Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (162)

Search Parameters:
Keywords = orthologous genes selection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1365 KiB  
Article
Molecular Genetic Basis of Reproductive Fitness in Tibetan Sheep on the Qinghai-Tibet Plateau
by Wangshan Zheng, Siyu Ge, Zehui Zhang, Ying Li, Yuxing Li, Yan Leng, Yiming Wang, Xiaohu Kang and Xinrong Wang
Genes 2025, 16(8), 909; https://doi.org/10.3390/genes16080909 - 29 Jul 2025
Viewed by 213
Abstract
Background: Complete environmental adaptation requires both survival and reproductive success. The hypoxic Qinghai-Tibet Plateau (>3000 m) challenges reproduction in indigenous species. Tibetan sheep, a key plateau-adapted breed, possess remarkable hypoxic tolerance, yet the genetic basis of their reproductive success remains poorly understood. [...] Read more.
Background: Complete environmental adaptation requires both survival and reproductive success. The hypoxic Qinghai-Tibet Plateau (>3000 m) challenges reproduction in indigenous species. Tibetan sheep, a key plateau-adapted breed, possess remarkable hypoxic tolerance, yet the genetic basis of their reproductive success remains poorly understood. Methods: We integrated transcriptomic and genomic data from Tibetan sheep and two lowland breeds (Small-tailed Han sheep and Hu sheep) to identify Tibetan sheep reproduction-associated genes (TSRGs). Results: We identified 165 TSRGs: four genes were differentially expressed (DEGs) versus Small-tailed Han sheep, 77 DEGs versus Hu sheep were found, and 73 genes were annotated in reproductive pathways. Functional analyses revealed enrichment for spermatogenesis, embryonic development, and transcriptional regulation. Notably, three top-ranked selection signals (VEPH1, HBB, and MEIKIN) showed differential expression. Murine Gene Informatics (MGI) confirmed that knockout orthologs exhibit significant phenotypes including male infertility, abnormal meiosis (male/female), oligozoospermia, and reduced neonatal weight. Conclusions: Tibetan sheep utilize an evolved suite of genes underpinning gametogenesis and embryogenesis under chronic hypoxia, ensuring high reproductive fitness—a vital component of their adaptation to plateaus. These genes provide valuable genetic markers for the selection, breeding, and conservation of Tibetan sheep as a critical genetic resource. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 11436 KiB  
Article
Interaction of Potato Autophagy-Related StATG8 Family Proteins with Pathogen Effector and WRKY Transcription Factor in the Nucleus
by Sung Un Huh
Microorganisms 2025, 13(7), 1589; https://doi.org/10.3390/microorganisms13071589 - 5 Jul 2025
Viewed by 320
Abstract
Autophagy is an essential eukaryotic catabolic process through which damaged or superfluous cellular components are degraded and recycled via the formation of double-membrane autophagosomes. In plants, autophagy-related genes (ATGs) are primarily expressed in the cytoplasm and are responsible for orchestrating distinct stages of [...] Read more.
Autophagy is an essential eukaryotic catabolic process through which damaged or superfluous cellular components are degraded and recycled via the formation of double-membrane autophagosomes. In plants, autophagy-related genes (ATGs) are primarily expressed in the cytoplasm and are responsible for orchestrating distinct stages of autophagosome biogenesis. Among these, ATG8 proteins, orthologous to the mammalian LC3 family, are conserved ubiquitin-like modifiers that serve as central hubs in selective autophagy regulation. Although ATG8 proteins are localized in both the cytoplasm and nucleus, their functions within the nucleus remain largely undefined. In the present study, the ATG8-interacting motif (AIM) was identified and functionally characterized in the potato ATG8 homolog (StATG8), demonstrating its capacity for selective target recognition. StATG8 was shown to form both homodimeric and heterodimeric complexes with other ATG8 isoforms, implying a broader regulatory potential within the ATG8 family. Notably, StATG8 was found to interact with the Ralstonia solanacearum type III effector PopP2, a nuclear-localized acetyltransferase, suggesting a possible role in effector recognition within the nucleus. In addition, interactions between StATG8 and transcription factors AtWRKY40 and AtWRKY60 were detected in both cytoplasmic autophagosomes and the nuclear compartment. These observations provide novel insights into the noncanonical, nucleus-associated roles of plant ATG8 proteins. The nuclear interactions with pathogen effectors and transcriptional regulators suggest that ATG8 may function beyond autophagic degradation, contributing to the regulation of nuclear signaling and plant immunity. These findings offer a foundational basis for further investigation into the functional diversification of ATG8 in plant cellular compartments. Full article
Show Figures

Figure 1

15 pages, 7206 KiB  
Article
Mosaic Evolution of Membrane Transporters in Galdieriales
by Claudia Ciniglia, Antonino Pollio, Elio Pozzuoli, Marzia Licata, Nunzia Nappi, Seth J. Davis and Manuela Iovinella
Plants 2025, 14(13), 2043; https://doi.org/10.3390/plants14132043 - 3 Jul 2025
Viewed by 387
Abstract
Membrane transporters are vital for solute movement and localisation across cellular compartments, particularly in extremophilic organisms such as Galdieriales. These red algae thrive in geothermal and metal-rich environments, where adaptive transporter systems contribute to their metabolic flexibility. While inventories of transporter genes in [...] Read more.
Membrane transporters are vital for solute movement and localisation across cellular compartments, particularly in extremophilic organisms such as Galdieriales. These red algae thrive in geothermal and metal-rich environments, where adaptive transporter systems contribute to their metabolic flexibility. While inventories of transporter genes in the species Galdieria sulphuraria have previously been compiled, their phylogenetic origins remain incompletely resolved. Here, we conduct a comparative phylogenetic analysis of three transporter families—Major Facilitator Superfamily (MFS). Amino acid–Polyamine–Organocation (APC) and the natural resistance–associated macrophage protein (Nramp)—selected from overexpressed transcripts in G. sulphuraria strain SAG 107.79. Using sequences from six Galdieriales species and orthologs from diverse taxa, we reconstructed maximum likelihood trees to assess conservation and potential horizontal gene transfer (HGT). The MFS subfamilies revealed contrasting patterns: sugar porters (SPs) exhibited polyphyly and fungal affinity, suggesting multiple HGT events, while phosphate:H+ symporters (PHSs) formed a coherent monophyletic group. APC sequences were exclusive in G. sulphuraria and extremophilic prokaryotes, indicating a likely prokaryotic origin. In contrast, Nramp transporters were broadly conserved across eukaryotes and prokaryotes, showing no signs of recent HGT. Together, these findings highlight the mosaic evolutionary history of membrane transporters in Galdieriales, shaped by a combination of vertical inheritance and taxon-specific gene acquisition events, and provide new insight into the genomic strategies underpinning environmental resilience in red algae. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

14 pages, 1672 KiB  
Article
Ionotropic Receptor Genes in Fig Wasps: Evolutionary Insights from Comparative Studies
by Hui Yu, Xiaojue Nong, Weicheng Huang, Ling Yang, Chantarasuwan Bhanumas, Yongmei Xiong and Seping Dai
Insects 2025, 16(7), 679; https://doi.org/10.3390/insects16070679 - 29 Jun 2025
Viewed by 695
Abstract
The mechanisms of chemoreception in fig wasps (Hymenoptera, Agaonidae) are of primary importance in their co-evolutionary relationship with the fig trees they pollinate. As the supplementary receptors to odorant receptors (ORs) and gustatory receptors (GRs) in insects, we compare the evolutionary characters of [...] Read more.
The mechanisms of chemoreception in fig wasps (Hymenoptera, Agaonidae) are of primary importance in their co-evolutionary relationship with the fig trees they pollinate. As the supplementary receptors to odorant receptors (ORs) and gustatory receptors (GRs) in insects, we compare the evolutionary characters of ionotropic receptors (IRs) among 25 fig wasp taxa in six genera. In total, we identified 205 IRs in 25 fig wasps, with each taxon recording from 5 to 12 IR genes. We found 189 IR genes clustered into 18 orthologous groups that can be divided into three types: IRco, antennal IRs, and divergent IRs. More IRs belong to antennal IRs in fig wasps, which can be sensitive to acids, aldehydes, polyamines, salt, amino acids, and temperature/humidity according to homology comparison. Additionally, some IR genes in fig wasps do not cluster with those of outgroup species (e.g., Drosophila melanogaster, Apis mellifera), suggesting they may represent a unique group and may have special functions in fig wasps. Divergent IRs are very few, with large sequence variation between species. Compared to ORs and GRs in fig wasps, gene sequences in most IR orthologous groups are more conserved between genera, with the lowest sequence similarity in 10 orthologous groups (including three IRco) exhibiting above 58.5%. Gene sequences are consistent with the phylogenetic relationships among fig wasps, which is the same as ORs and GRs. Strong purifying selection of IR genes was detected, as shown by the low ω values. Signatures of positive selection were detected in loci from three orthologous groups. Our results provide important molecular information for further studies on chemosensory mechanisms in fig wasps. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

13 pages, 2328 KiB  
Article
Association Analysis and Identification of Candidate Genes for Sorghum Coleoptile Color
by Kai Wang, Lihua Wang, Qi Shen, Lu Hu, Zhichao Xing, Yihong Wang and Jieqin Li
Agronomy 2025, 15(3), 688; https://doi.org/10.3390/agronomy15030688 - 13 Mar 2025
Viewed by 707
Abstract
Coleoptile is a sheath-like structure unique to monocots and is easily observed in sorghum. Colored coleoptiles have been shown to protect plants against abiotic and biotic stresses. The purpose of this study was to identify factors controlling coleoptile color in sorghum. We phenotyped [...] Read more.
Coleoptile is a sheath-like structure unique to monocots and is easily observed in sorghum. Colored coleoptiles have been shown to protect plants against abiotic and biotic stresses. The purpose of this study was to identify factors controlling coleoptile color in sorghum. We phenotyped the sorghum mini core accessions for coleoptile color in two environments, determined the anthocyanin content of each color of selected accessions, carried out a genome-wide association analysis and identified a candidate gene. The phenotypic analysis showed that 95 (40% of 235) accessions were green, 28 (12%) were purple and 42 (18%) were red in both 2022 and 2023. About 12% of the accessions changed from green to red due to environmental conditions. The anthocyanin content analysis showed a positive correlation between intensity of coleoptile color and anthocyanin levels. A genome-wide association analysis identified two candidate genes, Sobic.006G175700 and Sobic.006G175500, mapped to this trait in a single locus on chromosome 6. An orthologous comparison, together with mapping, sequence analysis and qPCR, identified Sobic.006G175700 as Rs1, the gene determining the sorghum coleoptile color. The haplotype analysis with SNPs from both coding and upstream regions of Sobic.006G175700 indicates that the predominant haplotypes can differentiate between green and colored coleoptile colors. This information can be used for marker-assisted selection of desired coleoptile colors in sorghum. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

27 pages, 5888 KiB  
Article
Multi-Omics Profiling of Lipid Variation and Regulatory Mechanisms in Poultry Breast Muscles
by Hongyuan Zhang, Yaqi Dai, Jinxing Gu, Hongtai Li, Ran Wu, Jiyu Jia, Jingqi Shen, Wanli Li, Ruili Han, Guirong Sun, Wenting Li, Xiaojun Liu, Yinli Zhao and Guoxi Li
Animals 2025, 15(5), 694; https://doi.org/10.3390/ani15050694 - 27 Feb 2025
Viewed by 694
Abstract
This study aimed to elucidate the genetic basis of lipid composition in the breast muscles of poultry, including AA broilers, dwarf guinea fowl, quails, and pigeons, and the impact of artificial selection on lipid traits. By employing lipidomics and transcriptomic sequencing, the research [...] Read more.
This study aimed to elucidate the genetic basis of lipid composition in the breast muscles of poultry, including AA broilers, dwarf guinea fowl, quails, and pigeons, and the impact of artificial selection on lipid traits. By employing lipidomics and transcriptomic sequencing, the research analyzed the chest muscle tissues of these four poultry. A total of 1542 lipid molecules were identified, with 711 showing significant differences among species. These lipids primarily belonged to subclasses such as TG, PC, Phosphatidylethanolamine (PE), Ceramides (Cer), and Diglyceride (DG), with each species demonstrating distinct profiles in these subclasses. Additionally, 5790 orthologous genes were identified, with 763, 767, 24, and 8 genes in AA broilers, dwarf guinea fowl, quails, and pigeons, respectively, exhibiting positive selection (Ka/Ks > 1). Notably, 114 genes related to lipid metabolism displayed significant differential expression, particularly between AA broilers and dwarf guinea fowl. The findings revealed that the metabolic pathways of PC and LPC lipid molecules in the glycerophospholipid pathway, as well as TG lipid molecules in the glycerolipid pathway, exhibited marked interspecies differences, potentially contributing to variations in breast muscle lipid composition. These results provide a solid foundation for understanding the lipid composition and molecular regulatory mechanisms in diverse poultry, offering valuable insights for further research in poultry lipid metabolism and artificial breeding programs. Full article
(This article belongs to the Special Issue Genetic Analysis of Important Traits in Domestic Animals)
Show Figures

Figure 1

15 pages, 2271 KiB  
Article
Alien Chromosome Serves as a Novel Platform for Multiple Gene Expression in Kluyveromyces marxianus
by Yilin Lyu, Jungang Zhou, Yao Yu and Hong Lu
Microorganisms 2025, 13(3), 509; https://doi.org/10.3390/microorganisms13030509 - 25 Feb 2025
Viewed by 645
Abstract
Kluyveromyces marxianus is an emerging yeast cell host for diverse products, but multiple-gene expression in K. marxianus faces challenges due to limited current knowledge of cis-regulatory elements and insertion loci. Our previous study transferred an alien Saccharomyces cerevisiae chromosome I (R1) into [...] Read more.
Kluyveromyces marxianus is an emerging yeast cell host for diverse products, but multiple-gene expression in K. marxianus faces challenges due to limited current knowledge of cis-regulatory elements and insertion loci. Our previous study transferred an alien Saccharomyces cerevisiae chromosome I (R1) into K. marxianus, resulting in the creation of the monochromosomal hybrid yeast KS-R1. All R1 genes were actively transcribed, providing a series of loci with varying transcriptional activities. Here, we explore the use of R1 as a novel platform for stable, multi-gene integration and expression. By deleting three essential K. marxianus genes while complementing their functions with orthologs on R1, we achieved stable propagation of R1 in the absence of selective pressure. We characterized several loci on R1 that exhibit stable transcriptional activities under various conditions. GFP inserted in place of genes at six such loci demonstrated varying expression levels. Strains with GFP at two loci exhibited significantly higher expression than those with GFP at a single locus. Furthermore, we replaced five R1 genes with disulfide bond formation genes from Pichia pastoris at distinct loci, resulting in the active expression of all five genes and significantly enhanced production of heterologous glucoamylases BadGLA and TeGlaA. Our findings demonstrate that alien chromosomes offer a stable and versatile platform for the coordinated expression of multiple heterologous genes, serving as valuable tools for metabolic engineering and synthetic biology. Full article
(This article belongs to the Special Issue Advances in Microbial Cell Factories, 3rd Edition)
Show Figures

Figure 1

23 pages, 12757 KiB  
Article
Comparative Genomic Analysis of the Poaceae Cytokinin Response Regulator RRB Gene Family and Functional Characterization of OsRRB5 in Drought Stress Tolerance in Rice
by Rujia Chen, Qianfeng Huang, Yanan Xu, Zhichao Wang, Nian Li, Yue Lu, Tianyun Tao, Yu Hua, Gaobo Wang, Shuting Wang, Hanyao Wang, Yong Zhou, Yang Xu, Pengcheng Li, Chenwu Xu and Zefeng Yang
Int. J. Mol. Sci. 2025, 26(5), 1954; https://doi.org/10.3390/ijms26051954 - 24 Feb 2025
Viewed by 729
Abstract
The cytokinin (CK) type B response regulator (RRB) gene is involved in the CK signaling pathway and performs a key function for mediating reactions to amounts of abiotic stresses. Nevertheless, the RRB gene family remains to be characterized in Poaceae (also [...] Read more.
The cytokinin (CK) type B response regulator (RRB) gene is involved in the CK signaling pathway and performs a key function for mediating reactions to amounts of abiotic stresses. Nevertheless, the RRB gene family remains to be characterized in Poaceae (also known as Gramineae or grasses). Here, we performed a comprehensive analysis encompassing phylogenetic relationships, evolutionary pressures, and expression patterns of the RRB gene family in six Poaceae species, including rice, Panicum, Sorghum, Setaria, maize, and wheat. Phylogenetic tree and syntenic analyses revealed that the RRB genes were divided into seven orthologous gene clusters (OGCs), indicating that the common ancestor of these Poaceae species possessed at least seven RRB genes. Further analysis revealed that the evolution of the Poaceae RRB gene family was primarily driven by purifying selection. The expression pattern of rice OsRRB toward phytohormonal and abiotic stresses was also investigated. The findings revealed that several phytohormones, including cytokinin (CK), abscisic acid (ABA), and methyl jasmonate (MeJA), as well as abiotic factors such as drought and cold, significantly increased the expression levels of these genes. Importantly, haplotype analysis identified four crucial variation sites within the OsRRB5 genomic regions that may contribute to drought resistance in rice. Our findings lay the groundwork for further elucidating the biological function of OsRRB genes and provide a promising new target for developing stress-resistant rice varieties. Full article
Show Figures

Figure 1

18 pages, 4442 KiB  
Article
Engineering Inorganic Pyrophosphate Metabolism as a Strategy to Generate a Fluoride-Resistant Saccharomyces cerevisiae Strain
by José R. Perez-Castiñeira, Francisco J. Ávila-Oliva and Aurelio Serrano
Microorganisms 2025, 13(2), 226; https://doi.org/10.3390/microorganisms13020226 - 21 Jan 2025
Viewed by 2799
Abstract
Fluorine accounts for 0.3 g/kg of the Earth’s crust, being widely distributed in the environment as fluoride. The toxic effects of this anion in humans and other organisms have been known for a long time. Fluoride has been reported to alter several cellular [...] Read more.
Fluorine accounts for 0.3 g/kg of the Earth’s crust, being widely distributed in the environment as fluoride. The toxic effects of this anion in humans and other organisms have been known for a long time. Fluoride has been reported to alter several cellular processes although the mechanisms involved are largely unknown. Inorganic pyrophosphatases (PPases) are ubiquitous enzymes that hydrolyze inorganic pyrophosphate (PPi), a metabolite generated from ATP. In Saccharomyces cerevisiae, the enzyme responsible for PPi hydrolysis in the cytosol (IPP1) is strongly inhibited by fluoride in vitro. The essentiality of IPP1 for growth has been previously demonstrated using YPC3, a yeast mutant with conditional expression of the corresponding gene. Here, YPC3 was used to generate cells that tolerate high concentrations of fluoride by (a) the overexpression of IPP1 or its human ortholog, or (b) the substitution of IPP1 by the fluoride-insensitive PPase from Streptococcus mutans. The results obtained suggest that maintaining appropriate levels of PPase activity in the cytosol is essential for the adaptation of S. cerevisiae to high fluoride concentrations. The increase in fluoride tolerance allows YPC3 cells transformed with suitable plasmids to be selected on rich non-selective medium supplemented with this anion. Full article
(This article belongs to the Special Issue New Methods in Microbial Research, 4th Edition)
Show Figures

Figure 1

30 pages, 10691 KiB  
Article
Genome- and Transcriptome-Wide Characterization and Expression Analyses of bHLH Transcription Factor Family Reveal Their Relevance to Salt Stress Response in Tomato
by Jianling Zhang, Xiaoying Liu, Zuozhen Yin, Tiantian Zhao, Dan Du, Jing Li, Mingku Zhu, Yueying Sun and Yu Pan
Plants 2025, 14(2), 200; https://doi.org/10.3390/plants14020200 - 12 Jan 2025
Cited by 2 | Viewed by 1199
Abstract
The bHLH (basic helix–loop–helix) transcription factors function as crucial regulators in numerous biological processes including abiotic stress responses and plant development. According to our RNA-seq analysis of tomato seedlings under salt stress, we found that, although the bHLH gene family in tomato has [...] Read more.
The bHLH (basic helix–loop–helix) transcription factors function as crucial regulators in numerous biological processes including abiotic stress responses and plant development. According to our RNA-seq analysis of tomato seedlings under salt stress, we found that, although the bHLH gene family in tomato has been studied, there are still so many tomato bHLH genes that have not been identified and named, which will hinder the later study of SlbHLHs. In total, 195 SlbHLHs that were unevenly distributed onto 12 chromosomes were identified from the tomato genome and were classified into 27 subfamilies based on their molecular features. The collinearity between SlbHLHs and interrelated orthologs from 10 plants further revealed evolutionary insights into SlbHLHs. Cis-element investigations of SlbHLHs promotors further suggested the potential roles of SlbHLHs in tomato development and stress responses. A total of 30 SlbHLHs were defined as the differentially expressed genes in response to salt stress by RNA-seq. The expression profiles of selected SlbHLHs were varyingly and markedly induced by multiple abiotic stresses and hormone treatments. These results provide valuable information to further understand the significance and intricacy of the bHLH transcription factor family, and lay a foundation for further exploring functions and possible regulatory mechanisms of SlbHLH members in abiotic stress tolerance, which will be significant for the study of tomato stress resistance and agricultural productivity. Full article
(This article belongs to the Special Issue Omics Research on Plant Resistance to Abiotic and Biotic Stress)
Show Figures

Figure 1

14 pages, 781 KiB  
Article
Model Organisms in Aging Research: Evolution of Database Annotation and Ortholog Discovery
by Elizaveta Sarygina, Anna Kliuchnikova, Svetlana Tarbeeva, Ekaterina Ilgisonis and Elena Ponomarenko
Genes 2025, 16(1), 8; https://doi.org/10.3390/genes16010008 - 25 Dec 2024
Viewed by 1209
Abstract
Background: This study aims to analyze the exploration degree of popular model organisms by utilizing annotations from the UniProtKB (Swiss-Prot) knowledge base. The research focuses on understanding the genomic and post-genomic data of various organisms, particularly in relation to aging as an integral [...] Read more.
Background: This study aims to analyze the exploration degree of popular model organisms by utilizing annotations from the UniProtKB (Swiss-Prot) knowledge base. The research focuses on understanding the genomic and post-genomic data of various organisms, particularly in relation to aging as an integral model for studying the molecular mechanisms underlying pathological processes and physiological states. Methods: Having characterized the organisms by selected parameters (numbers of gene splice variants, post-translational modifications, etc.) using previously developed information models, we calculated proteome sizes: the number of possible proteoforms for each species. Our analysis also involved searching for orthologs of human aging genes within these model species. Results: Our findings indicate that genomic and post-genomic data for more primitive species, such as bacteria and fungi, are more comprehensively characterized compared to other organisms. This is attributed to their experimental accessibility and simplicity. Additionally, we discovered that the genomes of the most studied model organisms allow for a detailed analysis of the aging process, revealing a greater number of orthologous genes related to aging. Conclusions: The results highlight the importance of annotating the genomes of less-studied species to identify orthologs of marker genes associated with complex physiological processes, including aging. Species that potentially possess unique traits associated with longevity and resilience to age-related changes require comprehensive genomic studies. Full article
(This article belongs to the Special Issue Genes and Pathway Regulating Longevity in Model Organisms)
Show Figures

Graphical abstract

16 pages, 3339 KiB  
Article
Full-Length Transcriptomes Reconstruction Reveals Intraspecific Diversity in Hairy Vetch (Vicia villosa Roth) and Smooth Vetch (V. villosa Roth var. glabrescens)
by Weiyi Kong, Bohao Geng, Wenhui Yan, Jun Xia, Wenkai Xu, Na Zhao and Zhenfei Guo
Plants 2024, 13(23), 3291; https://doi.org/10.3390/plants13233291 - 22 Nov 2024
Cited by 1 | Viewed by 932
Abstract
Hairy vetch (Vicia villosa Roth) and smooth vetch (V. villosa Roth var. glabrescens) are important cover crops and legume forage with great economic and ecological values. Due to the large and highly heterozygous genome, full-length transcriptome reconstruction is a cost-effective [...] Read more.
Hairy vetch (Vicia villosa Roth) and smooth vetch (V. villosa Roth var. glabrescens) are important cover crops and legume forage with great economic and ecological values. Due to the large and highly heterozygous genome, full-length transcriptome reconstruction is a cost-effective route to mining their genetic resources. In this study, a hybrid sequencing approach combining SMRT and NGS technologies was applied. The results showed that 28,747 and 40,600 high-quality non-redundant transcripts with an average length of 1808 bp and 1768 bp were generated from hairy vetch and smooth vetch, including 24,864 and 35,035 open reading frames (ORFs), respectively. More than 96% of transcripts were annotated to the public databases, and around 25% of isoforms underwent alternative splicing (AS) events. In addition, 987 and 1587 high-confidence lncRNAs were identified in two vetches. Interestingly, smooth vetch contains more specific transcripts and orthologous clusters than hairy vetch, revealing intraspecific transcript diversity. The phylogeny revealed that they were clustered together and closely related to the genus Pisum. Furthermore, the estimation of Ka/Ks ratios showed that purifying selection was the predominant force. A putative 3-dehydroquinate dehydratase/shikimate dehydrogenase (DHD/SDH) gene underwent strong positive selection and might regulate phenotypic differences between hairy vetch and smooth vetch. Overall, our study provides a vital characterization of two full-length transcriptomes in Vicia villosa, which will be valuable for their molecular research and breeding. Full article
(This article belongs to the Special Issue Genetic and Biological Diversity of Plants)
Show Figures

Figure 1

12 pages, 2245 KiB  
Article
OHDLF: A Method for Selecting Orthologous Genes for Phylogenetic Construction and Its Application in the Genus Camellia
by Junhao Cai, Cui Lu, Yuwei Cui, Zhentao Wang and Qunjie Zhang
Genes 2024, 15(11), 1404; https://doi.org/10.3390/genes15111404 - 30 Oct 2024
Viewed by 1385
Abstract
Accurate phylogenetic tree construction for species without reference genomes often relies on de novo transcriptome assembly to identify single-copy orthologous genes. However, challenges such as whole-genome duplication (WGD), heterozygosity, gene duplication, and loss can hinder the selection of these genes, leading to limited [...] Read more.
Accurate phylogenetic tree construction for species without reference genomes often relies on de novo transcriptome assembly to identify single-copy orthologous genes. However, challenges such as whole-genome duplication (WGD), heterozygosity, gene duplication, and loss can hinder the selection of these genes, leading to limited data for constructing reliable species trees. To address these issues, we developed a new analytical pipeline, OHDLF (Orthologous Haploid Duplication and Loss Filter), which filters orthologous genes from transcript data and adapts parameter settings based on genomic characteristics for further phylogenetic tree construction. In this study, we applied OHDLF to the genus Camellia and evaluated its effectiveness in constructing phylogenetic trees. The results highlighted the pipeline’s ability to handle challenges like high heterozygosity and recent gene duplications by selectively retaining genes with a missing rate and merging duplicates with high similarity. This approach ensured the preservation of informative sites and produced a highly supported consensus tree for Camellia. Additionally, we evaluate the accuracy of the OHDLF phylogenetic trees for different species, demonstrating that the OHDLF pipeline provides a flexible and effective method for selecting orthologous genes and constructing accurate phylogenetic trees, adapting to the genomic characteristics of various plant groups. Full article
(This article belongs to the Special Issue Advances in Genetics and Genomics of Plants)
Show Figures

Figure 1

18 pages, 2824 KiB  
Article
Molecular Characterization of Sterol C4-Methyl Oxidase in Leishmania major
by Yu Ning, Somrita Basu, Fong-fu Hsu, Mei Feng, Michael Zhuo Wang and Kai Zhang
Int. J. Mol. Sci. 2024, 25(20), 10908; https://doi.org/10.3390/ijms252010908 - 10 Oct 2024
Cited by 1 | Viewed by 1255
Abstract
Sterol biosynthesis requires the oxidative removal of two methyl groups from the C-4 position by sterol C-4-demethylase and one methyl group from the C-14 position by sterol C-14-demethylase. In Leishmania donovani, a CYP5122A1 (Cytochrome P450 family 5122A1) protein was recently identified as [...] Read more.
Sterol biosynthesis requires the oxidative removal of two methyl groups from the C-4 position by sterol C-4-demethylase and one methyl group from the C-14 position by sterol C-14-demethylase. In Leishmania donovani, a CYP5122A1 (Cytochrome P450 family 5122A1) protein was recently identified as the bona fide sterol C-4 methyl oxidase catalyzing the initial steps of C-4-demethylation. Besides CYP5122A1, Leishmania parasites possess orthologs to ERG25 (ergosterol pathway gene 25), the canonical sterol C-4 methyl oxidase in Saccharomyces cerevisiae. To determine the contribution of CYP5122A1 and ERG25 in sterol biosynthesis, we assessed the essentiality of these genes in Leishmania major, which causes cutaneous leishmaniasis. Like in L. donovani, CYP5122A1 in L. major could only be deleted in the presence of a complementing episome. Even with strong negative selection, L. major chromosomal CYP5122A1-null mutants retained the complementing episome in both promastigote and amastigote stages, demonstrating its essentiality. In contrast, the L. major ERG25-null mutants were fully viable and replicative in culture and virulent in mice. Deletion and overexpression of ERG25 did not affect the sterol composition, indicating that ERG25 is not required for C-4-demethylation. These findings suggest that CYP5122A1 is the dominant and possibly only sterol C-4 methyl oxidase in Leishmania, and inhibitors of CYP5122A1 may have strong therapeutic potential against multiple Leishmania species. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

23 pages, 9073 KiB  
Article
Genome-Wide Characterization of the INDETERMINATE DOMAIN (IDD) Zinc Finger Gene Family in Solanum lycopersicum and the Functional Analysis of SlIDD15 in Shoot Gravitropism
by Huan Wu, Mingli Liu, Yuqi Fang, Jing Yang, Xiaoting Xie, Hailong Zhang, Dian Zhou, Yueqiong Zhou, Yexin He, Jianghua Chen and Quanzi Bai
Int. J. Mol. Sci. 2024, 25(19), 10422; https://doi.org/10.3390/ijms251910422 - 27 Sep 2024
Viewed by 1527
Abstract
The plant-specific IDD transcription factors (TFs) are vital for regulating plant growth and developmental processes. However, the characteristics and biological roles of the IDD gene family in tomato (Solanum lycopersicum) are still largely unexplored. In this study, 17 SlIDD genes were [...] Read more.
The plant-specific IDD transcription factors (TFs) are vital for regulating plant growth and developmental processes. However, the characteristics and biological roles of the IDD gene family in tomato (Solanum lycopersicum) are still largely unexplored. In this study, 17 SlIDD genes were identified in the tomato genome and classified into seven subgroups according to the evolutionary relationships of IDD proteins. Analysis of exon–intron structures and conserved motifs reflected the evolutionary conservation of SlIDDs in tomato. Collinearity analysis revealed that segmental duplication promoted the expansion of the SlIDD family. Ka/Ks analysis indicated that SlIDD gene orthologs experienced predominantly purifying selection throughout evolution. The analysis of cis-acting elements revealed that the promoters of SlIDD genes contain numerous elements associated with light, plant hormones, and abiotic stresses. The RNA-seq data and qRT-PCR experimental results showed that the SlIDD genes exhibited tissue-specific expression. Additionally, Group A members from Arabidopsis thaliana and rice are known to play a role in regulating plant shoot gravitropism. QRT-PCR analysis confirmed that the expression level of SlIDD15 in Group A was high in the hypocotyls and stems. Subcellular localization demonstrated that the SlIDD15 protein was localized in the nucleus. Surprisingly, the loss-of-function of SlIDD15 by CRISPR/Cas9 gene editing technology did not display obvious gravitropic response defects, implying the existence of functional redundant factors within SlIDD15. Taken together, this study offers foundational insights into the tomato IDD gene family and serves as a valuable guide for exploring their molecular mechanisms in greater detail. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics)
Show Figures

Figure 1

Back to TopTop