Process Optimization and Equilibrium, Thermodynamic, and Kinetic Modeling of Toxic Congo Red Dye Adsorption from Aqueous Solutions Using a Copper Ferrite Nanocomposite Adsorbent
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Copper Ferrite (CuFe2O4) Nanocomposite Adsorbent
2.2. Effect of Initial pH of Dye Solution on Adsorption Behavior
2.3. Experimental Design for Process Parameter Optimization
2.3.1. Analysis of Experimental Design and Process Parameter Optimization
2.3.2. Analysis of Contour and Response Surface Plots
2.3.3. Reliability of the Process Model
2.4. Isotherm Modeling
Comparison of Several Adsorbents’ Maximal Unimolecular Layer CR Dye Adsorption Capacities as Determined by the Langmuir Isotherm Model
2.5. Potential Interactions among CuFe2O4 Nanocomposite Adsorbent and CR Dye Adsorbate
2.6. Kinetic Modeling
2.7. Analysis of CR Dye Uptake Rate Mechanism
2.8. Influence of Temperature and Thermodynamic Studies
2.9. Inference from CuFe2O4 Nanocomposite Adsorbent Renewal and Reusability Studies
3. Materials and Methods
3.1. Materials Required
3.2. Synthesis of Copper Ferrite, Nickel Ferrite, and Manganese Ferrite Nanocomposite Material
3.3. Analytical Measurements
3.4. Batch Studies of the CuFe2O4 Nanocomposites for the Removal of CR Dye
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brahma, D.; Saikia, H. Synthesis of ZrO2/MgAl-LDH composites and evaluation of its isotherm, kinetics and thermodynamic properties in the adsorption of Congo red dye. Chem. Thermodyn. Therm. Anal. 2022, 7, 100067. [Google Scholar] [CrossRef]
- Chaudhary, P.; Ahamad, L.; Chaudhary, A.; Kumar, G.; Chen, W.; Chen, S. Nanoparticle-mediated bioremediation as a powerful weapon in the removal of environmental pollutants. J. Environ. Chem. Eng. 2023, 11, 109591. [Google Scholar] [CrossRef]
- Joshi, N.C.; Gururani, P. Advances of graphene oxide-based nanocomposite materials in the treatment of wastewater containing heavy metal ions and dyes. Curr. Res. Green Sustain. Chem. 2022, 5, 100306. [Google Scholar] [CrossRef]
- Priyadarshi, G.; Raval, N.P.; Trivedi, M.H. Microwave-assisted synthesis of cross-linked chitosan-metal oxide nanocomposite for methyl orange dye removal from unary and complex effluent matrices. Int. J. Biol. Macromol. 2022, 219, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.A.; Begum, M.S.; Ashraf, M.; Azad, A.K.; Adhikary, A.C.; Hossain, M.S. Water and chemical consumption in the textile processing industry of Bangladesh. PLoS Sustain. Transform. 2023, 2, e0000072. [Google Scholar] [CrossRef]
- Ghedjemis, A.; Ayeche, R.; Benouadah, A.; Fenineche, N. A new application of Hydroxyapatite extracted from dromedary bone: Adsorptive removal of Congo red from aqueous solution. Int. J. Appl. Ceram. Technol. 2021, 18, 590–597. [Google Scholar] [CrossRef]
- Aftab, R.A.; Zaidi, S.; Khan, A.A.P.; Usman, M.A.; Khan, A.Y.; Chani, M.T.S.; Asiri, A.M. Removal of Congo red from water by adsorption onto activated carbon derived from waste black cardamom peels and machine learning modeling. Alex. Eng. J. 2023, 71, 355–369. [Google Scholar] [CrossRef]
- Sachin; Pramanik, B.K.; Singh, N.; Zizhou, R.; Houshyar, S.; Cole, I.; Yin, H. Fast and effective removal of Congo red by doped ZnO nanoparticles. Nanomaterials 2023, 13, 566. [Google Scholar] [CrossRef]
- Shen, T.; Ji, Y.; Mao, S.; Han, T.; Zhao, Q.; Wang, H.; Gao, M. Functional connector strategy on tunable organo-vermiculites: The superb adsorption towards Congo Red. Chemosphere 2023, 339, 139658. [Google Scholar] [CrossRef]
- Huang, Y.; Yin, W.; Zhao, T.L.; Liu, M.; Yao, Q.Z.; Zhou, G.T. Efficient removal of Congo red, Methylene blue and Pb(II) by hydrochar–MgAlLDH nanocomposite: Synthesis, performance and mechanism. Nanomaterials 2023, 13, 1145. [Google Scholar] [CrossRef]
- Salihi, S.A.; Jasim, A.M.; Fidalgo, M.M.; Xing, Y. Removal of Congo red dyes from aqueous solutions by porous γ-alumina nanoshells. Chemosphere 2022, 286, 131769. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Li, Y.; Wang, M.; Chen, B.; Zhang, Y.; Sun, Y.; Chen, K.; Du, Q.; Wang, Y.; Pi, X.; et al. Efficient adsorption of Congo red by micro/nano MIL-88A (Fe, Al, Fe-Al)/chitosan composite sponge: Preparation, characterization, and adsorption mechanism. Int. J. Biol. Macromol. 2023, 239, 124157. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.C.; Kooh, M.R.R.; Lim, L.B.L.; Priyantha, N. Effective and simple NaOH-modification method to remove Methyl violet dye via Ipomoea aquatica roots. Adsorp. Sci. Technol. 2021, 2021, 5932222. [Google Scholar] [CrossRef]
- Sarojini, G.; Babu, S.V.; Rajasimman, M. Adsorptive potential of iron oxide-based nanocomposite for the sequestration of Congo red from aqueous solution. Chemosphere 2022, 287, 132371. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.S.K.; Warchol, J.; Matusik, J.; Tseng, W.L.; Rajesh, N.; Bajda, T. Heavy metal and organic dye removal via a hybrid porous hexagonal boron nitride-based magnetic aerogel. NPJ Clean Water 2022, 5, 24. [Google Scholar] [CrossRef]
- Simonescu, C.M.; Tatarus, A.; Culita, D.C.; Stanica, N.; Ionescu, I.A.; Butoi, B.; Banici, A. Comparative study of CoFe2O4 nanoparticles and CoFe2O4-chitosan composite for Congo red and Methyl orange removal by adsorption. Nanomaterials 2021, 11, 711. [Google Scholar] [CrossRef]
- Vishal, K.; Aruchamy, K.; Sriram, G.; Ching, Y.C.; Oh, T.H.; Hegde, G.; Ajeya, K.V.; Joshi, S.; Sowriraajan, A.V.; Jung, H.Y.; et al. Engineering a low-cost diatomite with Zn-Mg-Al Layered triple hydroxide (LTH) adsorbents for the effectual removal of Congo red: Studies on batch adsorption, mechanism, high selectivity, and desorption. Colloids Surf. A Physicochem. Eng. Asp. 2023, 661, 130922. [Google Scholar] [CrossRef]
- Krishnan, A.; Swarnalal, A.; Das, D.; Krishnan, M.; Saji, V.S.; Shibli, S.M.A. A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants. J. Environ. Sci. 2024, 139, 389–417. [Google Scholar] [CrossRef]
- Rasouli, K.; Rasouli, J.; Mohtaram, M.S.; Sabbaghi, S.; Kamyab, H.; Moradi, H.; Chelliapan, S. Biomass-derived activated carbon nanocomposites for cleaner production: A review on aspects of photocatalytic pollutant degradation. J. Clean. Prod. 2023, 419, 138181. [Google Scholar] [CrossRef]
- Xia, C.; Li, X.; Wu, Y.; Suharti, S.; Unpaprom, Y.; Pugazhendhi, A. A review on pollutants remediation competence of nanocomposites on contaminated water. Environ. Res. 2023, 222, 115318. [Google Scholar] [CrossRef]
- Masunga, N.; Mmelesi, O.K.; Kefeni, K.K.; Mamba, B.B. Recent advances in copper ferrite nanoparticles and nanocomposites synthesis, magnetic properties and application in water treatment: Review. J. Environ. Chem. Eng. 2019, 7, 103179. [Google Scholar] [CrossRef]
- Bhatia, P.; Nath, M. Nanocomposites of ternary mixed metal oxides (Ag2O/NiO/ZnO) used for the efficient removal of organic pollutants. J. Water Process. Eng. 2022, 49, 102961. [Google Scholar] [CrossRef]
- Beyki, M.H.; Shemirani, F.; Malakootikhah, J.; Minaeian, S.; Khani, R. Catalytic synthesis of graphene-like polyaniline derivative-MFe2O4 (M; Cu, Mn) nanohybrid as multifunctionality water decontaminant. React. Funct. Polym. 2018, 125, 108–117. [Google Scholar] [CrossRef]
- Xie, J.; Yamaguchi, T.; Oh, J. Synthesis of a mesoporous Mg–Al–mixed metal oxide with P123 template for effective removal of Congo red via aggregation-driven adsorption. J. Solid State Chem. 2021, 293, 121758. [Google Scholar] [CrossRef]
- Deflaoui, O.; Boudjemaa, A.; Sabrina, B.; Hayoun, B.; Bourouina, M.; Bacha, S.B. Kinetic modeling and experimental study of photocatalytic process using graphene oxide/TiO2 composites. A case for wastewater treatment under sunlight. React. Kinet. Mech. Catal. 2021, 133, 1141–1162. [Google Scholar] [CrossRef]
- Sharma, M.; Poddar, M.; Gupta, Y.; Nigam, S.; Avasthi, D.K.; Adelung, R.; Abolhassani, R.; Fiutowski, J.; Joshi, M.; Mishra, Y.K. Solar light assisted degradation of dyes and adsorption of heavy metal ions from water by CuO–ZnO tetrapodal hybrid nanocomposite. Mater. Today Chem. 2020, 17, 100336. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, H.; Gan, D.; Guo, L.; Liu, M.; Chen, J.; Deng, F.; Zhou, N.; Zhang, X.; Wei, Y. A facile strategy for preparation of magnetic graphene oxide composites and their potential for environmental adsorption. Ceram. Int. 2018, 44, 18571–18577. [Google Scholar] [CrossRef]
- Vergis, B.R.; Hari Krishna, R.; Kottam, N.; Nagabhushana, B.M.; Sharath, R.; Darukaprasad, B. Removal of Malachite green from aqueous solution by magnetic CuFe2O4 nano-adsorbent synthesized by one pot solution combustion method. J. Nanostruct. Chem. 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Soleimani, H.; Sharafi, K.; Parian, J.A.; Jaafari, J.; Ebrahimzadeh, G. Acidic modification of natural stone for Remazol black B dye adsorption from aqueous solution- central composite design (CCD) and response surface methodology (RSM). Heliyon 2023, 9, e14743. [Google Scholar] [CrossRef]
- Sudarsan, S.; Anandkumar, M.; Trofimov, E.A. Synthesis and characterization of copper ferrite nanocomposite from discarded printed circuit boards as an effective photocatalyst for Congo red dye degradation. J. Ind. Eng. Chem. 2024, 131, 208–220. [Google Scholar] [CrossRef]
- Patil, R.P.; Delekar, S.D.; Mane, D.R.; Hankare, P.P. Synthesis, structural and magnetic properties of different metal ion substituted nanocrystalline zinc ferrite. Results Phys. 2013, 3, 129–133. [Google Scholar] [CrossRef]
- Mulud, F.H.; Dahham, N.A.; Waheed, I.F. Synthesis and characterization of copper ferrite nanoparticles. Mater. Sci. Eng. 2020, 928, 072125. [Google Scholar] [CrossRef]
- Khairy, M.; El-Shaarawy, M.G.; Mousa, M.A. Characterization and super-capacitive properties of nanocrystalline copper ferrite prepared via green and chemical methods. Mater. Sci. Eng. B 2021, 263, 114812. [Google Scholar] [CrossRef]
- Rosa, J.C.; Segarra, M. Optimization of the synthesis of copper ferrite nanoparticles by a polymer-assisted sol−gel method. ACS Omega 2019, 4, 18289–18298. [Google Scholar] [CrossRef] [PubMed]
- Cruz, E.D.; Missau, J.; Collinson, S.R.; Tanabe, E.H.; Bertuol, D.A. Efficient removal of Congo red dye using activated lychee peel biochar supported Ca-Cr layered double hydroxide. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100835. [Google Scholar] [CrossRef]
- Jamdade, S.G.; Tambade, P.S.; Rathod, S.M. Effect of Tb3+ doping on structural and magnetic properties of CuFe2O4 nanoparticles for biomedical applications. Chem. Inorg. Mater. 2023, 1, 100020. [Google Scholar] [CrossRef]
- Parimelazhagan, V.; Yashwath, P.; Pushparajan, D.A.; Carpenter, J. Rapid removal of toxic Remazol brilliant blue-R dye from aqueous solutions using Juglans nigra shell biomass activated carbon as potential adsorbent: Optimization, isotherm, kinetic, and thermodynamic investigation. Int. J. Mol. Sci. 2022, 23, 12484. [Google Scholar] [CrossRef]
- Ghumare, A.B.; Mane, M.L.; Shirsath, S.E.; Lohar, K.S. Role of pH and sintering temperature on the properties of tetragonal-cubic phases composed Copper ferrite nanoparticles. J. Inorg. Organomet. Polym. 2018, 28, 2612–2619. [Google Scholar] [CrossRef]
- Rajini, R.; Ferdinand, A.C. Structural, morphological and magnetic properties of (c-ZnFe2O4 and t-CuFe2O4) ferrite nanoparticle synthesized by reactive ball milling. Chem. Data Collect. 2022, 38, 100825. [Google Scholar] [CrossRef]
- Reddy, C.S. Removal of direct dye from aqueous solutions with an adsorbent made from tamarind fruit shell, an agricultural solid waste. J. Sci. Ind. Res. 2006, 65, 443–446. Available online: http://nopr.niscpr.res.in/handle/123456789/4844 (accessed on 9 December 2023).
- Vairavel, P.; Rampal, N.; Jeppu, G. Adsorption of toxic Congo red dye from aqueous solution using untreated coffee husks: Kinetics, equilibrium, thermodynamics and desorption study. Int. J. Environ. Anal. Chem. 2023, 103, 2789–2808. [Google Scholar] [CrossRef]
- Shokri, A. Employing electro-peroxone process for degradation of Acid red 88 in aqueous environment by central composite design: A new kinetic study and energy consumption. Chemosphere 2022, 296, 133817. [Google Scholar] [CrossRef]
- Mustapha, L.S.; Yusuff, A.S.; Dim, P.E. RSM optimization studies for cadmium ions adsorption onto pristine and acid-modified kaolinite clay. Heliyon 2023, 9, e18634. [Google Scholar] [CrossRef]
- Alshammari, F.; Alam, M.B.; Naznin, M.; Kim, S.; Lee, S. Optimization of Portulaca oleracea L. extract using response surface methodology and artificial neural network and characterization of bioactive compound by high-resolution mass spectroscopy. Arab. J. Chem. 2023, 16, 104425. [Google Scholar] [CrossRef]
- Danish, M.; Pin, Z.; Ziyang, L.; Ahmad, T.; Majeed, S.; Yahya, A.; Khanday, W.A.; Khalil, A. Preparation and characterization of banana trunk activated carbon using H3PO4 activation: A rotatable central composite design approach. Mater. Chem. Phys. 2022, 282, 125989. [Google Scholar] [CrossRef]
- Oketola, A.; Jamiru, T.; Ogunbiyi, O.; Rominiyi, A.L.; Smith, S.; Ojo, A.D. Process parametric optimization of spark plasma sintered Ni-Cr-ZrO2 composites using response surface methodology (RSM). Int. J. Lightweight Mater. Manuf. 2023, in press. [Google Scholar] [CrossRef]
- Divya, J.M.; Palak, K.; Vairavel, P. Optimization, kinetics, equilibrium isotherms, and thermodynamics studies of Coomassie violet dye adsorption using Azadirachta indica (neem) leaf adsorbent. Desal. Water Treat. 2020, 190, 353–382. [Google Scholar] [CrossRef]
- Sen, T.K. Adsorptive removal of dye (Methylene blue) organic pollutant from water by pine tree leaf biomass adsorbent. Processes 2023, 11, 1877. [Google Scholar] [CrossRef]
- Wang, L.; Wang, A. Adsorption characteristics of Congo red onto the chitosan/montmorillonite nanocomposite. J. Hazard. Mater. 2007, 147, 979–985. [Google Scholar] [CrossRef]
- Wo, R.; Li, Q.L.; Zhu, C.; Zhang, Y.; Qiao, G.F.; Lei, K.Y.; Du, P.; Jiang, W. Preparation and characterization of functionalized metal-organic frameworks with core/shell magnetic particles (Fe3O4@SiO2@MOFs) for removal of Congo red and Methylene blue from water solution. J. Chem. Eng. Data 2019, 64, 2455–2463. [Google Scholar] [CrossRef]
- Sonar, S.K.; Niphadkar, P.S.; Mayadevi, S.; Praphulla, N.; Joshi, P.N. Preparation and characterization of porous fly ash/NiFe2O4 composite: Promising adsorbent for the removal of Congo red dye from aqueous solution. Mater. Chem. Phys. 2014, 148, 371–379. [Google Scholar] [CrossRef]
- Shayesteh, H.; Kelishami, A.R.; Norouzbeigi, R. Evaluation of natural and cationic surfactant modified pumice for Congo red removal in batch mode: Kinetic, equilibrium, and thermodynamic studies. J. Mol. Liq. 2016, 221, 1–11. [Google Scholar] [CrossRef]
- Rathee, G.; Awasthi, A.; Sood, D.; Tomar, R.; Tomar, V.; Chandra, R. A new biocompatible ternary layered double hydroxide adsorbent for ultrafast removal of anionic organic dyes. Sci. Rep. 2019, 9, 16225. [Google Scholar] [CrossRef] [PubMed]
- Habiba, U.; Joo, T.C.; Shezan, S.K.A.; Das, R.; Ang, B.C.; Afifi, A.M. Synthesis and characterization of chitosan/TiO2 nanocomposite for the adsorption of Congo red. Desal. Wat. Treat. 2019, 164, 361–367. [Google Scholar] [CrossRef]
- Vimonses, V.; Lei, S.; Jina, B.; Chowd, C.W.K.; Saint, C. Kinetic study and equilibrium isotherm analysis of Congo red adsorption by clay materials. Chem. Eng. J. 2009, 148, 354–364. [Google Scholar] [CrossRef]
- Sharma, A.; Siddiqui, Z.M.; Dhar, S.; Mehta, P.; Pathania, D. Adsorptive removal of Congo red dye (CR) from aqueous solution by Cornulaca monacantha stem and biomass-based activated carbon: Isotherm, kinetics and thermodynamics. Sep. Sci. Technol. 2019, 54, 916–929. [Google Scholar] [CrossRef]
- Meghana, C.; Juhi, B.; Rampal, N.; Vairavel, P. Isotherm, kinetics, process optimization and thermodynamics studies for removal of Congo red dye from aqueous solutions using Nelumbo nucifera (lotus) leaf adsorbent. Desal. Water Treat. 2020, 207, 373–397. [Google Scholar] [CrossRef]
- Vairavel, P.; Murty, V.R.; Nethaji, S. Removal of Congo red dye from aqueous solutions by adsorption onto a dual adsorbent (Neurospora crassa dead biomass and wheat bran): Optimization, isotherm, and kinetics studies. Desal. Wat. Treat. 2017, 68, 274–292. [Google Scholar] [CrossRef]
- Mahmoud, M.E.F.; Amira, M.F.; Azab, M.M.; Abdelfattah, A.M. An innovative amino-magnetite@graphene oxide@aminomanganese dioxide as a nitrogen-rich nanocomposite for removal of Congo red dye. Diam. Relat. Mater. 2022, 121, 108744. [Google Scholar] [CrossRef]
- Aryee, A.A.; Dovi, E.; Han, R.; Li, Z.; Qu, L. One novel composite based on functionalized magnetic peanut husk as adsorbent for efficient sequestration of phosphate and Congo red from solution: Characterization, equilibrium, kinetic and mechanism studies. J. Colloid Interface Sci. 2021, 598, 69–82. [Google Scholar] [CrossRef]
- Onizuka, T.; Iwasaki, T. Low-temperature solvent-free synthesis of polycrystalline hematite nanoparticles via mechanochemical activation and their adsorption properties for Congo red. Solid State Sci. 2022, 129, 106917. [Google Scholar] [CrossRef]
- Obayomi, K.S.; Lau, S.Y.; Danquah, M.K.; Zhang, J.; Chiong, T.; Meunier, L.; Gray, S.R.; Rahman, M.M. Green synthesis of graphene-oxide based nanocomposites for efficient removal of Methylene blue dye from wastewater. Desalination 2023, 564, 116749. [Google Scholar] [CrossRef]
- Zourou, A.; Ntziouni, A.; Adamopoulos, N.; Roman, T.; Zhang, F.; Terrones, M.; Kordatos, K. Graphene oxide-CuFe2O4 nanohybrid material as an adsorbent of Congo red dye. Carbon Trends 2022, 7, 100147. [Google Scholar] [CrossRef]
- Patil, Y.; Attarde, S.; Dhake, R.; Fegade, U.; Alaghaz, A. Adsorption of Congo red dye usingmetal oxide nano-adsorbents: Past, present, and future perspective. Int. J. Chem. Kinet. 2023, 55, 579–605. [Google Scholar] [CrossRef]
- Bilal, M.; Ihsanullah, I.; Shah, M.H.; Reddy, V.B.; Aminabhavi, T.M. Recent advances in the removal of dyes from wastewater using low-cost adsorbents. J. Environ. Manag. 2022, 321, 115981. [Google Scholar] [CrossRef] [PubMed]
- Al-Hazmi, G.A.; El-Zahhar, A.A.; El-Desouky, M.G.; El-Bindary, M.A.; El-Bindary, A.A. Adsorption of industrial dye onto a zirconium metal-organic framework: Synthesis, characterization, kinetics, thermodynamics, and DFT calculations. J. Coord. Chem. 2022, 75, 1203–1229. [Google Scholar] [CrossRef]
- Parimelazhagan, V.; Natarajan, K.; Shanbhag, S.; Madivada, S.; Kumar, H.S. Effective adsorptive removal of Coomassie violet dye from aqueous solutions using green synthesized zinc hydroxide nanoparticles prepared from calotropis gigantea leaf extract. ChemEngineering 2023, 7, 31. [Google Scholar] [CrossRef]
- Mobarak, M.B.; Pinky, N.S.; Chowdhury, F.; Hossain, M.S.; Mahmud, M.; Quddus, M.S.; Jahan, S.A.; Ahmed, S. Environmental remediation by hydroxyapatite: Solid state synthesis utilizing waste chicken eggshell and adsorption experiment with Congo red dye. J. Saudi Chem. Soc. 2023, 27, 101690. [Google Scholar] [CrossRef]
- Munonde, T.S.; Nqombolo, A.; Hobongwana, S.; Mpupa, A.; Nomngongo, P.N. Removal of Methylene blue using MnO2@rGO nanocomposite from textile wastewater: Isotherms, kinetics and thermodynamics studies. Heliyon 2023, 9, e15502. [Google Scholar] [CrossRef]
- Kumar, N.; Pandey, A.; Rosy; Sharma, Y.C. A review on sustainable mesoporous activated carbon as adsorbent for efficient removal of hazardous dyes from industrial wastewater. J. Water Process. Eng. 2023, 54, 104054. [Google Scholar] [CrossRef]
- Xue, H.; Gao, X.; Seliem, M.K.; Mobarak, M.; Dong, R.; Wang, X.; Fu, K.; Li, Q.; Li, Z. Efficient adsorption of anionic azo dyes on porous heterostructured MXene/ biomass activated carbon composites: Experiments, characterization, and theoretical analysis via advanced statistical physics models. Chem. Eng. J. 2023, 451, 138735. [Google Scholar] [CrossRef]
- Pandey, D.; Daverey, A.; Dutta, K.; Arunachalam, K. Enhanced adsorption of Congo red dye onto polyethyleneimine-impregnated biochar derived from pine needles. Environ. Monit. Assess. 2022, 194, 880. [Google Scholar] [CrossRef]
- Parimelazhagan, V.; Jeppu, G.; Rampal, N. Continuous fixed-bed column studies on Congo red dye adsorption-desorption using free and immobilized Nelumbo nucifera leaf adsorbent. Polymers 2022, 14, 54. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, R.; Uskokovic, V.; El-Masry, M.M. Triphasic CoFe2O4/ZnFe2O4/CuFe2O4 nanocomposite for water treatment applications. J. Alloys Compd. 2023, 954, 170040. [Google Scholar] [CrossRef]
- Zair, Z.R.; Alismaeel, Z.T.; Eyssa, M.Y.; Mridha, M.J. Optimization, equilibrium, kinetics and thermodynamic study of Congo red dye adsorption from aqueous solutions using iraqi porcelanite rocks. Heat Mass Transf. 2022, 58, 1393–1410. [Google Scholar] [CrossRef]
- Patel, H. Elution profile of cationic and anionic adsorbate from exhausted adsorbent using solvent desorption. Sci. Rep. 2022, 12, 1665. [Google Scholar] [CrossRef]
- Rose, P.K.; Kumar, R.; Kumar, R.; Kumar, M.; Sharma, P. Congo red dye adsorption onto cationic amino-modified walnut shell: Characterization, RSM optimization, isotherms, kinetics, and mechanism studies. Groundw. Sustain. Dev. 2023, 21, 100931. [Google Scholar] [CrossRef]
- Alsoaud, M.A.; Taher, M.A.; Hamed, A.M.; Elnouby, M.S.; Omer, A.M. Reusable kaolin impregnated aminated chitosan composite beads for efficient removal of Congo red dye: Isotherms, kinetics and thermodynamics studies. Sci. Rep. 2022, 12, 12972. [Google Scholar] [CrossRef]
- Shahat, A.; Kubra, K.T.; El-marghany, A. Equilibrium, thermodynamic and kinetic modeling of triclosan adsorption on mesoporous carbon nanosphere: Optimization using Box-Behnken design. J. Mol. Liq. 2023, 383, 122166. [Google Scholar] [CrossRef]
- Benjelloun, M.; Miyah, Y.; Bouslamti, R.; Nahali, L.; Mejbar, F.; Lairini, S. The fast-efficient adsorption process of the toxic dye onto shells powders of walnut and peanut: Experiments, equilibrium, thermodynamic, and regeneration studies. Chem. Afr. 2022, 5, 375–393. [Google Scholar] [CrossRef]
Experimental Factors | Range and Level | ||
---|---|---|---|
−1 | 0 | 1 | |
Initial pH (X1) | 5.5 | 6.0 | 6.5 |
Initial adsorbate concentration, mg/L (X2) | 125 | 175 | 225 |
CuFe2O4 nanocomposite dosage, g/L (X3) | 3.5 | 4.0 | 4.5 |
Expt. No. | X1 | X2 (mg/L) | X3 (g/L) | CR Dye Uptake at Equilibrium, qe (mg/g) | |
---|---|---|---|---|---|
Experiment | Predicted | ||||
1 | 0 | 0 | 0 | 40.60 | 40.70 |
2 | −1 | 1 | −1 | 40.09 | 40.76 |
3 | 0 | 1 | 0 | 38.00 | 37.24 |
4 | 0 | 0 | −1 | 45.54 | 44.60 |
5 | 0 | 0 | 0 | 40.49 | 40.70 |
6 | 1 | 1 | 1 | 34.57 | 34.47 |
7 | 0 | 0 | 0 | 40.62 | 40.70 |
8 | 1 | −1 | 1 | 37.86 | 37.29 |
9 | −1 | 0 | 0 | 42.18 | 41.17 |
10 | 0 | 0 | 0 | 40.53 | 40.70 |
11 | −1 | −1 | 1 | 38.23 | 38.26 |
12 | −1 | −1 | −1 | 48.72 | 48.92 |
13 | 0 | 0 | 0 | 40.59 | 40.70 |
14 | −1 | 1 | 1 | 33.63 | 33.74 |
15 | 0 | 0 | 0 | 40.56 | 40.70 |
16 | 1 | 1 | −1 | 39.54 | 39.60 |
17 | 1 | −1 | −1 | 46.08 | 46.07 |
18 | 0 | −1 | 0 | 42.38 | 42.73 |
19 | 0 | 0 | 1 | 36.18 | 36.71 |
20 | 1 | 0 | 0 | 39.49 | 40.11 |
Term | Coefficient | SE of Coefficient | Tstatistics | DF | Seq SS | Adj SS | Adj MS | Fstatistics | Probability |
---|---|---|---|---|---|---|---|---|---|
Constant | 40.6965 | 0.2233 | 182.276 | 0.000 | |||||
Regression | 9 | 246.813 | 46.813 | 27.424 | 65.02 | 0.000 | |||
Linear | 3 | 234.014 | 34.014 | 78.005 | 184.93 | 0.000 | |||
X1 | −0.5309 | 0.2054 | −2.5850 | 1 | 2.819 | 2.819 | 2.819 | 6.68 | 0.027 |
X2 (mg/L) | −2.7446 | 0.2054 | −13.364 | 1 | 75.329 | 5.329 | 75.329 | 178.59 | 0.000 |
X3 (g/L) | −3.9479 | 0.2054 | −19.223 | 1 | 155.866 | 55.866 | 155.866 | 369.53 | 0.000 |
Square | 3 | 2.969 | 2.969 | 0.990 | 2.35 | 0.134 | |||
X1 × X1 | −0.0594 | 0.3916 | −0.152 | 1 | 0.010 | 0.010 | 0.010 | 0.02 | 0.882 |
X2 (mg/L) × X2 (mg/L) | −0.7069 | 0.3916 | −1.805 | 1 | 1.375 | 1.375 | 1.375 | 3.26 | 0.101 |
X3 (g/L) × X3 (g/L) | −0.0416 | 0.3916 | −0.106 | 1 | 0.005 | 0.005 | 0.005 | 0.01 | 0.917 |
Interaction | 3 | 9.831 | 9.831 | 3.277 | 7.77 | 0.006 | |||
X1 × X2 (mg/L) | 0.4239 | 0.2296 | 1.846 | 1 | 1.438 | 1.438 | 1.438 | 3.41 | 0.095 |
X1 × X3 (g/L) | 0.4701 | 0.2296 | 2.047 | 1 | 1.768 | 1.768 | 1.768 | 4.19 | 0.068 |
X2 (mg/L) × X3 (g/L) | 0.9099 | 0.2296 | 3.963 | 1 | 6.625 | 6.625 | 6.625 | 15.71 | 0.003 |
Residual error | 10 | 4.218 | 4.218 | 0.422 | |||||
Lack-of-fit | 5 | 4.206 | 4.206 | 0.841 | 355.11 | 0.000 | |||
Pure error | 5 | 0.012 | 0.012 | 0.002 | |||||
Total | 19 | 251.031 |
Experiment | Process Variables with Operating Conditions | CR Dye Uptake at Equilibrium, qe (mg/g) | |||
---|---|---|---|---|---|
X1 | X2 (mg/L) | X3 (g/L) | Empirical Value | Computed Value | |
1 | 6.0 | 125 | 4.0 | 42.34 | 44.26 |
2 | 5.5 | 125 | 3.5 | 48.72 | 49.38 |
3 | 6.5 | 225 | 4.5 | 34.57 | 35.84 |
Experimental Factors | Optimal Value for CR Dye Uptake | CR Dye Optimum Adsorption Capacity at Equilibrium, qe (mg/g) |
---|---|---|
Initial pH (X1) | 5.5 | 48.72 |
Initial adsorbate concentration, Co (mg/L) (X2) | 125 | |
Dosage of CuFe2O4 nanocomposite adsorbent, g/L (X3) | 3.5 |
Isotherm Model | Linearized Equation | Model Parameters | Values | Model Equation |
---|---|---|---|---|
Freundlich | n | 2.535 | ||
KF (L/g) | 14.799 | |||
R2 | 0.95906 | |||
Langmuir | Separation factor, | qmax (mg/g) | 64.7249 | |
KL (L/mg) | 0.3029 | |||
R2 | 0.9989 | |||
RL | 0.027–0.076 | |||
Temkin | RT/bT | 11.416 | ||
KT (L/g) | 3.417 | |||
R2 | 0.9858 | |||
Dubinin–Radushkevich | Mean free energy of adsorption, E | qs (mg/g) | 42.125 | |
KDR (mole2/kJ2) | 0.2944 | |||
E (kJ/mole) | 1.303 | |||
R2 | 0.8317 |
Adsorbent | Highest Surface Assimilation Capacity, qmax (mg/g) | Reference |
---|---|---|
Montmorillonite | 12.70 | [49] |
Fe3O4@SiO2@Zn–TDPAT | 17.73 | [50] |
Fly ash/NiFe2O4 composite | 22.73 | [51] |
CTAB-modified pumice | 27.32 | [52] |
NiFeTi LDH | 29.97 | [53] |
Chitosan/TiO2 nanocomposite | 32.00 | [54] |
Sodium bentonite | 35.84 | [55] |
Coffee husk powder | 38.64 | [41] |
Cornulaca monacantha stem biomass | 43.42 | [56] |
Lotus leaf powder | 45.89 | [57] |
Neurospora crassa dead biomass with wheat bran | 46.29 | [58] |
NH2–Fe3O4–GO–MnO2–NH2 nanocomposite | 54.95 | [59] |
Magnetic peanut husk | 56.30 | [60] |
Polycrystalline–Fe2O3 nanoparticles | 58.20 | [61] |
Copper ferrite nanocomposite | 64.72 | Present study |
Kinetic Model | Linearized Equation | Model Parameters | Initial Adsorbate Concentration, Co (mg/L) | |||||
---|---|---|---|---|---|---|---|---|
40 | 80 | 120 | 160 | 200 | 240 | |||
CR dye adsorption capacity at equilibrium, qe, practical (mg/g) | 9.819 | 19.504 | 28.572 | 36.980 | 44.472 | 49.438 | ||
Pseudo-first-order | qe, computed (mg/g) | 3.463 | 6.053 | 8.712 | 13.185 | 14.617 | 16.474 | |
K1 (1/min) | 0.0514 | 0.0321 | 0.0167 | 0.0154 | 0.0119 | 0.0094 | ||
Regression coefficient, R2 | 0.9913 | 0.9877 | 0.9494 | 0.9306 | 0.9474 | 0.9261 | ||
Pseudo-second-order | Initial adsorption rate, h = K2 qe2 | qe, computed (mg/g) | 10.0674 | 19.896 | 28.346 | 37.593 | 45.106 | 49.925 |
K2 (g/(mg. min)) | 0.0344 | 0.0137 | 0.0083 | 0.0037 | 0.0028 | 0.0022 | ||
h (mg/(g. min)) | 3.319 | 4.228 | 5.058 | 5.254 | 5.549 | 6.748 | ||
Regression coefficient, R2 | 0.9999 | 0.9999 | 0.9999 | 0.9997 | 0.9998 | 0.9996 | ||
Intraparticle diffusion | Ki (mg/(g. min1/2)) | 0.0879 | 0.1730 | 0.1639 | 0.2307 | 0.2662 | 0.3092 | |
C (mg/g)) | 8.7274 | 16.8899 | 25.6860 | 32.6852 | 39.0578 | 42.4887 | ||
Regression coefficient, R2 | 0.9714 | 0.8869 | 0.8898 | 0.8909 | 0.9521 | 0.8967 | ||
Elovich | (mg/(g. min) | 263.852 | 335.522 | 425.492 | 516.053 | 596.372 | 672.839 | |
(g/mg) | 1.0772 | 0.5303 | 0.4067 | 0.2712 | 0.2198 | 0.1987 | ||
Regression coefficient, R2 | 0.9228 | 0.9389 | 0.9138 | 0.9694 | 0.9509 | 0.9465 |
Temperature (K) | Highest Uptake Capacity of CR onto CuFe2O4, qmax (mg/g) | Thermodynamic Factors | ||
---|---|---|---|---|
ΔG (kJ/mole) | ΔHads (kJ/mole) | ΔSads (kJ/(mole K)) | ||
302 | 64.7249 | –22.1046 | 46.3824 | 0.1726 |
315 | 70.7485 | –24.2875 | ||
330 | 79.9634 | –26.8990 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parimelazhagan, V.; Chinta, A.; Shetty, G.G.; Maddasani, S.; Tseng, W.-L.; Ethiraj, J.; Ayyakannu Sundaram, G.; Kumar, A.S.K. Process Optimization and Equilibrium, Thermodynamic, and Kinetic Modeling of Toxic Congo Red Dye Adsorption from Aqueous Solutions Using a Copper Ferrite Nanocomposite Adsorbent. Molecules 2024, 29, 418. https://doi.org/10.3390/molecules29020418
Parimelazhagan V, Chinta A, Shetty GG, Maddasani S, Tseng W-L, Ethiraj J, Ayyakannu Sundaram G, Kumar ASK. Process Optimization and Equilibrium, Thermodynamic, and Kinetic Modeling of Toxic Congo Red Dye Adsorption from Aqueous Solutions Using a Copper Ferrite Nanocomposite Adsorbent. Molecules. 2024; 29(2):418. https://doi.org/10.3390/molecules29020418
Chicago/Turabian StyleParimelazhagan, Vairavel, Akhil Chinta, Gaurav Ganesh Shetty, Srinivasulu Maddasani, Wei-Lung Tseng, Jayashree Ethiraj, Ganeshraja Ayyakannu Sundaram, and Alagarsamy Santhana Krishna Kumar. 2024. "Process Optimization and Equilibrium, Thermodynamic, and Kinetic Modeling of Toxic Congo Red Dye Adsorption from Aqueous Solutions Using a Copper Ferrite Nanocomposite Adsorbent" Molecules 29, no. 2: 418. https://doi.org/10.3390/molecules29020418
APA StyleParimelazhagan, V., Chinta, A., Shetty, G. G., Maddasani, S., Tseng, W. -L., Ethiraj, J., Ayyakannu Sundaram, G., & Kumar, A. S. K. (2024). Process Optimization and Equilibrium, Thermodynamic, and Kinetic Modeling of Toxic Congo Red Dye Adsorption from Aqueous Solutions Using a Copper Ferrite Nanocomposite Adsorbent. Molecules, 29(2), 418. https://doi.org/10.3390/molecules29020418