Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = oxydative stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2317 KiB  
Article
Identification of Antioxidant Metabolites from Five Plants (Calophyllum inophyllum, Gardenia taitensis, Curcuma longa, Cordia subcordata, Ficus prolixa) of the Polynesian Pharmacopoeia and Cosmetopoeia for Skin Care
by Marion Chambon, Raimana Ho, Beatrice Baghdikian, Gaëtan Herbette, Sok-Siya Bun-Llopet, Elnur Garayev and Phila Raharivelomanana
Antioxidants 2023, 12(10), 1870; https://doi.org/10.3390/antiox12101870 - 16 Oct 2023
Cited by 10 | Viewed by 2887
Abstract
Oxidative stress contributes to impairment of skin health, the wound healing process, and pathologies such as psoriasis or skin cancer. Five Polynesian medicinal plants, among the most traditionally used for skin care (pimples, wounds, burns, dermatoses) are studied herein for their antioxidant properties: [...] Read more.
Oxidative stress contributes to impairment of skin health, the wound healing process, and pathologies such as psoriasis or skin cancer. Five Polynesian medicinal plants, among the most traditionally used for skin care (pimples, wounds, burns, dermatoses) are studied herein for their antioxidant properties: Calophyllum inophyllum, Gardenia taitensis, Curcuma longa, Cordia subcordata, and Ficus prolixa. Plant extracts were submitted to in vitro bioassays related to antioxidant properties and their bioactive constituents were identified by a metabolomic analytical approach. High performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) analysis was performed leading to the characterization of 61 metabolites. Compounds annotated for F. prolixa and C. subcordata extracts were reported for the first time. Antioxidant properties were evaluated by total phenolic content (TPC), free radical scavenging DPPH (1,1-diphenyl-2-picryl-hydrazyl), and Ferric Reducing Antioxidant Power activity (FRAP) assays. F. prolixa extract was the most active one and showed antioxidant intracellular activity on keratinocytes by Anti Oxydant Power 1 assay. Online HPLC-DPPH allowed the identification of phenolic bioactive compounds such as quercetin-O-rhamnoside, rosmarinic acid, chlorogenic acid, procyanidins, epicatechin, 5-O-caffeoylshikimic acid, and curcumin as being responsible for the scavenging properties of these plant extracts. These results highlight the potential of F. prolixa aerial roots as a source of antioxidants for skin care applications. Full article
(This article belongs to the Topic Bioactive Substances, Pharmacognosy and Metabolomics)
Show Figures

Figure 1

16 pages, 2019 KiB  
Article
Effect of Plant Extracts Combinations on TNF-α, IL-6 and IL-10 Levels in Serum of Rats Exposed to Acute and Chronic Stress
by Ilin Kandilarov, Petya Gardjeva, Maria Georgieva-Kotetarova, Hristina Zlatanova, Natalia Vilmosh, Ivanka Kostadinova, Mariana Katsarova, Kiril Atliev and Stela Dimitrova
Plants 2023, 12(17), 3049; https://doi.org/10.3390/plants12173049 - 24 Aug 2023
Cited by 17 | Viewed by 5401
Abstract
Oxydative stress, anxiety and depression are associated with changes in cytokine levels. Natural products, including individual and combined plant extracts, have the potential to be used in the treatment of neuropsychiatric disorders. The goal of this study is to investigate the effects of [...] Read more.
Oxydative stress, anxiety and depression are associated with changes in cytokine levels. Natural products, including individual and combined plant extracts, have the potential to be used in the treatment of neuropsychiatric disorders. The goal of this study is to investigate the effects of two combined plant extracts, rich in flavonoids, on the levels of the cytokines TNF-α, IL-6, and IL-10 in rats subjected to models of acute cold stress and chronic unpredictable stress. The study utilized common medicinal plants such as Valeriana officinalis, Melissa officinalis, Crataegus monogyna, Hypericum perforatum, and Serratula coronata, which were combined in two unique combinations—Antistress I and Antistress II. The compositions of the used extracts were determined by HPLC methods. Pro- and anti-inflammatory cytokines in rats’ serum were measured with Enzyme-linked immunosorbent assay. The results from the acute stress model revealed that the individual extract of Crataegus monogyna decreased levels of TNF-α, while Serratula coronata, Hypericum perforatum, and Valeriana officinalis effectively reduced IL-6 levels. Both combinations, Antistress I and Antistress II, were effective in reducing TNF-α and IL-6 levels, with Antistress II also increasing IL-10 levels. In the chronic stress model, Hypericum perforatum extract decreased the levels of the pro-inflammatory cytokines TNF-α and IL-6, whereas extracts of Serratula coronata and Valeriana officinalis only reduced TNF-α levels. The two combined extracts, Antistress I and Antistress II, decreased TNF-α and IL-6 levels, while Antistress I also reduced the levels of the anti-inflammatory cytokine IL-10. The combinations of plant extracts used in our experiment have not been previously studied or documented in the available literature. However, based on our own experimental results, we can draw the conclusion that the combinations exhibit a more pronounced effect in reducing cytokine levels compared to the individual plant extracts. Full article
Show Figures

Figure 1

16 pages, 654 KiB  
Article
A Pilot Study on Oxidative Stress during the Recovery Phase in Critical COVID-19 Patients in a Rehabilitation Facility: Potential Utility of the PAOT® Technology for Assessing Total Anti-Oxidative Capacity
by Joël Pincemail, Anne-Françoise Rousseau, Jean-François Kaux, Jean-Paul Cheramy-Bien, Christine Bruyère, Jeanine Prick, David Stern, Mouna-Messaouda Kaci, Benoît Maertens De Noordhout, Adelin Albert, Céline Eubelen, Caroline Le Goff, Benoît Misset, Etienne Cavalier, Corinne Charlier and Smail Meziane
Biomedicines 2023, 11(5), 1308; https://doi.org/10.3390/biomedicines11051308 - 28 Apr 2023
Cited by 3 | Viewed by 2332
Abstract
Background: Oxidative stress (OS) could cause various COVID-19 complications. Recently, we have developed the Pouvoir AntiOxydant Total (PAOT®) technology for reflecting the total antioxidant capacity (TAC) of biological samples. We aimed to investigate systemic oxidative stress status (OSS) and to evaluate the utility [...] Read more.
Background: Oxidative stress (OS) could cause various COVID-19 complications. Recently, we have developed the Pouvoir AntiOxydant Total (PAOT®) technology for reflecting the total antioxidant capacity (TAC) of biological samples. We aimed to investigate systemic oxidative stress status (OSS) and to evaluate the utility of PAOT® for assessing TAC during the recovery phase in critical COVID-19 patients in a rehabilitation facility. Materials and Methods: In a total of 12 critical COVID-19 patients in rehabilitation, 19 plasma OSS biomarkers were measured: antioxidants, TAC, trace elements, oxidative damage to lipids, and inflammatory biomarkers. TAC level was measured in plasma, saliva, skin, and urine, using PAOT and expressed as PAOT-Plasma, -Saliva, -Skin, and -Urine scores, respectively. Plasma OSS biomarker levels were compared with levels from previous studies on hospitalized COVID-19 patients and with the reference population. Correlations between four PAOT scores and plasma OSS biomarker levels were analyzed. Results: During the recovery phase, plasma levels in antioxidants (γ-tocopherol, β-carotene, total glutathione, vitamin C and thiol proteins) were significantly lower than reference intervals, whereas total hydroperoxides and myeloperoxidase (a marker of inflammation) were significantly higher. Copper negatively correlated with total hydroperoxides (r = 0.95, p = 0.001). A similar, deeply modified OSS was already observed in COVID-19 patients hospitalized in an intensive care unit. TAC evaluated in saliva, urine, and skin correlated negatively with copper and with plasma total hydroperoxides. To conclude, the systemic OSS, determined using a large number of biomarkers, was always significantly increased in cured COVID-19 patients during their recovery phase. The less costly evaluation of TAC using an electrochemical method could potentially represent a good alternative to the individual analysis of biomarkers linked to pro-oxidants. Full article
(This article belongs to the Special Issue Advanced Biomedical Research on COVID-19)
Show Figures

Figure 1

12 pages, 2998 KiB  
Article
Co-Contamination of Food and Feed with Mycotoxin and Bacteria and Possible Implications for Health
by Daniela Eliza Marin, Gina Cecilia Pistol, Cristina Valeria Procudin and Ionelia Taranu
Agriculture 2022, 12(11), 1970; https://doi.org/10.3390/agriculture12111970 - 21 Nov 2022
Cited by 6 | Viewed by 2555
Abstract
Food and feed safety is an issue of great concern for both animal and human health, due to the frequent contamination of food and feed with pathogens, such as bacteria, viruses, yeasts, molds, and parasites. The present paper assumes the possibility that a [...] Read more.
Food and feed safety is an issue of great concern for both animal and human health, due to the frequent contamination of food and feed with pathogens, such as bacteria, viruses, yeasts, molds, and parasites. The present paper assumes the possibility that a mycotoxin contamination could occur at the same time as a bacterial infection and investigates the effects of such co-contamination, in comparison with the individual effects of bacterial challenge. For this purpose, we have investigated the effects of simultaneous contamination of swine peripheral blood mononuclear cells (PBMCs) with lipopolysaccharide (LPS) (as a model for bacterial contamination) and mycotoxins (ochratoxin or zearalenone) on cell viability, cell cycles, oxydative stress, and inflammation. Our results show important additive/synergistic effects of co-exposure to fungal and bacterial toxins, and that these effects are more important when the cells are co-exposed to LPS and ochratoxin (OTA). The exposure of PBMCs to both OTA and LPS induced an exacerbation of the increase in the inflammation of concentrations of pro-inflamatory cytokines, compared with that of LPS-challenged cells: IL-1β (4.1 times increase), TNF-α (3.2 times increase), IL-6 (3.1 times increase). There was also a decrease in antioxidant defence (i.e., a significant decrease in the total antioxidant capacity and catalase activity) and a significant increase in the percentage of cells undergoing necrosis (24.3% vs. 15.3% in LPS-treated cells). The exposure to zearalenone (ZEA) and LPS led to less important effects and concerned mainly the parameters related to oxidative stress (i.e., a decrease in total antioxidant capacity). The present study provides important data for risk assessment, as the concomitant contamination with bacteria and mycotoxins can lead to a higher toxicity than that which results after an individual infection with Gram-negative bacteria. Full article
Show Figures

Figure 1

17 pages, 1979 KiB  
Article
Characterization of Polysaccharides Sequentially Extracted from Allium roseum Leaves and Their Hepatoprotective Effects against Cadmium Induced Toxicity in Mouse Liver
by Nesrine Teka, Fahad M. Alminderej, Ghada Souid, Yassine El-Ghoul, Didier Le Cerf and Hatem Majdoub
Antioxidants 2022, 11(10), 1866; https://doi.org/10.3390/antiox11101866 - 21 Sep 2022
Cited by 10 | Viewed by 2970
Abstract
Allium roseum is one of the medicinal plants of the Liliaceae family, widely used in the food industry and traditional medicine. It is known for its various biological properties, such as its antioxidant, antiviral, antidiabetic, and anti-inflammatory activities. The present work aims to [...] Read more.
Allium roseum is one of the medicinal plants of the Liliaceae family, widely used in the food industry and traditional medicine. It is known for its various biological properties, such as its antioxidant, antiviral, antidiabetic, and anti-inflammatory activities. The present work aims to extract the polysaccharides from Allium roseum leaves and evaluate their antioxidant activities and hepatoprotective effects in vivo. Three polysaccharides from the leaves of Allium roseum were sequentially extracted in three media: water, chelating, and basic, respectively. They were characterized by size exclusion chromatography, gas chromatography mass spectrometry, FTIR-ATR, and NMR spectroscopy (1D and 2D). The different polysaccharides principally consist of glucose, galactose, mannose, rhamnose, xylose, and galacturonic acid. The antioxidant activity and hepatoprotective effect of the extracts against Cd-caused oxidative stress in liver mouse were tested. Cd treatment, during 24 h, enhanced significantly lipid peroxidation by a high production of malondyaldehyd (MDA) and superoxide dismutase (SOD) activity. In contrast, catalase activity (CAT) was decreased after the same period of exposure to the metal. The polysaccharides pre-treatment improved the antioxidant defense system to a great degree, mainly explained by the modulating levels of oxydative stress biomarkers (MDA, SOD, and CAT). This research clearly shows that Allium roseum polysaccharides, especially those extracted in aqueous medium, can be used as natural antioxidants with hepatoprotective properties. Full article
(This article belongs to the Special Issue Soluble and Insoluble-Bound Antioxidants)
Show Figures

Figure 1

8 pages, 307 KiB  
Article
Heat Shock Protein 27 Is an Emerging Predictor of Contrast-Induced Acute Kidney Injury on Patients Subjected to Percutaneous Coronary Interventions
by Andrzej Jaroszyński, Tomasz Zaborowski, Stanisław Głuszek, Tomasz Zapolski, Marcin Sadowski, Wojciech Załuska, Anna Cedro, Teresa Małecka-Massalska and Wojciech Dąbrowski
Cells 2021, 10(3), 684; https://doi.org/10.3390/cells10030684 - 19 Mar 2021
Cited by 9 | Viewed by 2241
Abstract
Contrast-induced acute kidney injury (CI-AKI) is a serious complication associated with considerable morbidity and mortality. Heat-shock protein 27 (HSP27) plays a role in the defense of the kidney tissue against various forms of cellular stress, including hypoxia and oxydative stress, both features associated [...] Read more.
Contrast-induced acute kidney injury (CI-AKI) is a serious complication associated with considerable morbidity and mortality. Heat-shock protein 27 (HSP27) plays a role in the defense of the kidney tissue against various forms of cellular stress, including hypoxia and oxydative stress, both features associated with CI-AKI. The aim of our study was to evaluate a potential predictive value of HSP27 for CI-AKI in patients subjected to percutaneous coronary interventions (PCI). Included were 343 selected patients subjected to PCI. Exclusion criteria were conditions that potentially might influence HSP27 levels. HSP27 serum levels were evaluated prior to PCI, together with serum creatinine, the concentration of which was also evaluated twice at 48 and 72 h post PCI. CI-AKI was diagnosed in 9.3% of patients. Patients in whom CI-AKI was diagnosed were older (p < 0.001), were more often females (p = 0.021), had higher prevalence of diabetes (p = 0.011), hypotension during PCI (p < 0.001), albuminuria (p = 0.004) as well as multivessel disease (p = 0.002), received higher contrast volume (p = 0.006), more often received contrast volume (CV) above the maximum allowed contrast dose (MACD) (p < 0.001), and had lower HSP27 level (p < 0.001). On multivariate analysis, CV > MACD (OR 1.23, p = 0.001), number of diseased vessels (OR 1.27, p = 0.006), and HSP27 (OR 0.81, p = 0.001) remained independent predictors of CI-AKI. Low concentration of HSP27 is an emerging, strong and independent predictor of CI-AKI in patients subjected to PCI. Full article
Show Figures

Figure 1

30 pages, 2567 KiB  
Review
Progress in Biodegradable Flame Retardant Nano-Biocomposites
by Zorana Kovačević, Sandra Flinčec Grgac and Sandra Bischof
Polymers 2021, 13(5), 741; https://doi.org/10.3390/polym13050741 - 27 Feb 2021
Cited by 65 | Viewed by 6644
Abstract
This paper summarizes the results obtained in the course of the development of a specific group of biocomposites with high functionality of flame retardancy, which are environmentally acceptable at the same time. Conventional biocomposites have to be altered through different modifications, to be [...] Read more.
This paper summarizes the results obtained in the course of the development of a specific group of biocomposites with high functionality of flame retardancy, which are environmentally acceptable at the same time. Conventional biocomposites have to be altered through different modifications, to be able to respond to the stringent standards and environmental requests of the circular economy. The most commonly produced types of biocomposites are those composed of a biodegradable PLA matrix and plant bast fibres. Despite of numerous positive properties of natural fibres, flammability of plant fibres is one of the most pronounced drawbacks for their wider usage in biocomposites production. Most recent novelties regarding the flame retardancy of nanocomposites are presented, with the accent on the agents of nanosize (nanofillers), which have been chosen as they have low or non-toxic environmental impact, but still offer enhanced flame retardant (FR) properties. The importance of a nanofiller’s geometry and shape (e.g., nanodispersion of nanoclay) and increase in polymer viscosity, on flame retardancy has been stressed. Although metal oxydes are considered the most commonly used nanofillers there are numerous other possibilities presented within the paper. Combinations of clay based nanofillers with other nanosized or microsized FR agents can significantly improve the thermal stability and FR properties of nanocomposite materials. Further research is still needed on optimizing the parameters of FR compounds to meet numerous requirements, from the improvement of thermal and mechanical properties to the biodegradability of the composite products. Presented research initiatives provide genuine new opportunities for manufacturers, consumers and society as a whole to create a new class of bionanocomposite materials with added benefits of environmental improvement. Full article
(This article belongs to the Special Issue Biodegradable Polymers II)
Show Figures

Graphical abstract

12 pages, 1260 KiB  
Perspective
The Neuroprotective Effects of Melatonin: Possible Role in the Pathophysiology of Neuropsychiatric Disease
by Jung Goo Lee, Young Sup Woo, Sung Woo Park, Dae-Hyun Seog, Mi Kyoung Seo and Won-Myong Bahk
Brain Sci. 2019, 9(10), 285; https://doi.org/10.3390/brainsci9100285 - 21 Oct 2019
Cited by 52 | Viewed by 9278
Abstract
Melatonin is a hormone that is secreted by the pineal gland. To date, melatonin is known to regulate the sleep cycle by controlling the circadian rhythm. However, recent advances in neuroscience and molecular biology have led to the discovery of new actions and [...] Read more.
Melatonin is a hormone that is secreted by the pineal gland. To date, melatonin is known to regulate the sleep cycle by controlling the circadian rhythm. However, recent advances in neuroscience and molecular biology have led to the discovery of new actions and effects of melatonin. In recent studies, melatonin was shown to have antioxidant activity and, possibly, to affect the development of Alzheimer’s disease (AD). In addition, melatonin has neuroprotective effects and affects neuroplasticity, thus indicating potential antidepressant properties. In the present review, the new functions of melatonin are summarized and a therapeutic target for the development of new drugs based on the mechanism of action of melatonin is proposed. Full article
(This article belongs to the Special Issue Neurogenesis and Gliogenesis in Health and Disease)
Show Figures

Figure 1

16 pages, 1874 KiB  
Article
Electrochemical Methodology for Evaluating Skin Oxidative Stress Status (SOSS)
by Pincemail Joël, Kaci Mouna-Messaouda, Cheramy-Bien Jean-Paul, Defraigne Jean-Olivier and Meziane Smail
Diseases 2019, 7(2), 40; https://doi.org/10.3390/diseases7020040 - 27 May 2019
Cited by 7 | Viewed by 4193
Abstract
For the purpose of human disease prevention, several methods have been developed, and are still developing, to assess the oxidative stress status (OSS) of individuals. In the present paper, we describe an approach based on electrochemical detection able to evaluate skin oxidative stress [...] Read more.
For the purpose of human disease prevention, several methods have been developed, and are still developing, to assess the oxidative stress status (OSS) of individuals. In the present paper, we describe an approach based on electrochemical detection able to evaluate skin oxidative stress status (SOSS) as a PAOT (Pouvoir AntiOxydant Total)-Skin Score®. Normal reference values for the PAOT-Skin Score® were: 0–62.94 (n = 263). Intra- and inter-assay coefficients of variation were, respectively, 12.47 ± 4.29% and 7.0 ± 2.5%. Our technology showed increased skin antioxidant activity following topical application of reduced coeznyme Q10 cream or vitamin C intake as orange juice or supplements. Moreover, we found significant correlations between some blood oxidative stress biomarkers and the PAOT-Skin Score® (γ-tocopherol/α-tocopherol ratio (r = 0.43, p = 0.020); copper (r = −0.42, p = 0.022); copper/zinc ratio (r = −0.49, p = 0.006), and lipid peroxides (r = −0.43, p = 0.002)). In addition to being non–invasive, the present electrochemical methodology is also not expensive, fast, and easy to use. Full article
Show Figures

Figure 1

14 pages, 1820 KiB  
Review
Reactive Chemicals and Electrophilic Stress in Cancer: A Minireview
by Vehary Sakanyan
High-Throughput 2018, 7(2), 12; https://doi.org/10.3390/ht7020012 - 27 Apr 2018
Cited by 19 | Viewed by 6974
Abstract
Exogenous reactive chemicals can impair cellular homeostasis and are often associated with the development of cancer. Significant progress has been achieved by studying the macromolecular interactions of chemicals that possess various electron-withdrawing groups and the elucidation of the protective responses of cells to [...] Read more.
Exogenous reactive chemicals can impair cellular homeostasis and are often associated with the development of cancer. Significant progress has been achieved by studying the macromolecular interactions of chemicals that possess various electron-withdrawing groups and the elucidation of the protective responses of cells to chemical interventions. However, the formation of electrophilic species inside the cell and the relationship between oxydative and electrophilic stress remain largely unclear. Derivatives of nitro-benzoxadiazole (also referred as nitro-benzofurazan) are potent producers of hydrogen peroxide and have been used as a model to study the generation of reactive species in cancer cells. This survey highlights the pivotal role of Cu/Zn superoxide dismutase 1 (SOD1) in the production of reactive oxygen and electrophilic species in cells exposed to cell-permeable chemicals. Lipophilic electrophiles rapidly bind to SOD1 and induce stable and functionally active dimers, which produce excess hydrogen peroxide leading to aberrant cell signalling. Moreover, reactive oxygen species and reactive electrophilic species, simultaneously generated by redox reactions, behave as independent entities that attack a variety of proteins. It is postulated that the binding of the electrophilic moiety to multiple proteins leading to impairing different cellular functions may explain unpredictable side effects in patients undergoing chemotherapy with reactive oxygen species (ROS)-inducing drugs. The identification of proteins susceptible to electrophiles at early steps of oxidative and electrophilic stress is a promising way to offer rational strategies for dealing with stress-related malignant tumors. Full article
Show Figures

Graphical abstract

Back to TopTop