Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = p-CuCrO2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2366 KiB  
Article
ZnO-Assisted Synthesis of Rouaite (Cu2(OH)3NO3) Long Hexagonal Multilayered Nanoplates Towards Catalytic Wet Peroxide Oxidation Application
by Guang Yao Zhou, Jun Guo and Ji Hong Wu
Crystals 2025, 15(8), 710; https://doi.org/10.3390/cryst15080710 (registering DOI) - 2 Aug 2025
Abstract
Rouaite (Cu2(OH)3NO3) long hexagonal multilayered nanoplates with high purity and high crystallinity were prepared from acidic reaction solution (pH = 4.4–4.8) with the assistance of ZnO. The ZnO-assisted strategy is remarkably different from the conventional synthetic protocol [...] Read more.
Rouaite (Cu2(OH)3NO3) long hexagonal multilayered nanoplates with high purity and high crystallinity were prepared from acidic reaction solution (pH = 4.4–4.8) with the assistance of ZnO. The ZnO-assisted strategy is remarkably different from the conventional synthetic protocol that was regularly carried out in alkaline solution (pH > 11). The rouaite multilayer nanoplates displayed exceptionally high catalytic activity in the catalytic wet peroxide oxidation (CWPO) of Congo red (CR). The catalytic efficiency for CR decolorization achieved an impressive 96.3% in 50 min under near-neutral (pH = 6.76) and ambient conditions (T = 20 °C, p = 1 atm), without increasing the temperature and/or decreasing the pH value to acidic region (pH = 2–3) as is commonly employed in CWPO process for improved degradation efficiency. Full article
Show Figures

Figure 1

15 pages, 807 KiB  
Article
Development and Chemical, Physical, Functional, and Multi-Element Profile Characterization of Requeijão with Guabiroba Pulp
by Amanda Alves Prestes, Brunna de Kacia Souza Coelho, Leandro José de Oliveira Mindelo, Ana Caroline Ferreira Carvalho, Jefferson Santos de Gois, Dayanne Regina Mendes Andrade, Carolina Krebs de Souza, Cristiane Vieira Helm, Adriano Gomes da Cruz and Elane Schwinden Prudencio
Processes 2025, 13(5), 1322; https://doi.org/10.3390/pr13051322 - 26 Apr 2025
Cited by 2 | Viewed by 651
Abstract
Five requeijão samples, classified as Brazilian cream cheeses, were developed: one control (without guabiroba pulp (Campomanesia xanthocarpa O. Berg) and four with 5, 10, 15, and 20% (m/m) guabiroba pulp. They were evaluated for pH, water activity (aw), [...] Read more.
Five requeijão samples, classified as Brazilian cream cheeses, were developed: one control (without guabiroba pulp (Campomanesia xanthocarpa O. Berg) and four with 5, 10, 15, and 20% (m/m) guabiroba pulp. They were evaluated for pH, water activity (aw), color, texture, multi-mineral composition, carotenoid content, and microstructure. The addition of guabiroba pulp reduced pH and maintained Aw. The samples with 5%, 10%, 15%, and 20% guabiroba pulp presented a yellow–reddish coloration. The formulation with 5% had the lowest values of firmness, resilience, texture, and spreadability. From 10% onwards, an increase in cohesiveness and a reduction in creaminess were observed. The sample with 15% presented better spreadability, while the 20% sample had adhesiveness similar to the control. No traces of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Pb, or Se were detected. The detected elements, in descending order, were Na, Ca, P, S, K, Mg, Sr, and Zn. β-carotene was predominant, with guabiroba pulp enhancing α-carotene, β-carotene, β-cryptoxanthin, and λ-carotene levels, especially at 20% pulp. Microstructure analysis by scanning electron microscopy (SEM) showed no significant differences. These findings highlight the potential of guabiroba pulp as a functional ingredient in requeijão, enhancing its carotenoid profile while maintaining desirable textural and physicochemical properties. Full article
Show Figures

Figure 1

28 pages, 7166 KiB  
Article
Enhanced Stability and Adsorption of Cross-Linked Magnetite Hydrogel Beads via Silica Impregnation
by Nur Maisarah Mohamad Sarbani, Endar Hidayat, Kanako Naito, Mitsuru Aoyagi and Hiroyuki Harada
J. Compos. Sci. 2025, 9(4), 152; https://doi.org/10.3390/jcs9040152 - 23 Mar 2025
Viewed by 532
Abstract
Hydrogel-based adsorbents have gained increasing recognition in recent years due to their promising potential for pollutant removal. However, conventional hydrogels often suffer from low mechanical strength over prolonged use. Therefore, this study explores the incorporation of silica extracted from bamboo culm (Dendrocalamus [...] Read more.
Hydrogel-based adsorbents have gained increasing recognition in recent years due to their promising potential for pollutant removal. However, conventional hydrogels often suffer from low mechanical strength over prolonged use. Therefore, this study explores the incorporation of silica extracted from bamboo culm (Dendrocalamus asper) to enhance the mechanical stability of hydrogel beads composed from carboxymethyl cellulose (CMC), chitosan (CS), and magnetite ferrofluid (Fe3O4), through cross-linking. We hypothesize that silica enhances the mechanical properties of magnetite hydrogel beads without compromising their adsorption capacity. The extracted silica was confirmed with FTIR and EDS analysis. The synthesized CMC-CS-Fe3O4-Si hydrogel beads were characterized using FTIR and SEM. Its stability was assessed through dry weight loss measurements, while its adsorption efficiency was evaluated using batch adsorption experiments. The silica-incorporated hydrogel exhibited enhanced mechanical and thermal stability under various pH and temperature conditions, without negatively affecting its adsorption performance, achieving maximum adsorption capacities of 53.00 mg/g for Cr (VI) and 85.06 mg/g for Cu (II). Desorption and regeneration studies confirmed the reusability of the hydrogel for more than four cycles. Overall, the interaction between the hydrogel and silica resulted in excellent adsorption performance, improved mechanical properties, and long-term reusability, making this a promising hydrogel adsorbent for wastewater remediation. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

17 pages, 3693 KiB  
Article
CuO-NPs Induce Apoptosis and Functional Impairment in BV2 Cells Through the CSF-1R/PLCγ2/ERK/Nrf2 Pathway
by Linhui Yang, Lina Zhu, Bencheng Lin, Yue Shi, Wenqing Lai, Kang Li, Lei Tian, Zhuge Xi and Huanliang Liu
Toxics 2025, 13(4), 231; https://doi.org/10.3390/toxics13040231 - 21 Mar 2025
Viewed by 652
Abstract
Copper oxide nanoparticles (CuO-NPs) induce neurological diseases, including neurobehavioral defects and neurodegenerative diseases. Direct evidence indicates that CuO-NPs induce inflammation in the central nervous system and cause severe neurotoxicity. However, the mechanism of CuO-NP-induced damage to the nervous system has rarely been studied, [...] Read more.
Copper oxide nanoparticles (CuO-NPs) induce neurological diseases, including neurobehavioral defects and neurodegenerative diseases. Direct evidence indicates that CuO-NPs induce inflammation in the central nervous system and cause severe neurotoxicity. However, the mechanism of CuO-NP-induced damage to the nervous system has rarely been studied, and the toxicity of different CuO-NP particle sizes and their copper ion (Cu2+) precipitation in microglia (BV2 cells) is worth exploring. Therefore, this study investigated CuO-NPs with different particle sizes (small particle size: S-CuO-NPs; large particle size: L-CuO-NPs), Cu2+ with equal molar mass (replaced by CuCl2 [Equ group]), and Cu2+ precipitated in a cell culture solution with CuO-NPs (replaced by CuCl2 [Pre group]), and examined the mechanism of action of each on BV2 microglia after co-culture for 12 h and 24 h. The activity of BV2 cells decreased, the morphology was damaged, and the apoptosis rate increased in all the exposed groups. Toxicity increased time- and dose-dependently, and was highest in the Equ group, followed by the S-CuO-NPs, L-CuO-NPs, and Pre groups, respectively. Subsequently, we investigated the mechanism of S-CuO-NP-induced cell injury, and revealed that S-CuO-NPs induced oxidative stress and inflammatory response and increased the membrane permeability of BV2 cells. Moreover, S-CuO-NPs reduced the ratio of p-CSF-1R/CSF-1R, p-PLCγ2/PLCγ2, p-extracellular signal-regulated kinase (ERK)/ERK, p-Nrf2/Nrf2, and Bcl-2/Bax protein expression in microglia, and elevated cleaved caspase-3 expression. The CSF-1R/PLCγ2/ERK/Nrf2 apoptotic pathway was activated. The downregulation of CX3CR1, CSF-1R, brain-derived neurotrophic factor (BDNF), and IGF-1 protein expression indicates impairment of the repair and protection functions of microglia in the nervous system. In summary, our results reveal that CuO-NPs promote an increase in inflammatory molecules in BV2 microglia through oxidative stress, activate the CSF-1R/PLCγ2/ERK/Nrf2 pathway, cause apoptosis, and ultimately result in neurofunctional damage to microglia. Full article
Show Figures

Graphical abstract

14 pages, 285 KiB  
Article
The Effect of Waste Organic Matter on the Soil Chemical Composition After Three Years of Miscanthus × giganteus Cultivation in East-Central Poland
by Elżbieta Malinowska and Paweł Kania
Sustainability 2025, 17(6), 2532; https://doi.org/10.3390/su17062532 - 13 Mar 2025
Cited by 1 | Viewed by 529
Abstract
The circular economy practice of using waste to fertilize plants should be more widespread. It is a means to manage natural resources sustainably in agriculture. This approach is in line with organic and sustainable farming strategies, reducing the cultivation costs. Organic waste dumped [...] Read more.
The circular economy practice of using waste to fertilize plants should be more widespread. It is a means to manage natural resources sustainably in agriculture. This approach is in line with organic and sustainable farming strategies, reducing the cultivation costs. Organic waste dumped into a landfill decomposes and emits greenhouse gases. This can be reduced through its application to energy crops, which not only has a positive impact on the environment but also improves the soil quality and increases yields. However, organic waste with increased content of heavy metals, when applied to the soil, can also pose a threat. Using Miscanthus × giganteus M 19 as a test plant, an experiment with a randomized block design was established in four replications in Central–Eastern Poland in 2018. Various combinations of organic waste (municipal sewage sludge and spent mushroom substrate) were applied, with each dose containing 170 kg N ha−1. After three years (in 2020), the soil content of total nitrogen (Nt) and carbon (Ct) was determined by elemental analysis, with the total content of P, K, Ca, Mg, S, Na, Fe, Mn, Mo, Zn, Ni, Pb, Cr, Cd, and Cu determined by optical emission spectrometry, after wet mineralization with aqua regia. For the available forms of P and K, the Egner–Riehm method was used, and the Schachtschabel method was used for the available forms of Mg. The total content of bacteria, actinomycetes, and fungi was also measured. The application of municipal sewage sludge (SS) alone and together with spent mushroom substrate (SMS) improved the microbiological composition of the soil and increased the content of Nt and Ct and the available forms of P2O5 and Mg more than the application of SMS alone. SMS did not contaminate the soil with heavy metals. In the third year, their content was higher after SS than after SMS application, namely for Cd by 12.2%, Pb by 18.7%, Cr by 25.3%, Zn by 16.9%, and Ni by 14.7%. Full article
27 pages, 14359 KiB  
Article
Paleoenvironments and Paleoclimate Reconstructions of the Middle–Upper Eocene Rocks in the North–West Fayum Area (Western Desert, Egypt): Insights from Geochemical Data
by Mostafa M. Sayed, Petra Heinz, Ibrahim M. Abd El-Gaied, Susanne Gier, Ramadan M. El-Kahawy, Dina M. Sayed, Yasser F. Salama, Bassam A. Abuamarah and Michael Wagreich
Minerals 2025, 15(3), 227; https://doi.org/10.3390/min15030227 - 25 Feb 2025
Cited by 1 | Viewed by 1088
Abstract
This study deals with the reconstruction of the paleoenvironment and the paleoclimate situation of the middle–upper Eocene sediments in the northwest Fayum area. The reconstruction is based on comprehensive stratigraphical and geochemical analyses of major oxides and trace elements for selected sediment samples [...] Read more.
This study deals with the reconstruction of the paleoenvironment and the paleoclimate situation of the middle–upper Eocene sediments in the northwest Fayum area. The reconstruction is based on comprehensive stratigraphical and geochemical analyses of major oxides and trace elements for selected sediment samples from the Gehannam Formation (Bartonian–Priabonian), the Birket Qarun and the Qasr El Sagha formations (Priabonian). The sedimentological features coupled with paleo-redox trace elemental ratios (Ni/Co, V/Cr, U/Th, V/(V + Ni), and Cu/Zn), paleosalinity (Sr/Ba, Mg/Al ×100, Ca/Al), and paleowater depth (Fe/Mn) proxies, indicate that deposition took place in a shallow marine agitated environment with high oxygen levels. Paleoclimate indicators (Sr/Cu, Rb/Sr, K2O3/Al2O3, Ga/Rb, C-value, CIA, and CIW) suggest warm and prevailing arid climatic conditions, with minor humid periods at some intervals. The observed low values of the total organic carbon (TOC) are attributed to significant high sediment influx, predominant oxygenated conditions, and poor primary productivity, which is further confirmed by low values of paleoprimary productivity proxies (P, Ni/Al, Cu/Al, P/Al and P/Ti, and Babio ratios). These findings enhance our understanding of the Eocene environments and provide insights into sedimentation processes during this period. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

14 pages, 11164 KiB  
Article
Photoelectron Spectroscopy Study of the Optical and Electrical Properties of Cr/Cu/Mn Tri-Doped Bismuth Niobate Pyrochlore
by Nadezhda A. Zhuk, Nikolay A. Sekushin, Maria G. Krzhizhanovskaya, Artem A. Selutin, Aleksandra V. Koroleva, Ksenia A. Badanina, Sergey V. Nekipelov, Olga V. Petrova and Victor N. Sivkov
Sci 2025, 7(1), 1; https://doi.org/10.3390/sci7010001 - 26 Dec 2024
Viewed by 954
Abstract
The multielement pyrochlore of the composition Bi1.57Mn1/3Cr1/3Cu1/3Nb2O9−Δ (sp. gr. Fd-3m:2, 10.4724 Å) containing transition element atoms—chromium, manganese and copper in equimolar amounts—was synthesized for the first time using the solid-phase reaction method. [...] Read more.
The multielement pyrochlore of the composition Bi1.57Mn1/3Cr1/3Cu1/3Nb2O9−Δ (sp. gr. Fd-3m:2, 10.4724 Å) containing transition element atoms—chromium, manganese and copper in equimolar amounts—was synthesized for the first time using the solid-phase reaction method. The microstructure of the ceramics is grainless and has low porosity. The sample is characterized by reflection in the red (705 nm) color region. The band gap for the direct allowed transition in the sample is 1.68 eV. The parameters of the Bi5d, Nb3d, Сr2p, Mn2p, and Cu2p X-ray photoelectron spectroscopy (XPS) spectra for the mixed pyrochlore are compared with the parameters of transition element oxides. For the complex pyrochlore, a characteristic shift in the Bi4f and Nb3d spectra to the region of lower energies by 0.15 and 0.60 eV, respectively, is observed. According to the XPS Cu2p and Mn2p spectra of pyrochlore, copper, and manganese cations are in a mixed charge state; they mainly have an effective charge of +2/+3, and the Cr2p spectrum is a superposition of the spectra of chromium ions in the charge state of +3, +4, +6. At 24 °С, the permittivity of the sample in the frequency range (104–106 Hz) weakly depends on the frequency and is equal to ~100, the dielectric loss tangent is 0.017. The activation energy of conductivity is equal to 0.41 eV. The specific electrical conductivity of Bi1.57Cr1/3Cu1/3Mn1/3Nb2O9−Δ increases with the temperature increasing from 1.8 × 10−5 Ohm−1·m−1 (24 °С) to 0.1 Ohm−1·m−1 (330 °С). Nyquist curves for the sample are modeled by equivalent electrical circuits. Full article
(This article belongs to the Section Chemistry Science)
Show Figures

Figure 1

10 pages, 2058 KiB  
Article
A WO3–CuCrO2 Tandem Photoelectrochemical Cell for Green Hydrogen Production under Simulated Sunlight
by Ana K. Díaz-García and Roberto Gómez
Molecules 2024, 29(18), 4462; https://doi.org/10.3390/molecules29184462 - 20 Sep 2024
Viewed by 1071
Abstract
The development of photoelectrochemical tandem cells for water splitting with electrodes entirely based on metal oxides is hindered by the scarcity of stable p-type oxides and the poor stability of oxides in strongly alkaline and, particularly, strongly acidic electrolytes. As a novelty in [...] Read more.
The development of photoelectrochemical tandem cells for water splitting with electrodes entirely based on metal oxides is hindered by the scarcity of stable p-type oxides and the poor stability of oxides in strongly alkaline and, particularly, strongly acidic electrolytes. As a novelty in the context of transition metal oxide photoelectrochemistry, a bias-free tandem cell driven by simulated sunlight and based on a CuCrO2 photocathode and a WO3 photoanode, both unprotected and free of co-catalysts, is demonstrated to split water while working with strongly acidic electrolytes. Importantly, the Faradaic efficiency for H2 evolution for the CuCrO2 electrode is found to be about 90%, among the highest for oxide photoelectrodes in the absence of co-catalysts. The tandem cell shows no apparent degradation in short-to-medium-term experiments. The prospects of using a practical cell based on this configuration are discussed, with an emphasis on the importance of modifying the materials for enhancing light absorption. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

16 pages, 8762 KiB  
Article
Roles of Impurity Levels in 3d Transition Metal-Doped Two-Dimensional Ga2O3
by Hui Zeng, Chao Ma, Xiaowu Li, Xi Fu, Haixia Gao and Meng Wu
Materials 2024, 17(18), 4582; https://doi.org/10.3390/ma17184582 - 18 Sep 2024
Cited by 2 | Viewed by 955
Abstract
Doping engineering is crucial for both fundamental science and emerging applications. While transition metal (TM) dopants exhibit considerable advantages in the tuning of magnetism and conductivity in bulk Ga2O3, investigations on TM-doped two-dimensional (2D) Ga2O3 are [...] Read more.
Doping engineering is crucial for both fundamental science and emerging applications. While transition metal (TM) dopants exhibit considerable advantages in the tuning of magnetism and conductivity in bulk Ga2O3, investigations on TM-doped two-dimensional (2D) Ga2O3 are scarce, both theoretically and experimentally. In this study, the detailed variations in impurity levels within 3d TM-doped 2D Ga2O3 systems have been explored via first-principles calculations using the generalized gradient approximation (GGA) +U method. Our results show that the Co impurity tends to incorporate on the tetrahedral GaII site, while the other dopants favor square pyramidal GaI sites in 2D Ga2O3. Moreover, Sc3+, Ti4+, V4+, Cr3+, Mn3+, Fe3+, Co3+, Ni3+, Cu2+, and Zn2+ are the energetically favorable charge states. Importantly, a transition from n-type to p-type conductivity occurs at the threshold Cu element as determined by the defect formation energies and partial density of states (PDOS), which can be ascribed to the shift from electron doping to hole doping with respect to the increase in the atomic number in the 3d TM group. Moreover, the spin configurations in the presence of the square pyramidal and tetrahedral coordinated crystal field effects are investigated in detail, and a transition from high-spin to low-spin arrangement is observed. As the atomic number of the 3d TM dopant increases, the percentage contribution of O ions to the total magnetic moment significantly increases due to the electronegativity effect. Additionally, the formed 3d bands for most TM dopants are located near the Fermi level, which can be of significant benefit to the transformation of the absorbing region from ultraviolet to visible/infrared light. Our results provide theoretical guidance for designing 2D Ga2O3 towards optoelectronic and spintronic applications. Full article
(This article belongs to the Special Issue Recent Progress on Thin 2D Materials)
Show Figures

Graphical abstract

23 pages, 2836 KiB  
Article
Effect of Changing and Combining Trivalent Metals in the Structural and Electronic Properties of Cu-Based Crystal Delafossite Materials
by Joeluis Cerutti Torres, Pablo Sánchez-Palencia, José Carlos Jiménez-Sáez, Perla Wahnón and Pablo Palacios
Crystals 2024, 14(5), 418; https://doi.org/10.3390/cryst14050418 - 29 Apr 2024
Viewed by 1574
Abstract
Cu-based ternary oxides with delafossite structure have received considerable attention in recent years for their versatility in a wide range of applications, among which is the possibility to use them in heterostructure solar cells as hole transport layers, due to their promising behavior [...] Read more.
Cu-based ternary oxides with delafossite structure have received considerable attention in recent years for their versatility in a wide range of applications, among which is the possibility to use them in heterostructure solar cells as hole transport layers, due to their promising behavior as p-type conducting oxides. Ab initio calculations have been performed with density functional theory to investigate the role of the trivalent metal within the CuMO2 structure and the dependence of structural and electronic properties with the species (M = Al, Ga, In, Fe, Cr, Co, Sc, Y) occupying the site of the metal. Generalized Gradient Approximation also including a Hubbard term and nonlocal Heyd–Scuseria–Enzerhof screened hybrid functional schemes were tested and their results were compared. Excellent agreement with experimental lattice parameters and measured gaps have been found. The use of hybrid functionals in HSE approximation considerably improves the bandgaps when compared with the experimental results but takes considerable time to converge, hence the need to explore less demanding methodologies. Trends in the geometry as well as in the electronic properties are discussed, and the effect of mixing different metals (CuMxN1−xO2, M, N being the aforementioned elements) in the geometry and electronic properties of these delafossite materials is investigated. Due to the high cost of HSE calculations, especially when supercells are needed to model several x concentrations, statistical models and techniques based on machine learning have also been explored to predict HSE bandgap values from GGA and structural information. Full article
Show Figures

Figure 1

18 pages, 3224 KiB  
Article
Trace Metals Distribution in Tissues of 10 Different Shark Species from the Eastern Mediterranean Sea
by Eleni Roubie, Sotirios Karavoltsos, Aikaterini Sakellari, Nikolaos Katsikatsos, Manos Dassenakis and Persefoni Megalofonou
Fishes 2024, 9(2), 77; https://doi.org/10.3390/fishes9020077 - 16 Feb 2024
Cited by 10 | Viewed by 3086
Abstract
As long-living apex predators, sharks tend to bioaccumulate trace metals through their diet. The distribution of Al, As, Cd, Co, Cr, Cs, Cu, Fe, Mn, Ni, Pb, V, Zn and Hg in different tissues (muscle, liver, heart, gills and gonads) of large-size (58–390 [...] Read more.
As long-living apex predators, sharks tend to bioaccumulate trace metals through their diet. The distribution of Al, As, Cd, Co, Cr, Cs, Cu, Fe, Mn, Ni, Pb, V, Zn and Hg in different tissues (muscle, liver, heart, gills and gonads) of large-size (58–390 cm) sharks, some of which rare, of the eastern Mediterranean Sea was studied. Trace metals analyses in samples originating from ten different Chondrichthyes species were performed by inductively coupled plasma–mass spectrometry (ICP-MS) and Cold Vapor Atomic Absorption Spectrometry (CVAAS) for Hg. Data on trace metal levels are for the first time reported herewith for the species O. ferox and H. nakamurai. Higher median concentrations of trace metals were generally determined in the liver. The concentrations of Hg, Cs and As in the muscle increased proportionally with body length. Statistically significant differences between sexes were recorded for Hg, Cr, Ni and As (p = 0.015) in the muscle tissues of P. glauca. Muscle tissue Hg concentrations exceeded the EU maximum limit (1 μg g−1 wet weight) in 67% of the individuals sampled, with the highest concentrations detected in O. ferox and S. zygaena, whereas regarding Pb (limit 0.30 μg g−1 ww), the corresponding percentage was 15%. Arsenic concentrations were also of concern in almost all shark tissues examined. Full article
(This article belongs to the Special Issue Effects of Trace Elements on Aquatic Animals)
Show Figures

Figure 1

21 pages, 3801 KiB  
Article
Chemostratigraphic Approach to the Study of Resources’ Deposit in the Upper Silesian Coal Basin (Poland)
by Ewa Krzeszowska
Energies 2024, 17(3), 642; https://doi.org/10.3390/en17030642 - 29 Jan 2024
Cited by 1 | Viewed by 1307
Abstract
The Upper Silesian Coal Basin (USCB), located in southern Poland, is the major coal basin in Poland, and all technological types of hard coal, including coking coal, are exploited. It is also an area of high potential for coal-bed methane (CBM). Despite the [...] Read more.
The Upper Silesian Coal Basin (USCB), located in southern Poland, is the major coal basin in Poland, and all technological types of hard coal, including coking coal, are exploited. It is also an area of high potential for coal-bed methane (CBM). Despite the increasing availability of alternative energy sources globally, it is a fact that the use of fossil fuels will remain necessary for the next few decades. Therefore, research on coal-bearing formations using modern research methods is still very important. The application of geochemistry and chemostratigraphy in reservoir characterization has become increasingly common in recent years. This paper presents the possibility of applying chemostratigraphic techniques to the study of the Carboniferous coal-bearing succession of the Upper Silesian Coal Basin. The material studied comes from 121 core samples (depth 481–1298 m), representing the Mudstone Series (Westphalian A, B). Major oxide concentrations of Al2O3, SiO2, Fe2O3, P2O5, K2O, MgO, CaO, Na2O, K2O, MnO, TiO2, and Cr2O3 were obtained using X-ray fluorescence (XRF) spectrometry. Trace elements were analyzed using inductively coupled plasma mass spectrometry (ICP/MS). The geochemical record from the Mudstone Series shows changes in the concentration of major elements and selected trace elements, leading to the identification of four chemostratigraphic units. These units differ primarily in the content of Fe, Ca, Mg, Mn, and P as well as the concentration of Zr, Hf, Nb, Ta, and Ti. The study also discusses quartz origin (based on SiO2 and TiO2), sediment provenance and source-area rock compositions (based on Al2O3/ TiO2, TiO2/Zr, and La/Th), and paleoredox conditions (based on V/Cr, Ni/Co, U/Th, (Cu+Mo)/Zn, and Sr/Ba) for the chemostratigraphic units. Chemostratigraphy was used for the first time in the study of the Carboniferous coal-bearing series of the USCB, concluding that it can be used as an effective stratigraphic tool and provide new information on the possibility of correlating barren sequences of the coal-bearing succession. Full article
Show Figures

Figure 1

28 pages, 4205 KiB  
Article
Process Optimization and Equilibrium, Thermodynamic, and Kinetic Modeling of Toxic Congo Red Dye Adsorption from Aqueous Solutions Using a Copper Ferrite Nanocomposite Adsorbent
by Vairavel Parimelazhagan, Akhil Chinta, Gaurav Ganesh Shetty, Srinivasulu Maddasani, Wei-Lung Tseng, Jayashree Ethiraj, Ganeshraja Ayyakannu Sundaram and Alagarsamy Santhana Krishna Kumar
Molecules 2024, 29(2), 418; https://doi.org/10.3390/molecules29020418 - 15 Jan 2024
Cited by 12 | Viewed by 3204
Abstract
In the present investigation of copper ferrite, a CuFe2O4 nanocomposite adsorbent was synthesized using the sol–gel method, and its relevance in the adsorptive elimination of the toxic Congo red (CR) aqueous phase was examined. A variety of structural methods were [...] Read more.
In the present investigation of copper ferrite, a CuFe2O4 nanocomposite adsorbent was synthesized using the sol–gel method, and its relevance in the adsorptive elimination of the toxic Congo red (CR) aqueous phase was examined. A variety of structural methods were used to analyze the CuFe2O4 nanocomposite; the as-synthesized nanocomposite had agglomerated clusters with a porous, irregular, rough surface that could be seen using FE-SEM, and it also contained carbon (23.47%), oxygen (44.31%), copper (10.21%), and iron (22.01%) in its elemental composition by weight. Experiments were designed to achieve the most optimized system through the utilization of a central composite design (CCD). The highest uptake of CR dye at equilibrium occurred when the initial pH value was 5.5, the adsorbate concentration was 125 mg/L, and the adsorbent dosage was 3.5 g/L. Kinetic studies were conducted, and they showed that the adsorption process followed a pseudo-second-order (PSO) model (regression coefficient, R2 = 0.9998), suggesting a chemisorption mechanism, and the overall reaction rate was governed by both the film and pore diffusion of adsorbate molecules. The process through which dye molecules were taken up onto the particle surface revealed interactions involving electrostatic forces, hydrogen bonding, and pore filling. According to isotherm studies, the equilibrium data exhibited strong agreement with the Langmuir model (R2 = 0.9989), demonstrating a maximum monolayer adsorption capacity (qmax) of 64.72 mg/g at pH 6 and 302 K. Considering the obtained negative ΔG and positive ΔHads and ΔSads values across all tested temperatures in the thermodynamic investigations, it was confirmed that the adsorption process was characterized as endothermic, spontaneous, and feasible, with an increased level of randomness. The CuFe2O4 adsorbent developed in this study is anticipated to find extensive application in effluent treatment, owing to its excellent reusability and remarkable capability to effectively remove CR in comparison to other adsorbents. Full article
(This article belongs to the Special Issue Adsorbent Material for Water Treatment)
Show Figures

Graphical abstract

10 pages, 2092 KiB  
Proceeding Paper
The Water Quality of Revitalized Ponds in the Czech Republic Post-Mining Area
by Petra Malíková and Jitka Chromíková
Eng. Proc. 2023, 57(1), 8; https://doi.org/10.3390/engproc2023057008 - 29 Nov 2023
Viewed by 1034
Abstract
This study assesses the water quality of the Sušanecké Ponds in the Czech Republic post-mining area. Four monitoring profiles were chosen: the Sušanka River inflow into the Sušanecké Ponds, two ponds and the outflow of the Sušanecké Ponds to the Sušanka River. The [...] Read more.
This study assesses the water quality of the Sušanecké Ponds in the Czech Republic post-mining area. Four monitoring profiles were chosen: the Sušanka River inflow into the Sušanecké Ponds, two ponds and the outflow of the Sušanecké Ponds to the Sušanka River. The sampling took place in a 14-day interval from March to October 2022. The monitored parameters were temperature, O2, pH, electrical conductivity, turbidity, nitrate nitrogen, ammoniacal nitrogen, total phosphorus, chlorophyll-a, CODCr, BOD5 and metals—Fe, Mn, Cu, Zn, Ni, Pb, Co, Cd, Cr. The results were evaluated in accordance with the Czech standard ČSN 75 7221 and Government Regulation No. 401/2015 Coll. Based on the evaluation data, it was found that the area of the Sušanecké Ponds does not meet the limits of the government regulation for three out of the twenty parameters. According to the standard, Sušanecké Ponds are mainly classified as highly polluted waters. Full article
Show Figures

Figure 1

22 pages, 9310 KiB  
Article
Network–Polymer–Modified Superparamagnetic Magnetic Silica Nanoparticles for the Adsorption and Regeneration of Heavy Metal Ions
by Yaohui Xu, Yuting Li and Zhao Ding
Molecules 2023, 28(21), 7385; https://doi.org/10.3390/molecules28217385 - 1 Nov 2023
Cited by 10 | Viewed by 1895
Abstract
Superparamagnetic magnetic nanoparticles (MNPs, Fe3O4) were first synthesized based on a chemical co–precipitation method, and the core–shell magnetic silica nanoparticles (MSNPs, Fe3O4@SiO2) were obtained via hydrolysis and the condensation of tetraethyl orthosilicate onto [...] Read more.
Superparamagnetic magnetic nanoparticles (MNPs, Fe3O4) were first synthesized based on a chemical co–precipitation method, and the core–shell magnetic silica nanoparticles (MSNPs, Fe3O4@SiO2) were obtained via hydrolysis and the condensation of tetraethyl orthosilicate onto Fe3O4 seed using a sol–gel process. Following that, MSNPs were immobilized using a three–step grafting strategy, where 8-hloroacetyl–aminoquinoline (CAAQ) was employed as a metal ion affinity ligand for trapping specific heavy metal ions, and a macromolecular polymer (polyethylenimine (PEI)) was selected as a bridge between the surface hydroxyl group and CAAQ to fabricate a network of organic networks onto the MSNPs’ surface. The as–synthesized MSNPs–CAAQ nanocomposites possessed abundant active functional groups and thus contained excellent removal features for heavy metal ions. Specifically, the maximum adsorption capacities at room temperature and without adjusting pH were 324.7, 306.8, and 293.3 mg/g for Fe3+, Cu2+, and Cr3+ ions, respectively, according to Langmuir linear fitting. The adsorption–desorption experiment results indicated that Na2EDTA proved to be more suitable as a desorbing agent for Cr3+ desorption on the MSNPs–CAAQ surface than HCl and HNO3. MSNPs–CAAQ exhibited a satisfactory adsorption capacity toward Cr3+ ions even after six consecutive adsorption–desorption cycles; the adsorption efficiency for Cr3+ ions was still 88.8% with 0.1 mol/L Na2EDTA as the desorbing agent. Furthermore, the MSNPs–CAAQ nanosorbent displayed a strong magnetic response with a saturated magnetization of 24.0 emu/g, and they could be easily separated from the aqueous medium under the attraction of a magnet, which could facilitate the sustainable removal of Cr3+ ions in practical applications. Full article
Show Figures

Graphical abstract

Back to TopTop