Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = ovarian germline stem cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2436 KiB  
Article
Adipocyte-Derived CCHamide-1, Eiger, Growth-Blocking Peptide 3, and Unpaired 2 Regulate Drosophila melanogaster Oogenesis
by Chad Simmons, Isaiah H. Williams, Tancia W. Bradshaw and Alissa Richmond Armstrong
Biomolecules 2025, 15(4), 513; https://doi.org/10.3390/biom15040513 - 1 Apr 2025
Viewed by 757
Abstract
In addition to energy storage, adipose tissue communication to other organs plays a key role in regulating organismal physiology. While the link between adipose tissue dysfunction and pathophysiology, including diabetes, chronic inflammation, and infertility, is clear, the molecular mechanisms that underlie these associations [...] Read more.
In addition to energy storage, adipose tissue communication to other organs plays a key role in regulating organismal physiology. While the link between adipose tissue dysfunction and pathophysiology, including diabetes, chronic inflammation, and infertility, is clear, the molecular mechanisms that underlie these associations have not been fully described. We use Drosophila melanogaster as a model to better understand how adipose tissue communicates to the ovary. In this study, we utilized D. melanogaster’s robust genetic toolkit to examine the role of five adipokines known to control larval growth during development, CCHamide-1, CCHamide-2, eiger, Growth-blocking peptide 3, and unpaired 2 in regulating oogenesis. We show that the adult fat body expresses these “larval” adipokines. Our data indicate that ovarian germline stem cell maintenance does not require these adipokines. However, adipocyte-derived CCHamide-1, eiger, Growth-blocking peptide 3, and unpaired 2 influence early and late germline survival as well as ovulation. Thus, this work uncovers several adipokines that mediate fat-to-ovary communication. Full article
(This article belongs to the Special Issue Drosophila as a Model System to Study Metabolism)
Show Figures

Figure 1

14 pages, 3674 KiB  
Article
Establishment and Characterization of OFT and OFO Cell Lines from Olive Flounder (Paralichthys olivaceus) for Use as Feeder Cells
by Ja Young Jo, Ju-Won Kim, Eun Soo Noh, Yong-Ok Kim, Seung Pyo Gong, Hee Jeong Kong and Jae Hoon Choi
Biology 2025, 14(3), 229; https://doi.org/10.3390/biology14030229 - 24 Feb 2025
Viewed by 922
Abstract
Olive flounder (Paralichthys olivaceus) is a commercially important fish species in Japan, China, and the Republic of Korea. Despite numerous attempts to improve productivity, there have been no studies of in vitro germline stem cell (GSC) culture in this species. Here, [...] Read more.
Olive flounder (Paralichthys olivaceus) is a commercially important fish species in Japan, China, and the Republic of Korea. Despite numerous attempts to improve productivity, there have been no studies of in vitro germline stem cell (GSC) culture in this species. Here, olive flounder testicular and ovarian cell lines (OFT and OFO, respectively) were established and characterized. RT-PCR demonstrated that OFT and OFO expressed several gonadal somatic cell markers, including wt1 and fgf2, but lacked expression of germ cell markers, such as vasa, nanos2, and scp3. In addition, SNP analysis revealed that OFT originated from XY male P. olivaceus and OFO originated from XX female P. olivaceus. These results suggest that OFT was composed of Sertoli cells and OFO was composed of granulosa cells and theca cells. Finally, coculture of OFT or OFO with enriched male P. olivaceus GSCs isolated from the top 20% and 20–30% Percoll density gradient layers showed that GSCs were attached on both cell lines. In conclusion, we established P. olivaceus testicular and ovarian cell lines, which were expected to use for development of an in vitro GSC culture system. Full article
(This article belongs to the Section Developmental and Reproductive Biology)
Show Figures

Figure 1

15 pages, 12105 KiB  
Article
MitoQ Protects Ovarian Organoids against Oxidative Stress during Oogenesis and Folliculogenesis In Vitro
by Jiapeng Wang, Hua Du, Lixin Ma, Mingqian Feng, Liping Li, Xiaorong Zhao and Yanfeng Dai
Int. J. Mol. Sci. 2023, 24(2), 924; https://doi.org/10.3390/ijms24020924 - 4 Jan 2023
Cited by 15 | Viewed by 3609
Abstract
Ovarian organoids, based on mouse female germline stem cells (FGSCs), have great value in basic research and are a vast prospect in pre-clinical drug screening due to their properties, but the competency of these in vitro-generated oocytes was generally low, especially, in vitro [...] Read more.
Ovarian organoids, based on mouse female germline stem cells (FGSCs), have great value in basic research and are a vast prospect in pre-clinical drug screening due to their properties, but the competency of these in vitro-generated oocytes was generally low, especially, in vitro maturation (IVM) rate. Recently, it has been demonstrated that the 3D microenvironment triggers mitochondrial dysfunction during follicle growth in vitro. Therefore, therapies that protect mitochondria and enhance their function in oocytes warrant investigation. Here, we reported that exposure to 100 nM MitoQ promoted follicle growth and maturation in vitro, accompanied by scavenging ROS, reduced oxidative injury, and restored mitochondrial membrane potential in oocytes. Mechanistically, using mice granulosa cells (GCs) as a cellular model, it was shown that MitoQ protects GCs against H2O2-induced apoptosis by inhibiting the oxidative stress pathway. Together, these results reveal that MitoQ reduces oxidative stress in ovarian follicles via its antioxidative action, thereby protecting oocytes and granulosa cells and providing an efficient way to improve the quality of in vitro-generated oocytes. Full article
(This article belongs to the Special Issue Mitochondrial Function in Health and Disease 2022)
Show Figures

Figure 1

19 pages, 4623 KiB  
Article
Sorting and Manipulation of Human PGC-LC Using PDPN and Hanging Drop Cultures
by Brahim Arkoun, Pauline Moison, Marie-Justine Guerquin, Sébastien Messiaen, Delphine Moison, Sophie Tourpin, Christelle Monville and Gabriel Livera
Cells 2022, 11(23), 3832; https://doi.org/10.3390/cells11233832 - 29 Nov 2022
Cited by 1 | Viewed by 2653
Abstract
The generation of oocytes from induced pluripotent stem cells (iPSCs) was proven efficient with mouse cells. However, no human iPSCs have yet been reported to generate cells able to complete oogenesis. Additionally, efficient sorting of human Primordial Germ Cell-like Cells (hPGC-LCs) without [...] Read more.
The generation of oocytes from induced pluripotent stem cells (iPSCs) was proven efficient with mouse cells. However, no human iPSCs have yet been reported to generate cells able to complete oogenesis. Additionally, efficient sorting of human Primordial Germ Cell-like Cells (hPGC-LCs) without genomic integration of fluorescent reporter for their downstream manipulation is still lacking. Here, we aimed to develop a model that allows human germ cell differentiation in vitro in order to study the developing human germline. The hPGC-LCs specified from two iPS cell lines were sorted and manipulated using the PDPN surface marker without genetic modification. hPGC-LCs obtained remain arrested at early stages of maturation and no further differentiation nor meiotic onset occurred when these were cultured with human or mouse fetal ovarian somatic cells. However, when cultured independently of somatic ovarian cells, using BMP4 and the hanging drop-transferred EBs system, early hPGC-LCs further differentiate efficiently and express late PGC (DDX4) and meiotic gene markers, although no SYCP3 protein was detected. Altogether, we characterized a tool to sort hPGC-LCs and an efficient in vitro differentiation system to obtain pre-meiotic germ cell-like cells without using a gonadal niche. Full article
(This article belongs to the Special Issue Stem Cells in Organoid Technology)
Show Figures

Figure 1

16 pages, 6000 KiB  
Article
Characterization of the In Vitro Cultured Ovarian Cells in the Asian Yellow Pond Turtle (Mauremys mutica)
by Xiaoli Liu, Fang Liu, Haoyang Xu, Yanping Yang, Yakun Wang, Xiaoyou Hong, Wei Li, Lingyun Yu, Chen Chen, Hongyan Xu and Xinping Zhu
Biology 2022, 11(10), 1404; https://doi.org/10.3390/biology11101404 - 26 Sep 2022
Cited by 5 | Viewed by 3010
Abstract
Gonadal cell lines possess the abilities of self-renewal and differentiation, being used as an efficient tool to analyzing the genes’ functions involved in sex differentiation and gametogenesis. Although some significant achievements have been obtained in the gonadal cells’ culture or manipulation across multiple [...] Read more.
Gonadal cell lines possess the abilities of self-renewal and differentiation, being used as an efficient tool to analyzing the genes’ functions involved in sex differentiation and gametogenesis. Although some significant achievements have been obtained in the gonadal cells’ culture or manipulation across multiple phyla including teleost and mammals, there is limited study on gonadal cell manipulation in turtles. In this study, we established a new ovarian cell line from the young Asian yellow pond turtle (Mauremys mutica), which exhibited a normal diploid karyotype with high alkaline phosphatase activity. The cell line, designated as YTO2, was then characterized through the analysis of gene expression profiles. The transcriptome analysis and the reverse transcription polymerase chain reaction (RT-PCR) showed that the cells expressed germline genes such as tdrd7, nanos1, klf5, igtb1, hsd17b4 and rad51. Moreover, the immunostaining showed that the germ cell markers, Tdrd7 and Rad51 proteins, were detected predominant in cytoplasm of perinuclear region, while proliferation marker, PCNA, was dominantly observed in the nuclei of cultured cells. Intriguingly, the cells could respond to the retinoic acid induction with significantly increasing the expression level of some meiosis genes, including vasa, dazl, figla, and dmc1. Furthermore, YTO2 cells could be efficiently transfected with the pHBAd-BHG-EGFP adenovirus and properly expressed the exogenous genes. To sum up, an ovarian cell line of the Asian yellow pond turtle had been established and could be stably propagated under in vitro culture condition, as well as being capable of efficiently expressing the exogenous gene tdrd7. This cell line would provide a valuable tool to elaborate the molecular mechanisms behind germ cells development, differentiation and oogenesis in the turtle, even in reptiles. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Graphical abstract

13 pages, 1937 KiB  
Article
Drosophila MESR4 Gene Ensures Germline Stem Cell Differentiation by Promoting the Transcription of bag of marbles
by Alexandra Brigitta Szarka-Kovács, Zsanett Takács, Melinda Bence, Miklós Erdélyi and Ferenc Jankovics
Cells 2022, 11(13), 2056; https://doi.org/10.3390/cells11132056 - 28 Jun 2022
Cited by 2 | Viewed by 2775
Abstract
Ovarian germline stem cells (GSCs) of Drosophila melanogaster provide a valuable in vivo model to investigate how the adult stem cell identity is maintained and the differentiation of the daughter cells is regulated. GSCs are embedded into a specialized cellular microenvironment, the so-called [...] Read more.
Ovarian germline stem cells (GSCs) of Drosophila melanogaster provide a valuable in vivo model to investigate how the adult stem cell identity is maintained and the differentiation of the daughter cells is regulated. GSCs are embedded into a specialized cellular microenvironment, the so-called stem cell niche. Besides the complex signaling interactions between the germ cells and the niche cells, the germ cell intrinsic mechanisms, such as chromatin regulation and transcriptional control, are also crucial in the decision about self-renewal and differentiation. The key differentiation regulator gene is the bag of marbles (bam), which is transcriptionally repressed in the GSCs and de-repressed in the differentiating daughter cell. Here, we show that the transcription factor MESR4 functions in the germline to promote GSC daughter differentiation. We find that the loss of MESR4 results in the accumulation of GSC daughter cells which fail to transit from the pre-cystoblast (pre-CB) to the differentiated cystoblast (CB) stage. The forced expression of bam can rescue this differentiation defect. By a series of epistasis experiments and a transcriptional analysis, we demonstrate that MESR4 positively regulates the transcription of bam. Our results suggest that lack of repression alone is not sufficient, but MESR4-mediated transcriptional activation is also required for bam expression. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Figure 1

12 pages, 2654 KiB  
Article
MAPK Signaling Pathway Is Essential for Female Reproductive Regulation in the Cabbage Beetle, Colaphellus bowringi
by Zijie Huang, Zhong Tian, Yulian Zhao, Fen Zhu, Wen Liu and Xiaoping Wang
Cells 2022, 11(10), 1602; https://doi.org/10.3390/cells11101602 - 10 May 2022
Cited by 24 | Viewed by 3796
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway is a well-conserved intracellular signal transduction pathway, and has important roles in mammalian reproduction. However, it is unknown whether MAPK also regulates insect reproductive mechanisms. Therefore, we investigated the role of the MAPK signaling pathway in [...] Read more.
The mitogen-activated protein kinase (MAPK) signaling pathway is a well-conserved intracellular signal transduction pathway, and has important roles in mammalian reproduction. However, it is unknown whether MAPK also regulates insect reproductive mechanisms. Therefore, we investigated the role of the MAPK signaling pathway in ovarian growth and oviposition in the cabbage beetle Colaphellus bowringi, an economically important pest of Cruciferous vegetables. As an initial step, 14 genes from the extracellular regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK (P38) cascades were knocked down using RNA interference (RNAi). The results revealed that RNAi knockdown of MAPK-ERK kinase (MEK), ERK, Kinase suppressor of RAS 2 (KSR2), and P38 induced ovarian development stagnation, low fecundity, and decreased longevity, which indicate that ERK and P38 signaling pathways are important for female C. bowringi survival and reproduction. The potential regulatory role of ERK and P38 pathways in the female reproductive process was investigated using quantitative real-time PCR. We found that ERK pathway possibly regulated ecdysone biosynthesis and P38 pathway possibly involved in the germline stem cell (GSC) development and differentiation. Our findings demonstrated the importance of the MAPK signaling pathway in the female reproduction of insects, and further enhanced the molecular mechanism of female reproductive regulation in insects. Full article
(This article belongs to the Topic Cell Signaling Pathways)
Show Figures

Graphical abstract

25 pages, 11231 KiB  
Review
Artificial Oocyte: Development and Potential Application
by Reza K. Oqani, Seongjun So, Yeonmi Lee, Jung Jae Ko and Eunju Kang
Cells 2022, 11(7), 1135; https://doi.org/10.3390/cells11071135 - 28 Mar 2022
Cited by 7 | Viewed by 11078
Abstract
Millions of people around the world suffer from infertility, with the number of infertile couples and individuals increasing every year. Assisted reproductive technologies (ART) have been widely developed in recent years; however, some patients are unable to benefit from these technologies due to [...] Read more.
Millions of people around the world suffer from infertility, with the number of infertile couples and individuals increasing every year. Assisted reproductive technologies (ART) have been widely developed in recent years; however, some patients are unable to benefit from these technologies due to their lack of functional germ cells. Therefore, the development of alternative methods seems necessary. One of these methods is to create artificial oocytes. Oocytes can be generated in vitro from the ovary, fetal gonad, germline stem cells (GSCs), ovarian stem cells, or pluripotent stem cells (PSCs). This approach has raised new hopes in both basic research and medical applications. In this article, we looked at the principle of oocyte development, the landmark studies that enhanced our understanding of the cellular and molecular mechanisms that govern oogenesis in vivo, as well as the mechanisms underlying in vitro generation of functional oocytes from different sources of mouse and human stem cells. In addition, we introduced next-generation ART using somatic cells with artificial oocytes. Finally, we provided an overview of the reproductive application of in vitro oogenesis and its use in human fertility. Full article
(This article belongs to the Collection Stem Cell Application in Infertility)
Show Figures

Figure 1

22 pages, 5446 KiB  
Article
iPSC-Derived Hereditary Breast Cancer Model Reveals the BRCA1-Deleted Tumor Niche as a New Culprit in Disease Progression
by Lucie Portier, Christophe Desterke, Diana Chaker, Noufissa Oudrhiri, Afag Asgarova, Fatima Dkhissi, Ali G. Turhan, Annelise Bennaceur-Griscelli and Frank Griscelli
Int. J. Mol. Sci. 2021, 22(3), 1227; https://doi.org/10.3390/ijms22031227 - 27 Jan 2021
Cited by 17 | Viewed by 5066
Abstract
Tumor progression begins when cancer cells recruit tumor-associated stromal cells to produce a vascular niche, ultimately resulting in uncontrolled growth, invasion, and metastasis. It is poorly understood, though, how this process might be affected by deletions or mutations in the breast cancer type [...] Read more.
Tumor progression begins when cancer cells recruit tumor-associated stromal cells to produce a vascular niche, ultimately resulting in uncontrolled growth, invasion, and metastasis. It is poorly understood, though, how this process might be affected by deletions or mutations in the breast cancer type 1 susceptibility (BRCA1) gene in patients with a lifetime risk of developing breast and/or ovarian cancer. To model the BRCA1-deleted stroma, we first generated induced pluripotent stem cells (iPSCs) from patients carrying a germline deletion of exon 17 of the BRCA1 gene (BRCA1+/− who, based on their family histories, were at a high risk for cancer. Using peripheral blood mononuclear cells (PBMCs) of these two affected family members and two normal (BRCA1+/+) individuals, we established a number of iPSC clones via non-integrating Sendai virus-based delivery of the four OCT4, SOX2, KLF4, and c-MYC factors. Induced mesenchymal stem cells (iMSCs) were generated and used as normal and pathological stromal cells. In transcriptome analyses, BRCA1+/− iMSCs exhibited a unique pro-angiogenic signature: compared to non-mutated iMSCs, they expressed high levels of HIF-1α, angiogenic factors belonging to the VEGF, PDGF, and ANGPT subfamilies showing high angiogenic potential. This was confirmed in vitro through the increased capacity to generate tube-like structures compared to BRCA1+/+ iMSCs and in vivo by a matrigel plug angiogenesis assay where the BRCA1+/− iMSCs promoted the development of an extended and organized vessel network. We also reported a highly increased migration capacity of BRCA1+/− iMSCs through an in vitro wound healing assay that correlated with the upregulation of the periostin (POSTN). Finally, we assessed the ability of both iMSCs to facilitate the engraftment of murine breast cancer cells using a xenogenic 4T1 transplant model. The co-injection of BRCA1+/− iMSCs and 4T1 breast cancer cells into mouse mammary fat pads gave rise to highly aggressive tumor growth (2-fold increase in tumor volume compared to 4T1 alone, p = 0.01283) and a higher prevalence of spontaneous metastatic spread to the lungs. Here, we report for the first time a major effect of BRCA1 haploinsufficiency on tumor-associated stroma in the context of BRCA1-associated cancers. The unique iMSC model used here was generated using patient-specific iPSCs, which opens new therapeutic avenues for the prevention and personalized treatment of BRCA1-associated hereditary breast cancer. Full article
(This article belongs to the Special Issue Advances in Cancer Metabolism and Tumour Microenvironment)
Show Figures

Figure 1

15 pages, 4046 KiB  
Communication
Enhanced Enrichment of Medaka Ovarian Germline Stem Cells by a Combination of Density Gradient Centrifugation and Differential Plating
by Jun Hyung Ryu and Seung Pyo Gong
Biomolecules 2020, 10(11), 1477; https://doi.org/10.3390/biom10111477 - 24 Oct 2020
Cited by 5 | Viewed by 3444
Abstract
Fish ovarian germline stem cells (OGSCs) have great potential in various biological fields due to their ability to generate large numbers of mature eggs. Therefore, selective enrichment of OGSCs is a prerequisite for successful applications. To determine the optimal conditions for the enrichment [...] Read more.
Fish ovarian germline stem cells (OGSCs) have great potential in various biological fields due to their ability to generate large numbers of mature eggs. Therefore, selective enrichment of OGSCs is a prerequisite for successful applications. To determine the optimal conditions for the enrichment of OGSCs from Japanese medaka (Oryzias latipes), we evaluated the effects of Percoll density gradient centrifugation (PDGC), differential plating (DP), and a combination of both methods. Based on cell morphology and gene expression of germ cell-specific Vasa and OGSC-specific Nanos2, we demonstrated that of seven density fractions obtained following PDGC, the 30–35% density fraction contained the highest proportion of OGSCs, and that Matrigel was the most effective biomolecule for the enrichment of Oryzias latipes OGSCs by DP in comparison to laminin, fibronectin, gelatin, and poly-l-lysine. Furthermore, we confirmed that PDGC and DP in combination significantly enhanced the efficiency of OGSC enrichment. The enriched cells were able to localize in the gonadal region at a higher efficiency compared to non-enriched ovarian cells when transplanted into the developing larvae. Our approach provides an efficient way to enrich OGSCs without using OGSC-specific surface markers or transgenic strains expressing OGSC-specific reporter proteins. Full article
(This article belongs to the Special Issue Relevant Biomolecules for Germ Cells and Fertilization)
Show Figures

Figure 1

19 pages, 3546 KiB  
Article
Epigenetic Requirements for Triggering Heterochromatinization and Piwi-Interacting RNA Production from Transgenes in the Drosophila Germline
by Pavel A. Komarov, Olesya Sokolova, Natalia Akulenko, Emilie Brasset, Silke Jensen and Alla Kalmykova
Cells 2020, 9(4), 922; https://doi.org/10.3390/cells9040922 - 10 Apr 2020
Cited by 8 | Viewed by 4031
Abstract
Transgenes containing a fragment of the I retrotransposon represent a powerful model of piRNA cluster de novo formation in the Drosophila germline. We revealed that the same transgenes located at different genomic loci form piRNA clusters with various capacity of small RNA production. [...] Read more.
Transgenes containing a fragment of the I retrotransposon represent a powerful model of piRNA cluster de novo formation in the Drosophila germline. We revealed that the same transgenes located at different genomic loci form piRNA clusters with various capacity of small RNA production. Transgenic piRNA clusters are not established in piRNA pathway mutants. However, in the wild-type context, the endogenous ancestral I-related piRNAs heterochromatinize and convert the I-containing transgenes into piRNA-producing loci. Here, we address how the quantitative level of piRNAs influences the heterochromatinization and piRNA production. We show that a minimal amount of maternal piRNAs from ancestral I-elements is sufficient to form the transgenic piRNA clusters. Supplemental piRNAs stemming from active I-element copies do not stimulate additional chromatin changes or piRNA production from transgenes. Therefore, chromatin changes and piRNA production are initiated by a minimum threshold level of complementary piRNAs, suggesting a selective advantage of prompt cell response to the lowest level of piRNAs. It is noteworthy that the weak piRNA clusters do not transform into strong ones after being targeted by abundant I-specific piRNAs, indicating the importance of the genomic context for piRNA cluster establishment. Analysis of ovarian transcription profiles suggests that regions facilitating convergent transcription favor the formation of transgenic piRNA clusters. Full article
(This article belongs to the Special Issue Evolution of Epigenetic Mechanisms and Signatures)
Show Figures

Graphical abstract

16 pages, 3273 KiB  
Article
Resveratrol Plays a Protective Role against Premature Ovarian Failure and Prompts Female Germline Stem Cell Survival
by Yu Jiang, Zhaoyuan Zhang, Lijun Cha, Lili Li, Dantian Zhu, Zhi Fang, Zhiqiang He, Jian Huang and Zezheng Pan
Int. J. Mol. Sci. 2019, 20(14), 3605; https://doi.org/10.3390/ijms20143605 - 23 Jul 2019
Cited by 62 | Viewed by 7386
Abstract
This study was designed to investigate the protective effect of resveratrol (RES) on premature ovarian failure (POF) and the proliferation of female germline stem cells (FGSCs) at the tissue and cell levels. POF mice were lavaged with RES, and POF ovaries were co-cultured [...] Read more.
This study was designed to investigate the protective effect of resveratrol (RES) on premature ovarian failure (POF) and the proliferation of female germline stem cells (FGSCs) at the tissue and cell levels. POF mice were lavaged with RES, and POF ovaries were co-cultured with RES and/or GANT61 in vitro. FGSCs were pretreated with Busulfan and RES and/or GANT61 and co-cultured with M1 macrophages, which were pretreated with RES. The weights of mice and their ovaries, as well as their follicle number, were measured. Ovarian function, antioxidative stress, inflammation, and FGSCs survival were evaluated. RES significantly increased the weights of POF mice and their ovaries as well as the number of follicles, while it decreased the atresia rate of follicles. Higher levels of Mvh, Oct4, SOD2, GPx, and CAT were detected after treatment with RES in vivo and in vitro. RES treatment resulted in significantly lower TNF-α and IL-6 concentrations and an obviously higher IL-10 concentration in the ovaries. In FGSCs, higher Mvh, Oct4, and SOD2 concentrations and lower TNF-α, IL-6, and MDA concentrations were measured in the RES group. Blockage of the Hh signaling pathway reversed the protective effect of RES on FGSCs. In conclusion, RES effectively improved the ovarian function of the POF model and the productive capacity of FGSCs via relieving oxidative stress and inflammation and a mechanism involving the Hh signaling pathway, suggesting that RES is a potential agent against POF and can aid in the survival of FGSCs. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

16 pages, 1261 KiB  
Review
Implications and Current Limitations of Oogenesis from Female Germline or Oogonial Stem Cells in Adult Mammalian Ovaries
by Jessica J. Martin, Dori C. Woods and Jonathan L. Tilly
Cells 2019, 8(2), 93; https://doi.org/10.3390/cells8020093 - 28 Jan 2019
Cited by 67 | Viewed by 11016
Abstract
A now large body of evidence supports the existence of mitotically active germ cells in postnatal ovaries of diverse mammalian species, including humans. This opens the possibility that adult stem cells naturally committed to a germline fate could be leveraged for the production [...] Read more.
A now large body of evidence supports the existence of mitotically active germ cells in postnatal ovaries of diverse mammalian species, including humans. This opens the possibility that adult stem cells naturally committed to a germline fate could be leveraged for the production of female gametes outside of the body. The functional properties of these cells, referred to as female germline or oogonial stem cells (OSCs), in ovaries of women have recently been tested in various ways, including a very recent investigation of the differentiation capacity of human OSCs at a single cell level. The exciting insights gained from these experiments, coupled with other data derived from intraovarian transplantation and genetic tracing analyses in animal models that have established the capacity of OSCs to generate healthy eggs, embryos and offspring, should drive constructive discussions in this relatively new field to further exploring the value of these cells to the study, and potential management, of human female fertility. Here, we provide a brief history of the discovery and characterization of OSCs in mammals, as well as of the in-vivo significance of postnatal oogenesis to adult ovarian function. We then highlight several key observations made recently on the biology of OSCs, and integrate this information into a broader discussion of the potential value and limitations of these adult stem cells to achieving a greater understanding of human female gametogenesis in vivo and in vitro. Full article
(This article belongs to the Special Issue Female Germline Stem Cells)
Show Figures

Figure 1

11 pages, 2103 KiB  
Article
Enhanced Adhesion of Fish Ovarian Germline Stem Cells on Solid Surfaces by Mussel-Inspired Polymer Coating
by Yeonwoo Jeong, Jun Hyung Ryu, Yoon Kwon Nam, Seung Pyo Gong and Sung Min Kang
Mar. Drugs 2019, 17(1), 11; https://doi.org/10.3390/md17010011 - 26 Dec 2018
Cited by 3 | Viewed by 4091
Abstract
Development of advanced cell culture methods has gained increasing attention because it allows for efficient genetic engineering and precise regulation of animal reproduction on a cellular basis. Numerous studies have attempted to develop an advanced cell culture method. Previous studies have altered cell [...] Read more.
Development of advanced cell culture methods has gained increasing attention because it allows for efficient genetic engineering and precise regulation of animal reproduction on a cellular basis. Numerous studies have attempted to develop an advanced cell culture method. Previous studies have altered cell culture media and pretreated culture plates with functional molecules. Among them, a mussel-inspired polymer coating has been extensively utilized owing to its wide applicability. For instance, adhesion of human embryonic stem cells and neuronal cells on solid surfaces has been improved. Despite the excellent capability of the mussel-inspired polymer coating, most studies have primarily focused on mammalian cells. However, the efficacy of these coatings on the adhesion of other cell lines is yet unclear. This study aimed to assess the potential of the mussel-inspired polymer coating in the regulation of the adhesion of fish ovarian germline stem cells on solid surfaces. Solid surfaces were coated by polydopamine and poly-L-lysine, and the effect of the coatings on cellular behaviors was investigated. Full article
(This article belongs to the Special Issue Marine Biomimetics)
Show Figures

Figure 1

14 pages, 2642 KiB  
Review
Wnt Signaling in Stem Cell Maintenance and Differentiation in the Drosophila Germarium
by Indrayani Waghmare and Andrea Page-McCaw
Genes 2018, 9(3), 127; https://doi.org/10.3390/genes9030127 - 27 Feb 2018
Cited by 30 | Viewed by 8350
Abstract
Wnt signaling is a conserved regulator of stem cell behaviors, and the Drosophila germarium has been an important model tissue for the study of stem cell maintenance, differentiation, and proliferation. Here we review Wnt signaling in the germarium, which houses two distinct types [...] Read more.
Wnt signaling is a conserved regulator of stem cell behaviors, and the Drosophila germarium has been an important model tissue for the study of stem cell maintenance, differentiation, and proliferation. Here we review Wnt signaling in the germarium, which houses two distinct types of ovarian stem cells: the anteriorly located germline stem cells (GSCs), which give rise to oocytes; and the mid-posteriorly located follicle stem cells (FSCs), which give rise to the somatic follicle cells that cover a developing oocyte. The maintenance and proliferation of GSCs and FSCs is regulated by the stem cell niches, whereas differentiation of the germline is regulated by the differentiation niche. Four distinct Wnt ligands are localized in the germarium, and we focus review on how these Wnt ligands and Wnt signaling affects maintenance and differentiation of both germline and follicle stem cells in their respective niches. Full article
(This article belongs to the Special Issue Wnt Signaling in Stem Cells)
Show Figures

Figure 1

Back to TopTop