Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = overburden prospecting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5289 KiB  
Article
The Deep Structure of the Kimberlite Pipe Volchya in the Arkhangelsk Diamond Province and Controlling Faults Based on Passive Seismic and Radiological Methods (Northwest Russia)
by Konstantin Danilov, Evgeny Yakovlev, Andrey Puchkov, Vladimir Bykov and Alexander Katorin
Appl. Sci. 2025, 15(2), 657; https://doi.org/10.3390/app15020657 - 11 Jan 2025
Viewed by 747
Abstract
The successful prospecting of kimberlite pipes is dependent upon a comprehensive understanding of the deep structures of the pipes and the host geological formation. This is a challenging task, given the complex nature of diamond deposits, the small size of pipes in the [...] Read more.
The successful prospecting of kimberlite pipes is dependent upon a comprehensive understanding of the deep structures of the pipes and the host geological formation. This is a challenging task, given the complex nature of diamond deposits, the small size of pipes in the plan, the absence of stable features in potential fields, etc. As a consequence, the allocation of control structures is practically not used in exploration work. In this regard, the Arkhangelsk diamond province (NW Russia) is distinguished by the considerable overburden thickness, which presents a significant challenge for the application of geophysical methods. It is thus imperative to devise novel methodologies for conducting investigations. In order to achieve this, a set of methods was employed, including microseismic sounding, passive seismic interferometry, and radon emanation mapping. This set of methods has previously been tested only on a few pipes and has not previously been employed in the Griba deposit. The Volchya pipe was selected as the test object due to its proximity to the Griba pipe. The findings revealed that the pipe displayed a more complex configuration than was previously postulated. The controlling faults were found to be oriented in a southwesterly to northwesterly direction and to exhibit a contrasting narrow vertical structure at depths greater than 400 m. Further identification of control structures by the proposed set of methods can increase the efficiency of diamond prospecting. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

35 pages, 5814 KiB  
Article
A Cost-Effective Energy Management Approach for On-Grid Charging of Plug-in Electric Vehicles Integrated with Hybrid Renewable Energy Sources
by Mohd Bilal, Pitshou N. Bokoro, Gulshan Sharma and Giovanni Pau
Energies 2024, 17(16), 4194; https://doi.org/10.3390/en17164194 - 22 Aug 2024
Cited by 5 | Viewed by 2164
Abstract
Alternative energy sources have significantly impacted the global electrical sector by providing continuous power to consumers. The deployment of renewable energy sources in order to serve the charging requirements of plug-in electric vehicles (PEV) has become a crucial area of research in emerging [...] Read more.
Alternative energy sources have significantly impacted the global electrical sector by providing continuous power to consumers. The deployment of renewable energy sources in order to serve the charging requirements of plug-in electric vehicles (PEV) has become a crucial area of research in emerging nations. This research work explores the techno-economic and environmental viability of on-grid charging of PEVs integrated with renewable energy sources in the Surat region of India. The system is designed to facilitate power exchange between the grid network and various energy system components. The chosen location has contrasting wind and solar potential, ensuring diverse renewable energy prospects. PEV charging hours vary depending on the location. A novel metaheuristic-based optimization algorithm, the Pufferfish Optimization Algorithm (POA), was employed to optimize system component sizing by minimizing the system objectives including Cost of Energy (COE) and the total net present cost (TNPC), ensuring a lack of power supply probability (LPSP) within a permissible range. Our findings revealed that the optimal PEV charging station configuration is a grid-tied system combining solar photovoltaic (SPV) panels and wind turbines (WT). This setup achieves a COE of USD 0.022/kWh, a TNPC of USD 222,762.80, and a life cycle emission of 16,683.74 kg CO2-equivalent per year. The system also reached a 99.5% renewable energy penetration rate, with 3902 kWh/year of electricity purchased from the grid and 741,494 kWh/year of energy sold back to the grid. This approach could reduce reliance on overburdened grids, particularly in developing nations. Full article
(This article belongs to the Special Issue Novel Energy Management Approaches in Microgrid Systems)
Show Figures

Figure 1

18 pages, 3628 KiB  
Article
BIM- and GIS-Based Life-Cycle-Assessment Framework for Enhancing Eco Efficiency and Sustainability in the Construction Sector
by Muhammad Umer Zubair, Mubashir Ali, Muhammad Arsalan Khan, Adil Khan, Muhammad Usman Hassan and Waqas Arshad Tanoli
Buildings 2024, 14(2), 360; https://doi.org/10.3390/buildings14020360 - 29 Jan 2024
Cited by 18 | Viewed by 6844
Abstract
The world is progressing towards sustainable, eco-friendly, recyclable materials to enhance the circular economy and mitigate the issues of carbon footprint, overburdened landfills, and waste of natural resources. As increasing greenhouse gas (GHG) emissions are a major contributor towards climate change and given [...] Read more.
The world is progressing towards sustainable, eco-friendly, recyclable materials to enhance the circular economy and mitigate the issues of carbon footprint, overburdened landfills, and waste of natural resources. As increasing greenhouse gas (GHG) emissions are a major contributor towards climate change and given that the construction industry is one of the major producers of GHG emissions, it is crucial to meticulously quantify and lower its emissions, especially in the context of developing countries. This research presents a novel framework by combining advanced tools i.e., building information modeling (BIM), life-cycle assessment (LCA), geographic information systems (GISs), and quantification of embodied emissions to optimize construction’s design, material-selection, operations, maintenance, and waste-management processes. The effectiveness of the proposed approach has been demonstrated with the help of a real-world case study in Islamabad, Pakistan. A building model has been generated using BIM, and a comprehensive LCA has been conducted. Additionally, GIS tools have been utilized to identify the locations and accessibility of available-waste-management facilities. Based on this data, embodied emissions related to handling and transportation of waste material to disposal facilities have been computed using mathematical analyses. Furthermore, targeted mitigation strategies have been proposed and an optimized route has been designed using GIS-based route-optimization tools along the suggested facility centers in the Islamabad region. The case study has been reassessed with alleviation strategies, and the results show that 29.35% of the materialization stage, 16.04% of the operational stage, and 21.14% of the end-of-life-phase GHG emissions can be effectively reduced. Hence, pre-evaluating the environmental degradation caused by construction projects throughout their life cycle might offer an opportunity to comprehend and reduce prospective environmental impacts. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

22 pages, 5620 KiB  
Article
A Deep-Penetrating Geochemical Prospecting Experiment of Mahuagou Gold Deposit in the Core of the Huangling Anticline, Western Hubei, China
by Weihang Zhou, Li Lei, Yin Gong, Demin Liu, Shuyun Xie, Zhijun Chen, Qinglin Xia, Mengqi Wang, Salah Fadlallah Awadelseid and Oraphan Yaisamut
Appl. Sci. 2023, 13(22), 12279; https://doi.org/10.3390/app132212279 - 13 Nov 2023
Viewed by 1908
Abstract
The Mahuagou gold deposit is among the most important gold deposits in the core of the Huangling Anticline. However, the geochemical exploration on the surface of the mining area presents challenges due to the thin overburden. This paper focuses on the overburden soil [...] Read more.
The Mahuagou gold deposit is among the most important gold deposits in the core of the Huangling Anticline. However, the geochemical exploration on the surface of the mining area presents challenges due to the thin overburden. This paper focuses on the overburden soil of the Fengxiangshugou (FXS)-Mahuanggou (MHG) section as the research object. It utilizes chemical form analysis of gold, soil halogen survey, and heat-released mercury survey to determine the key deep-penetrating geochemical methods for the mining area. The results indicated that Si and Al components of samples exhibit minimal variation, suggesting that drift loads did not influence the overburden soil. Based on the systematic clustering, As, Sb, Mo, Bi, W, and Hg emerge as ore-body or ore-belt front elements of hydrothermal gold deposits. In the study area, the predominant chemical form of gold in soil is the strong organic bond. Compared to the total amount, strong organic bound gold and heat-released mercury show higher anomaly contrasts, making them crucial indicators of faults, intrusions, and hidden ore bodies. Consequently, chemical form analysis of gold and heat-released mercury surveys can enhance the anomaly contrast, proving beneficial for geochemical prospecting for weak anomalies in this area. Full article
(This article belongs to the Special Issue New Advances, Challenges, and Illustrations in Applied Geochemistry)
Show Figures

Figure 1

21 pages, 5585 KiB  
Article
Three-Dimensional Geological–Geophysical Modeling and Prospecting Indications of the Ashele Ore Concentration Area in Xinjiang Based on Irregular Sections
by Guang Qi, Guixiang Meng, Jiayong Yan, Hejun Tang and Ronghui Xue
Minerals 2023, 13(7), 984; https://doi.org/10.3390/min13070984 - 24 Jul 2023
Cited by 4 | Viewed by 2026
Abstract
The Ashele ore concentration area is an important area for polymetallic ore concentration in Xinjiang, China. Scholars have made progress in understanding the ore-controlling structures, ore-bearing horizons, and metallogenic age of this area. However, there are still uncertainties about the 3D distributions of [...] Read more.
The Ashele ore concentration area is an important area for polymetallic ore concentration in Xinjiang, China. Scholars have made progress in understanding the ore-controlling structures, ore-bearing horizons, and metallogenic age of this area. However, there are still uncertainties about the 3D distributions of plutons, fault structures, and ore-bearing strata, which restrict the development of deep and peripheral ore prospecting and the discovery of new ore bodies in the area. This study proposes a geological–geophysical modeling method based on irregular sections and uses this method to establish a 3D geological–geophysical model based on physical property data, boreholes, surface geological maps, and geophysical data. The model shows that the study area has many hidden rock masses with various depths and shapes and fracture structures with complex shapes. The fault structure in the area is complex, and the ore bodies are controlled by the faults. The ore-bearing geological units (Ashele Formation) exhibit an obvious east–west-trending W-shaped fold structure. The deep part of the northern Ashele Formation extends northward slightly, and the southern Ashele Formation has thick strata, with depths generally greater than 2 km. Based on the information on deep structures provided by the model, three metallogenic prospective areas are predicted, which points out the direction for further prospecting work in the ore concentration area and shows that the adopted modeling method and process have good applicability for constructing 3D models of ore concentration areas with sparse data, large area, and complex geological structures. The proposed modeling method provides technical support for ore prospecting, particularly in the overburden area or ore concentration area with sparse data. Full article
(This article belongs to the Special Issue Recent Advances in Deep Ore Prospecting)
Show Figures

Figure 1

19 pages, 6004 KiB  
Article
Simulation of Rock Electrical Properties in Deep Reservoirs Based on Digital Rock Technology
by Suogui Shang, Qiangyong Gao, Yunjiang Cui, Peichun Wang, Zhang Zhang, Yadong Yuan, Weichao Yan and Peng Chi
Processes 2023, 11(6), 1758; https://doi.org/10.3390/pr11061758 - 9 Jun 2023
Cited by 3 | Viewed by 2343
Abstract
Deep reservoirs are in a high-pressure and high-temperature (HPHT) environment, while the experimental conditions for rock electrical properties that meet the deep reservoir conditions are harsh and costly. Although digital rock technology can simulate the electrical properties of rocks, it is limited to [...] Read more.
Deep reservoirs are in a high-pressure and high-temperature (HPHT) environment, while the experimental conditions for rock electrical properties that meet the deep reservoir conditions are harsh and costly. Although digital rock technology can simulate the electrical properties of rocks, it is limited to electrical simulation studies under normal temperature and pressure conditions (NPT), which limits their ability to capture the electrical characteristics of deep hydrocarbon reservoirs. This limitation affects the accuracy of saturation prediction based on resistivity logging. To simulate the rock electrical properties under HPHT conditions, we proposed a low-cost and high-efficiency HPHT digital rock electrical simulation workflow. Firstly, samples from deep formations were CT-scanned and used to construct multi-component digital rocks that reflect the real microstructure of the samples. Then, mathematical morphology was used to simulate the overburden correction under high-pressure conditions, and the changes in the conductivity of formation water and clay minerals at different temperatures were used to simulate the conductivity changes of rock components under high-temperature conditions. To carry out the electrical simulation of digital rock in deep reservoirs, a numerical simulation condition for HPHT in deep layers was established, and the finite element method (FEM) was used. Finally, based on the equivalent changes in the conductivity of different components, the effects of clay minerals and formation water under HPHT conditions on rock electrical properties were studied and applied to predict the water saturation based on well logging data. We found that considering the influence of temperature, salinity, and clay type, the saturation index (n) of the rock depends on the ratio of the clay conductivity to the formation water conductivity. The larger the ratio is, the smaller the value of n. In addition, the average relative error between the predicted water saturation under HPHT conditions and the sealed coring analysis was 6.8%, which proved the accuracy of the proposed method. Overall, this method can effectively simulate the pressure and temperature environment of deep formations, reveal the electrical conductivity mechanisms of rocks under formation pressure and temperature conditions, and has promising prospects for the study of rock physical properties and reservoir evaluation in deep formations. Full article
Show Figures

Figure 1

17 pages, 1760 KiB  
Review
Carbonate Mineral Dissolution and Its Carbon Sink Effect in Chinese Loess
by Mingyu Shao, Muhammad Adnan, Liankai Zhang, Pengyu Liu, Jianhua Cao and Xiaoqun Qin
Land 2023, 12(1), 133; https://doi.org/10.3390/land12010133 - 31 Dec 2022
Cited by 8 | Viewed by 2974
Abstract
The relationship between the source and sink of atmospheric CO2 has always been a widely discussed issue in global climate change research. Recent studies revealed that the chemical weathering of carbonate rocks contributed to 1/3 (~0.5 Pg C/yr) of the missing carbon [...] Read more.
The relationship between the source and sink of atmospheric CO2 has always been a widely discussed issue in global climate change research. Recent studies revealed that the chemical weathering of carbonate rocks contributed to 1/3 (~0.5 Pg C/yr) of the missing carbon sinks (MCS) globally, and there are still 2/3 of MCS (~0.5 Pg C/yr) that need to be explored. As one of the main overburdened parts of the earth, loess is one of the important driving factors for atmospheric CO2 consumption. Here, we elaborated on the dissolution process and the carbon sink effect from carbonate and silicate minerals in loess. The relationship between carbonate dissolution and carbon source/sink is elucidated, and the mechanism of carbon sink formation from secondary carbonates in loess is clarified. Additionally, the commonly used methods for the identification of primary and secondary carbonates are summarized, and the methods for the study of loess carbon sinks and the influencing factors of loess carbon sinks are also revealed. Based on the research results and progress interpretations, the prospects of loess carbon sinks are discussed to provide a scientific basis for further research on loess carbon sinks. Full article
(This article belongs to the Special Issue New Insights in Soil Quality and Management in Karst Ecosystem)
Show Figures

Figure 1

15 pages, 5960 KiB  
Article
Airborne Electromagnetic Survey over the Touro Copper VMS World Class Deposit (NW Spain): Geological and Geophysical Correlation
by Pablo Núñez, Tony Watts, Agustín Martin-Izard, Daniel Arias, Álvaro Rubio, Fernando Cortés and Fernando Díaz-Riopa
Minerals 2023, 13(1), 17; https://doi.org/10.3390/min13010017 - 23 Dec 2022
Cited by 3 | Viewed by 3205
Abstract
Electromagnetic (EM) methods belong to the main geophysical techniques used in the mineral exploration of massive sulphides. For selecting EM anomalies as possible massive sulphide targets, it is important to combine the geophysical results with other geological and/or geochemical techniques. In 2015, Atalaya [...] Read more.
Electromagnetic (EM) methods belong to the main geophysical techniques used in the mineral exploration of massive sulphides. For selecting EM anomalies as possible massive sulphide targets, it is important to combine the geophysical results with other geological and/or geochemical techniques. In 2015, Atalaya Mining started a new mineral exploration project in the Touro Cu deposit, combining geological, geochemical (ore over 0.2% Cu), and geophysical techniques. The geophysical survey consisted of helicopter-borne EM using the versatile time-domain electromagnetic (VTEM™) max system operated by Geotech Ltd. with full-waveform processing. In total, 509 line-km of geophysical data were acquired during the survey that was completed in 2018. The results showed the massive sulphide Touro ore to be typically of the order of 0.25 ohm·m (4S/m conductivity) and host rock in the range of 1000–30,000 ohm·m, measured directly on the drill core. This modelling agreed well with the sub-horizontal dips observed for the known Touro ore bodies. The conductance modelled by the plate estimation of the VTEM data were also in good agreement with those provided by Geotech Ltd. and the resistivity/conductivity measurements we made on the massive sulphide samples from several Touro ore bodies. The combination of flat dips, good conductance, shallow depth, and, lastly, lack of conductive overburden or noneconomic conductive stratigraphy, i.e., graphitic shales and sulphide iron formation make the Touro project an ideal target for airborne electromagnetic prospecting. This paper presents the excellent correlation observed between the EM airborne anomalies and the massive sulphide blocks of the Touro copper deposit. Favourable factors contributing to the success of the survey were the high contrast in resistivity/conductivity between the massive sulphide Touro ore and the amphibolite host rock and minimal interference from “nuisance” conductors, such as graphitic shales. Full article
(This article belongs to the Special Issue Feature Papers in Mineral Exploration Methods and Applications 2022)
Show Figures

Figure 1

17 pages, 3641 KiB  
Article
A Geological-Geophysical Prospecting Model for Deep-Seated Gold Deposits in the Jiaodong Peninsula, China
by Mingchun Song, Guoqiang Xue, Hongbo Liu, Yixin Li, Chunyan He, Hongjun Wang, Bin Wang, Yingxin Song and Shiyong Li
Minerals 2021, 11(12), 1393; https://doi.org/10.3390/min11121393 - 9 Dec 2021
Cited by 14 | Viewed by 5239
Abstract
The North China Craton is one of China’s major gold-producing areas. Breakthroughs have been continually made in deep prospecting at depths of 500–2000 m in the Jiaodong Peninsula, and geophysical methods have played an important role. Given that the geophysical signals of deep-seated [...] Read more.
The North China Craton is one of China’s major gold-producing areas. Breakthroughs have been continually made in deep prospecting at depths of 500–2000 m in the Jiaodong Peninsula, and geophysical methods have played an important role. Given that the geophysical signals of deep-seated gold deposits are difficult to detect, due to their thick overburden layers, conventional geophysical methods are not suitable for deep prospecting. Therefore, this study upgrades the geological-geophysical prospecting model, which is based on the deep metallogenic model and geophysical method of large exploration depths. Based on the analysis of the metallogenic geological factors of the altered-rock-type gold deposits in the fracture zones of the Jiaodong Peninsula, this study proposes that the gold deposits are controlled by large-scale faults, generally occur near the contact interfaces between the Early Precambrian metamorphic rock series and Mesozoic granitoids, and exhibit a stepped metallogenic model. This model then becomes the prerequisite and basic condition for deep prospecting by geophysical methods. For this reason, the traditional geophysical model, which focuses on the exploration of shallow mineralization anomalies, is transformed into a comprehensive multi-parameter geological-geophysical qualitative prospecting model highlighting the exploration of ore-controlling structural planes. The model adopts various frequency domain methods (e.g., CSAMT, AMT, WFEM), reflection seismology, and other methods to detect the deep geological structure. The characteristics of parameters such as gravity and magnetism, resistivity, polarizability, and the seismic reflection spectrum are applied to identify the ore-controlling fault location and dip angle change, and to estimate the ore-bearing location according to the stepped metallogenic model. The prospecting demonstration of deep-seated gold deposits in the Shuiwangzhuang mining area indicates the effectiveness of the comprehensive model. The comprehensive deep prospecting model effectively solves the problem of deep prospecting of gold deposits controlled by faults, promotes the great breakthrough of deep prospecting in the Jiaodong Peninsula, and provides an important technology demonstration for deep prospecting throughout China. Full article
Show Figures

Figure 1

21 pages, 2313 KiB  
Review
Investigation of Old Exploration Boreholes in the Lublin Basin with Regard to Potential Rotary-Percussion Drilling of Shale Gas Wells
by Tomasz Sliwa, Aneta Sapińska-Śliwa, Michał Korzec, Andrzej Gonet, Marek Jaszczur, Martyna Ciepielowska and Artur Gajdosz
Energies 2021, 14(10), 2734; https://doi.org/10.3390/en14102734 - 11 May 2021
Cited by 1 | Viewed by 3021
Abstract
The rotary-percussion drilling method is a prospective way to decrease drilling costs. It is obvious, based on literature analyses and finished geothermal drilling, that the Lublin Basin can be perceived as the one where rotary-percussion drilling can be used to drill an overburden [...] Read more.
The rotary-percussion drilling method is a prospective way to decrease drilling costs. It is obvious, based on literature analyses and finished geothermal drilling, that the Lublin Basin can be perceived as the one where rotary-percussion drilling can be used to drill an overburden of shale rocks. The paper explained the geology of the Lublin Basin, its’ geological structures, and the possibility of the use of drilling with a down-the-hole hammer, which could significantly decrease the cost of the whole shale gas drilling investment. Data collected from the wells drilled in the Lublin Basin were compared and analyzed to determine the viability of rotary-percussion drilling. Provided analyses showed that using the rotary-percussion drilling method in the Lublin Basin had a greater possibility of application than in other Polish shale basins (Baltic and Podlasie). Full article
(This article belongs to the Special Issue Drilling Technologies for the Next Generations)
Show Figures

Figure 1

14 pages, 606 KiB  
Article
Proposed Model for Shale Compaction Kinetics
by James Edward Smith and Edward Millard Smith-Rowland
Geosciences 2021, 11(3), 137; https://doi.org/10.3390/geosciences11030137 - 15 Mar 2021
Viewed by 3528
Abstract
Shales are the most abundant class of sedimentary rocks, distinguished by being very fine-grained, clayey, and compressible. Their physical and chemical properties are important in widely different enterprises such as civil engineering, ceramics, and petroleum exploration. One characteristic, which is studied here, is [...] Read more.
Shales are the most abundant class of sedimentary rocks, distinguished by being very fine-grained, clayey, and compressible. Their physical and chemical properties are important in widely different enterprises such as civil engineering, ceramics, and petroleum exploration. One characteristic, which is studied here, is a systematic reduction of porosity with depth of burial. This is due increases in grain-to-grain stress and temperature. Vertical stress in sediments is given by the overburden less the pore fluid pressure, σ, divided by the fraction of the horizontal area which is the supporting matrix, (1φ), where φ is the porosity. It is proposed that the fractional reduction of this ratio, Λ, with time is given by the product of φ4m/3, (1φ)4n/3, and one or more Arrhenius functions Aexp(E/RT) with m and n close to 1. This proposal is tested for shale sections in six wells from around the world for which porosity-depth data are available. Good agreement is obtained above 30–40 °C and fractional porosities less than 0.5. Single activation energies for each well are obtained in the range 15–33 kJ/mole, close to the approximate pressure solution of quartz, 24 kJ/mol. Values of m and n are in the range 1 to 0.8, indicating nearly fractal water-wet pore-to-matrix interfaces at pressure solution locations. Results are independent of over- or under-pressure of pore water. This model attempts to explain shale compaction quantitatively. For the petoleum industry, given porosity-depth data for uneroded sections and accurate activation energy, E, paleo-geothermal-gradient can be inferred and from that organic maturity, indicating better drilling prospects. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Digital Rock Physics)
Show Figures

Figure 1

14 pages, 1044 KiB  
Article
Hospital Resources May Be an Important Aspect of Mortality Rate among Critically Ill Patients with COVID-19: The Paradigm of Greece
by Christina Routsi, Eleni Magira, Stelios Kokkoris, Ilias Siembos, Charikleia Vrettou, Dimitris Zervakis, Eleni Ischaki, Sotiris Malahias, Ioanna Sigala, Andreas Asimakos, Theodora Daidou, Panagiotis Kaltsas, Evangelia Douka, Adamandia Sotiriou, Vassiliki Markaki, Prodromos Temberikidis, Apostolos Koroneos, Panagiotis Politis, Zafiria Mastora, Efrosini Dima, Theodoros Tsoutsouras, Ioannis Papahatzakis, Panagiota Gioni, Athina Strilakou, Aikaterini Maragouti, Eleftheria Mizi, Ageliki Kanavou, Aikaterini Sarri, Evdokia Gavrielatou, Spyros Mentzelopoulos, Ioannis Kalomenidis, Vassilios Papastamopoulos, Anastasia Kotanidou and Spyros Zakynthinosadd Show full author list remove Hide full author list
J. Clin. Med. 2020, 9(11), 3730; https://doi.org/10.3390/jcm9113730 - 20 Nov 2020
Cited by 14 | Viewed by 3725
Abstract
For critically ill patients with coronavirus disease 2019 (COVID-19) who require intensive care unit (ICU) admission, extremely high mortality rates (even 97%) have been reported. We hypothesized that overburdened hospital resources by the extent of the pandemic rather than the disease per se [...] Read more.
For critically ill patients with coronavirus disease 2019 (COVID-19) who require intensive care unit (ICU) admission, extremely high mortality rates (even 97%) have been reported. We hypothesized that overburdened hospital resources by the extent of the pandemic rather than the disease per se might play an important role on unfavorable prognosis. We sought to determine the outcome of such patients admitted to the general ICUs of a hospital with sufficient resources. We performed a prospective observational study of adult patients with COVID-19 consecutively admitted to COVID—designated ICUs at Evangelismos Hospital, Athens, Greece. Among 50 patients, ICU and hospital mortality was 32% (16/50). Median PaO2/FiO2 was 121 mmHg (interquartile range (IQR), 86–171 mmHg) and most patients had moderate or severe acute respiratory distress syndrome (ARDS). Hospital resources may be an important aspect of mortality rates, since severely ill COVID-19 patients with moderate and severe ARDS may have understandable mortality, provided that they are admitted to general ICUs without limitations on hospital resources. Full article
Show Figures

Figure 1

16 pages, 2711 KiB  
Article
Mobile Forms of Gold and Pathfinder Elements in Surface Sediments at the Novye Peski Gold Deposit and in the Piilola Prospecting Area (Karelia Region)
by Vera Alexandrovna Korshunova and Marina Valentinovna Charykova
Minerals 2019, 9(1), 34; https://doi.org/10.3390/min9010034 - 11 Jan 2019
Cited by 15 | Viewed by 4262
Abstract
The success of prospecting for gold deposit in overburdened areas based on the using of secondary dispersion haloes mostly depends on the chosen method of geochemical survey (sampling horizon, sample preparation for analysis, etc.). At the same time, the geochemistry of gold in [...] Read more.
The success of prospecting for gold deposit in overburdened areas based on the using of secondary dispersion haloes mostly depends on the chosen method of geochemical survey (sampling horizon, sample preparation for analysis, etc.). At the same time, the geochemistry of gold in the supergene zone is insufficiently studied, especially it’s migration and concentration in association with other elements in surface sediments due to weathering of gold-bearing ore. The main aim of the study presented in this paper is the determination of mobile forms of gold and pathfinder elements (As, Cu, Ni, Ag, Zn, Pb, Se, Sb, Mo, Bi, and Te) in podzol soil and moraine in the areas of Karelia region with known gold mineralization. As a result of conducted experiments it was determined that the main mobile forms of gold are water-soluble and bound to organic matter, while pathfinder elements bound preferably to Fe and Mn(hydr)oxides and to organic matter. As gold and some pathfinders bind with organic matter, this form was considered in more detail, and the elements’ interaction with humic and fulvic acids was investigated. In addition, it was determined that the studied elements are quite “mobile” because the percentage of the mobile form in their total content was mostly more than 50%. The main features of the elements’ migration and concentration were identified in surface sediments of the study areas. Full article
Show Figures

Figure 1

Back to TopTop