinotecan-based chemotherapy. Full article
Show Figures

Figure 1

7 pages, 3561 KiB  
Communication
Association of Senescence Markers with Age and Allograft Rejection in Renal Transplant Recipients
by Peter Vavrinec, Jakub Krivy, Sona Sykorova, Helena Bandzuchova, Zuzana Zilinska and Diana Vavrincova-Yaghi
Biomedicines 2024, 12(10), 2338; https://doi.org/10.3390/biomedicines12102338 - 14 Oct 2024
Cited by 1 | Viewed by 1136
Abstract
Background/Objectives: Renal transplantation is the treatment of choice for patients with end-stage renal disease. In the last decade, the number of older renal transplant recipients has significantly increased. However, these patients are at a higher risk of developing post-transplant complications. Therefore, identifying the [...] Read more.
Background/Objectives: Renal transplantation is the treatment of choice for patients with end-stage renal disease. In the last decade, the number of older renal transplant recipients has significantly increased. However, these patients are at a higher risk of developing post-transplant complications. Therefore, identifying the suitable biomarkers to predict which older patients are at risk of complications is crucial. Cellular senescence could provide insights into the increased vulnerability in this population and guide personalized post-transplant care. Methods: This preliminary study involved biopsies from 25 patients with renal allograft rejection and 18 patients without rejection, further divided into older (50–65 years) and younger (29–40 years) groups. Biopsies were collected at different time points after transplantation, and rejection was classified according to the histological Banff 07 criteria. Additionally, immunohistochemistry for the markers of cellular senescence, p27kip1 and p16INK4a, was performed. Results: We observed that the number of p27kip1-positive glomeruli was higher in the older patients with rejection compared to the younger patients with rejection, and a similar pattern was found in the patients without rejection. However, the number of p27kip1-positive tubules was higher in the older patients with rejection compared to the younger patients with rejection, as well as compared to both the older and younger patients without rejection. Tubular p16INK4a expression was not significantly different in the older patients with rejection compared to the younger patients with rejection, and the same pattern was observed in the patients without rejection. However, it was increased in the older patients with rejection in comparison to the older patients without rejection. Conclusions: Our preliminary data suggest the strong potential of both p16INK4a and p27kip1 as biomarkers of renal graft rejection, particularly in older renal transplant recipients. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

17 pages, 5328 KiB  
Article
Involvement of KV3.4 Channel in Parkinson’s Disease: A Key Player in the Control of Midbrain and Striatum Differential Vulnerability during Disease Progression?
by Giorgia Magliocca, Emilia Esposito, Michele Tufano, Ilaria Piccialli, Valentina Rubino, Valentina Tedeschi, Maria Jose Sisalli, Flavia Carriero, Giuseppina Ruggiero, Agnese Secondo, Lucio Annunziato, Antonella Scorziello and Anna Pannaccione
Antioxidants 2024, 13(8), 999; https://doi.org/10.3390/antiox13080999 - 18 Aug 2024
Viewed by 1844
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disease in the elderly, is characterized by selective loss of dopaminergic neurons and accumulation of α-synuclein (α-syn), mitochondrial dysfunction, Ca2+ dyshomeostasis, and neuroinflammation. Since current treatments for PD merely address symptoms, there is an [...] Read more.
Parkinson’s disease (PD), the second most common neurodegenerative disease in the elderly, is characterized by selective loss of dopaminergic neurons and accumulation of α-synuclein (α-syn), mitochondrial dysfunction, Ca2+ dyshomeostasis, and neuroinflammation. Since current treatments for PD merely address symptoms, there is an urgent need to identify the PD pathophysiological mechanisms to develop better therapies. Increasing evidence has identified KV3.4, a ROS-sensitive KV channel carrying fast-inactivating currents, as a potential therapeutic target against neurodegeneration. In fact, it has been hypothesized that KV3.4 channels could play a role in PD etiopathogenesis, controlling astrocytic activation and detrimental pathways in A53T mice, a well-known model of familial PD. Here, we showed that the A53T midbrain, primarily involved in the initial phase of PD pathogenesis, displayed an early upregulation of the KV3.4 channel at 4 months, followed by its reduction at 12 months, compared with age-matched WT. On the other hand, in the A53T striatum, the expression of KV3.4 remained high at 12 months, decreasing thereafter, in 16-month-old mice. The proteomic profile highlighted a different detrimental phenotype in A53T brain areas. In fact, the A53T striatum and midbrain differently expressed neuroprotective/detrimental pathways, with the variation of astrocytic p27kip1, XIAP, and Smac/DIABLO expression. Of note, a switch from protective to detrimental phenotype was characterized by the upregulation of Smac/DIABLO and downregulation of p27kip1 and XIAP. This occurred earlier in the A53T midbrain, at 12 months, compared with the striatum proteomic profile. In accordance, an upregulation of Smac/DIABLO and a downregulation of p27kip1 occurred in the A53T striatum only at 16 months, showing the slowest involvement of this brain area. Of interest, HIF-1α overexpression was associated with the detrimental profile in midbrain and its major vulnerability. At the cellular level, patch-clamp recordings revealed that primary A53T striatum astrocytes showed hyperpolarized resting membrane potentials and lower firing frequency associated with KV3.4 ROS-dependent hyperactivity, whereas primary A53T midbrain astrocytes displayed a depolarized resting membrane potential accompanied by a slight increase of KV3.4 currents. Accordingly, intracellular Ca2+ homeostasis was significantly altered in A53T midbrain astrocytes, in which the ER Ca2+ level was lower than in A53T striatum astrocytes and the respective littermate controls. Collectively, these results suggest that the early KV3.4 overexpression and ROS-dependent hyperactivation in astrocytes could take part in the different vulnerabilities of midbrain and striatum, highlighting astrocytic KV3.4 as a possible new therapeutic target in PD. Full article
Show Figures

Figure 1

19 pages, 8176 KiB  
Article
Fatty Acid Synthase Promotes Hepatocellular Carcinoma Growth via S-Phase Kinase-Associated Protein 2/p27KIP1 Regulation
by Antonio Cigliano, Maria M. Simile, Gianpaolo Vidili, Giovanni M. Pes, Maria P. Dore, Francesco Urigo, Eleonora Cossu, Li Che, Claudio Feo, Sara M. Steinmann, Silvia Ribback, Rosa M. Pascale, Matthias Evert, Xin Chen and Diego F. Calvisi
Medicina 2024, 60(7), 1160; https://doi.org/10.3390/medicina60071160 - 18 Jul 2024
Cited by 4 | Viewed by 2078
Abstract
Background and Objectives: Aberrant upregulation of fatty acid synthase (FASN), catalyzing de novo synthesis of fatty acids, occurs in various tumor types, including human hepatocellular carcinoma (HCC). Although FASN oncogenic activity seems to reside in its pro-lipogenic function, cumulating evidence suggests that FASN’s [...] Read more.
Background and Objectives: Aberrant upregulation of fatty acid synthase (FASN), catalyzing de novo synthesis of fatty acids, occurs in various tumor types, including human hepatocellular carcinoma (HCC). Although FASN oncogenic activity seems to reside in its pro-lipogenic function, cumulating evidence suggests that FASN’s tumor-supporting role might also be metabolic-independent. Materials and Methods: In the present study, we show that FASN inactivation by specific small interfering RNA (siRNA) promoted the downregulation of the S-phase kinase associated-protein kinase 2 (SKP2) and the consequent induction of p27KIP1 in HCC cell lines. Results: Expression levels of FASN and SKP2 directly correlated in human HCC specimens and predicted a dismal outcome. In addition, forced overexpression of SKP2 rendered HCC cells resistant to the treatment with the FASN inhibitor C75. Furthermore, FASN deletion was paralleled by SKP2 downregulation and p27KIP1 induction in the AKT-driven HCC preclinical mouse model. Moreover, forced overexpression of an SKP2 dominant negative form or a p27KIP1 non-phosphorylatable (p27KIP1-T187A) construct completely abolished AKT-dependent hepatocarcinogenesis in vitro and in vivo. Conclusions: In conclusion, the present data indicate that SKP2 is a critical downstream effector of FASN and AKT-dependent hepatocarcinogenesis in liver cancer, envisaging the possibility of effectively targeting FASN-positive liver tumors with SKP2 inhibitors or p27KIP1 activators. Full article
Show Figures

Figure 1

29 pages, 7143 KiB  
Article
The Variation in the Traits Ameliorated by Inhibitors of JAK1/2, TGF-β, P-Selectin, and CXCR1/CXCR2 in the Gata1low Model Suggests That Myelofibrosis Should Be Treated by These Drugs in Combination
by Francesca Gobbo, Fabrizio Martelli, Antonio Di Virgilio, Elena Demaria, Giuseppe Sarli and Anna Rita Migliaccio
Int. J. Mol. Sci. 2024, 25(14), 7703; https://doi.org/10.3390/ijms25147703 - 13 Jul 2024
Cited by 3 | Viewed by 2313
Abstract
Studies conducted on animal models have identified several therapeutic targets for myelofibrosis, the most severe of the myeloproliferative neoplasms. Unfortunately, many of the drugs which were effective in pre-clinical settings had modest efficacy when tested in the clinic. This discrepancy suggests that treatment [...] Read more.
Studies conducted on animal models have identified several therapeutic targets for myelofibrosis, the most severe of the myeloproliferative neoplasms. Unfortunately, many of the drugs which were effective in pre-clinical settings had modest efficacy when tested in the clinic. This discrepancy suggests that treatment for this disease requires combination therapies. To rationalize possible combinations, the efficacy in the Gata1low model of drugs currently used for these patients (the JAK1/2 inhibitor Ruxolitinib) was compared with that of drugs targeting other abnormalities, such as p27kip1 (Aplidin), TGF-β (SB431542, inhibiting ALK5 downstream to transforming growth factor beta (TGF-β) signaling and TGF-β trap AVID200), P-selectin (RB40.34), and CXCL1 (Reparixin, inhibiting the CXCL1 receptors CXCR1/2). The comparison was carried out by expressing the endpoints, which had either already been published or had been retrospectively obtained for this study, as the fold change of the values in the corresponding vehicles. In this model, only Ruxolitinib was found to decrease spleen size, only Aplidin and SB431542/AVID200 increased platelet counts, and with the exception of AVID200, all the inhibitors reduced fibrosis and microvessel density. The greatest effects were exerted by Reparixin, which also reduced TGF-β content. None of the drugs reduced osteopetrosis. These results suggest that future therapies for myelofibrosis should consider combining JAK1/2 inhibitors with drugs targeting hematopoietic stem cells (p27Kip1) or the pro-inflammatory milieu (TGF-β or CXCL1). Full article
(This article belongs to the Special Issue Molecular Research on Myeloproliferative Disorders)
Show Figures

Figure 1

14 pages, 2280 KiB  
Article
Identification of a Panel of miRNAs Associated with Resistance to Palbociclib and Endocrine Therapy
by Rosalba Torrisi, Valentina Vaira, Laura Giordano, Bethania Fernandes, Giuseppe Saltalamacchia, Raffaella Palumbo, Carlo Carnaghi, Vera Basilico, Francesco Gentile, Giovanna Masci, Rita De Sanctis and Armando Santoro
Int. J. Mol. Sci. 2024, 25(3), 1498; https://doi.org/10.3390/ijms25031498 - 25 Jan 2024
Cited by 5 | Viewed by 1941
Abstract
We investigated whether we could identify a panel of miRNAs associated with response to treatment in tumor tissues of patients with Hormone Receptor-positive/HER2-negative metastatic breast cancer treated with endocrine therapy (ET) and the CDK4/6 inhibitor (CDK4/6i)i palbociclib. In total, 52 patients were evaluated, [...] Read more.
We investigated whether we could identify a panel of miRNAs associated with response to treatment in tumor tissues of patients with Hormone Receptor-positive/HER2-negative metastatic breast cancer treated with endocrine therapy (ET) and the CDK4/6 inhibitor (CDK4/6i)i palbociclib. In total, 52 patients were evaluated, with 41 receiving treatment as the first line. The overall median PFS was 20.8 months (range 2.5–66.6). In total, 23% of patients experienced early progression (<6 months). Seven miRNAs (miR-378e, miR-1233, miR-99b-5p, miR-1260b, miR-448, -miR-1252-5p, miR-324-3p, miR-1233-3p) showed a statistically significant negative association with PFS. When we considered PFS < 6 months, miR-378e, miR-99b-5p, miR-877-5p, miR-1297, miR-455-5p, and miR-4536-5p were statistically associated with a poor outcome. In the multivariate analysis, the first three miRNAs confirmed a significant and independent impact on PFS. The literature data and bioinformatic tools provide an underlying molecular rationale for most of these miRNAs, mainly involving the PI3K/AKT/mTOR pathway and cell-cycle machinery as cyclin D1, CDKN1B, and protein p27Kip1 and autophagy. Our findings propose a novel panel of miRNAs associated with a higher likelihood of early progression in patients treated with ET and Palbociclib and may contribute to shed some light on the mechanisms of de novo resistance to CDK4/6i, but this should be considered exploratory and evaluated in larger cohorts. Full article
(This article belongs to the Special Issue Role of MicroRNAs in Cancer Development and Treatment, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 2517 KiB  
Article
Elucidating Differences in Early-Stage Centrosome Amplification in Primary and Immortalized Mouse Cells
by Masakazu Tanaka, Masaki Yamada, Masatoshi Mushiake, Masataka Tsuda and Masanao Miwa
Int. J. Mol. Sci. 2024, 25(1), 383; https://doi.org/10.3390/ijms25010383 - 27 Dec 2023
Cited by 2 | Viewed by 1397
Abstract
The centrosome is involved in cytoplasmic microtubule organization during interphase and in mitotic spindle assembly during cell division. Centrosome amplification (abnormal proliferation of centrosome number) has been observed in several types of cancer and in precancerous conditions. Therefore, it is important to elucidate [...] Read more.
The centrosome is involved in cytoplasmic microtubule organization during interphase and in mitotic spindle assembly during cell division. Centrosome amplification (abnormal proliferation of centrosome number) has been observed in several types of cancer and in precancerous conditions. Therefore, it is important to elucidate the mechanism of centrosome amplification in order to understand the early stage of carcinogenesis. Primary cells could be used to better understand the early stage of carcinogenesis rather than immortalized cells, which tend to have various genetic and epigenetic changes. Previously, we demonstrated that a poly(ADP-ribose) polymerase (PARP) inhibitor, 3-aminobenzamide (3AB), which is known to be nontoxic and nonmutagenic, could induce centrosome amplification and chromosomal aneuploidy in CHO-K1 cells. In this study, we compared primary mouse embryonic fibroblasts (MEF) and immortalized MEF using 3AB. Although centrosome amplification was induced with 3AB treatment in immortalized MEF, a more potent PARP inhibitor, AG14361, was required for primary MEF. However, after centrosome amplification, neither 3AB in immortalized MEF nor AG14361 in primary MEF caused chromosomal aneuploidy, suggesting that further genetic and/or epigenetic change(s) are required to exhibit aneuploidy. The DNA-damaging agents doxorubicin and γ-irradiation can cause cancer and centrosome amplification in experimental animals. Although doxorubicin and γ-irradiation induced centrosome amplification and led to decreased p27Kip protein levels in immortalized MEF and primary MEF, the phosphorylation ratio of nucleophosmin (Thr199) increased in immortalized MEF, whereas it decreased in primary MEF. These results suggest that there exists a yet unidentified pathway, different from the nucleophosmin phosphorylation pathway, which can cause centrosome amplification in primary MEF. Full article
(This article belongs to the Special Issue Biology and Development of Therapeutic Drugs Targeting DNA)
Show Figures

Figure 1

14 pages, 2739 KiB  
Article
Low CDKN1B Expression Associated with Reduced CD8+ T Lymphocytes Predicts Poor Outcome in Breast Cancer in a Machine Learning Analysis
by Hyung-Suk Kim, Yung-Kyun Noh, Kyueng-Whan Min and Dong-Hoon Kim
J. Pers. Med. 2024, 14(1), 30; https://doi.org/10.3390/jpm14010030 - 25 Dec 2023
Viewed by 2398
Abstract
The cyclin-dependent kinase inhibitor 1B (CDKN1B) gene, which encodes the p27Kip1 protein, is important in regulating the cell cycle process and cell proliferation. Its role in breast cancer prognosis is controversial. We evaluated the significance and predictive role of CDKN1B expression in breast [...] Read more.
The cyclin-dependent kinase inhibitor 1B (CDKN1B) gene, which encodes the p27Kip1 protein, is important in regulating the cell cycle process and cell proliferation. Its role in breast cancer prognosis is controversial. We evaluated the significance and predictive role of CDKN1B expression in breast cancer prognosis. We investigated the clinicopathologic factors, survival rates, immune cells, gene sets, and prognostic models according to CDKN1B expression in 3794 breast cancer patients. We performed gene set enrichment analysis (GSEA), in silico cytometry, pathway network analyses, gradient boosting machine (GBM) learning, and in vitro drug screening. High CDKN1B expression levels in breast cancer correlated with high lymphocyte infiltration signature scores and increased CD8+ T cells, both of which were associated with improved prognosis in breast cancer. which were associated with a better prognosis. CDKN1B expression was associated with gene sets for the upregulation of T-cell receptor signaling pathways and downregulation of CD8+ T cells. Pathway network analysis revealed a direct link between CDKN1B and the pathway involved in the positive regulation of the protein catabolic process pathway. In addition, an indirect link was identified between CDKN1B and the T-cell receptor signaling pathway. In in vitro drug screening, BMS-345541 demonstrated efficacy as a therapeutic targeting of CDKN1B, effectively impeding the growth of breast cancer cells characterized by low CDKN1B expression. The inclusion of CDKN1B expression in GBM models increased the accuracy of survival predictions. CDKN1B expression plays a significant role in breast cancer progression, implying that targeting CDKN1B might be a promising strategy for treating breast cancer. Full article
(This article belongs to the Special Issue Breast Cancer: Biomarkers and Clinical Management)
Show Figures

Graphical abstract

Back to TopTop