Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = origin of ore-forming fluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 12729 KiB  
Article
Genetic Mineralogical Characteristics of Pyrite and Quartz from the Qiubudong Silver Deposit, Central North China Craton: Implications for Ore Genesis and Exploration
by Wenyan Sun, Jianling Xue, Zhiqiang Tong, Xueyi Zhang, Jun Wang, Shengrong Li and Min Wang
Minerals 2025, 15(8), 769; https://doi.org/10.3390/min15080769 - 22 Jul 2025
Viewed by 130
Abstract
The Qiubudong silver deposit on the western margin of the Fuping ore cluster in the central North China Craton is a representative breccia-type deposit characterized by relatively high-grade ores, thick mineralized zones, and extensive alteration, indicating considerable potential for economic resource development and [...] Read more.
The Qiubudong silver deposit on the western margin of the Fuping ore cluster in the central North China Craton is a representative breccia-type deposit characterized by relatively high-grade ores, thick mineralized zones, and extensive alteration, indicating considerable potential for economic resource development and further exploration. Previous studies on this deposit have not addressed its genetic mineralogical characteristics. This study focuses on pyrite and quartz to investigate their typomorphic features, such as crystal morphology, trace element composition, thermoelectric properties, and luminescence characteristics, and their implications for ore-forming processes. Pyrite crystals are predominantly cubic in early stages, while pentagonal dodecahedral and cubic–dodecahedral combinations peak during the main mineralization stage. The pyrite is sulfur-deficient and iron-rich, enriched in Au, and relatively high in Ag, Cu, Pb, and Bi contents during the main ore-forming stage. Rare earth element (REE) concentrations are low, with weak LREE-HREE fractionation and a strong negative Eu anomaly. The thermoelectric coefficient of pyrite ranges from −328.9 to +335.6 μV/°C, with a mean of +197.63 μV/°C; P-type conduction dominates, with an occurrence rate of 58%–100% and an average of 88.78%. A weak–low temperature and a strong–high temperature peak characterize quartz thermoluminescence during the main mineralization stage. Fluid inclusions in quartz include liquid-rich, vapor-rich, and two-phase types, with salinities ranging from 10.11% to 12.62% NaCl equiv. (average 11.16%) and densities from 0.91 to 0.95 g/cm3 (average 0.90 g/cm3). The ore-forming fluids are interpreted as F-rich, low-salinity, low-density hydrothermal fluids of volcanic origin at medium–low temperatures. The abundance of pentagonal dodecahedral pyrite, low Co/Ni ratios, high Cu contents, and complex quartz thermoluminescence signatures are key mineralogical indicators for deep prospecting. Combined with thermoelectric data and morphological analysis, the depth interval around 800 m between drill holes ZK3204 and ZK3201 has high mineralization potential. This study fills a research gap on the genetic mineralogy of the Qiubudong deposit and provides a scientific basis for deep exploration. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

20 pages, 9353 KiB  
Article
Genesis of the Shabaosi Gold Field in the Western Mohe Basin, Northeast China: Evidence from Fluid Inclusions and H-O-S-Pb Isotopes
by Xiangwen Li, Zhijie Liu, Lingan Bai, Jian Wang, Shiming Liu and Guan Wang
Minerals 2025, 15(7), 721; https://doi.org/10.3390/min15070721 - 10 Jul 2025
Viewed by 218
Abstract
The Shabaosi gold field is located in the western Mohe Basin, part of the northern Great Xing’an Range, NE China, and contains multiple gold deposits. However, the sources of the ore-forming materials, the fluid evolution, and the genesis of these gold deposits have [...] Read more.
The Shabaosi gold field is located in the western Mohe Basin, part of the northern Great Xing’an Range, NE China, and contains multiple gold deposits. However, the sources of the ore-forming materials, the fluid evolution, and the genesis of these gold deposits have been disputed, especially regarding the classification of these deposits as either epithermal or orogenic gold systems. Based on detailed field geological investigations and previous research, we conducted systematic research on the Shabaosi, Sanshierzhan, Laogou, and Balifang gold deposits using fluid inclusion and H-O-S-Pb isotope data, with the aim of constraining the fluid properties, sources, and mineralization processes. Fluid inclusion analyses reveal diverse types, including vapor-rich, vapor–liquid, CO2-bearing, CO2-rich, and pure CO2. Additionally, only a very limited number of daughter mineral-bearing fluid inclusions have been observed exclusively in the Laogou gold deposit. During the early stages, the peak temperature primarily ranged from 240 °C to 280 °C, with salinity concentrations between 6 and 8 wt% NaCl equiv., representing a medium–low temperature, low salinity, and a heterogeneous CO2-CH4-H2O-NaCl system. With the influx of meteoric water, the fluids evolved gradually into a simple NaCl-H2O system with low temperatures (160–200 °C) and salinities (4–6 wt%). The main mineralization stage exhibited peak temperatures of 220–260 °C and salinities of 5–8 wt% NaCl equiv., corresponding to an estimated formation depth of 1.4–3.3 km. The δDV-SMOW values (−138.3‰ to −97.0‰) and δ18OV-SMOW values (−7.1‰ to 16.2‰) indicate that the magmatic–hydrothermal fluids were progressively diluted by meteoric water during mineralization. The sulfur isotopic compositions (δ34S = −0.9‰ to 1.8‰) and lead isotopic ratios (208Pb/204Pb = 38.398–38.579, 207Pb/204Pb = 15.571–15.636, and 206Pb/204Pb = 18.386–18.477) demonstrate that the gold predominantly originated from deep magmatic systems, with potential crustal contamination. Comparative analyses indicate that the Shabaosi gold field should be classified as a epizonal orogenic gold system, which shows distinct differences from epithermal gold deposits and corresponds to the extensional tectonic setting during the late-stage evolution of the Mongol–Okhotsk orogenic belt. Full article
Show Figures

Figure 1

19 pages, 6150 KiB  
Article
Ore Genesis of the Jurassic Granite-Hosted Naizhigou Gold Deposit in the Jiapigou District of Northeast China: Constraints from Fluid Inclusions and H–O–S Isotopes
by Jilong Han, Zhicheng Lü, Chuntao Zhao, Xiaotian Zhang, Jinggui Sun, Shu Wang and Xinwen Zhang
Minerals 2025, 15(7), 696; https://doi.org/10.3390/min15070696 - 29 Jun 2025
Viewed by 232
Abstract
The Jiapigou mining district (>180 t Au) is an important gold district in China. For a long time, the ore genesis of the gold deposits in the Jiapigou district has been a subject of controversy and differing opinions, which has severely hindered metallogenic [...] Read more.
The Jiapigou mining district (>180 t Au) is an important gold district in China. For a long time, the ore genesis of the gold deposits in the Jiapigou district has been a subject of controversy and differing opinions, which has severely hindered metallogenic theories and mineral exploration. Here we present a comprehensive investigation including geology, fluid inclusions (FIs), and H–O–S isotopic data for the Naizhigou deposit in the Jiapigou district to elucidate the sources of orefluids and metals, as well as the metallogenic mechanism. The results show the following: (1) The Naizhigou deposit is characterized by quartz vein-type ores and is hosted in the Middle Jurassic granitic pluton. Native gold and sulfides were mainly deposited in the second stage (quartz–polymetallic sulfides) compared with the first (quartz–pyrite–molybdenite) and third (quartz–calcite) stages. (2) The FI studies indicated that the orefluids evolved from the early–main-stage CO2–H2O–NaCl system to the late-stage H2O–NaCl system and have homogenization temperatures of 289–363, 210–282, and 124–276 °C and salinities of 4.1–20.9, 5.8–16.4, and 6.1–12.7 wt% NaCl equivalent, respectively. Fluid boiling and fluid mixing collectively controlled the precipitation of gold and ore-forming elements. (3) The δD values of the FIs hosted in quartz from the three stags range from −81 to −75 ‰, from −99 to −86 ‰, and from −110 to −101 ‰, while δ18Owater values of these FIs range from 5.3 to 5.9 ‰, from 1.1 to 5.2 ‰, and from −2.1 to −0.7 ‰, respectively. Pyrite samples from the three stages in the Naizhigou deposit have δ34S values of 2.1 to 2.5 ‰, 3.1 to 4.3 ‰, and 3.8 to 3.9 ‰, respectively. The stable isotopes indicate that the orefluids and metals mainly originated from magma. A comparative study of regional observations reveals that the Naizhigou deposit is a magmatic-related mesothermal gold deposit, rather than a metamorphism-related orogenic gold deposit. The estimated ore-forming depths are 4.0–20.7 km, with exhumation depths of 4.1–5.5 km, which indicated that the deposit has been well preserved. Regionally, the new exploration strategies should place greater emphasis on work concerning ore-related plutons, ore-controlling faults, and hydrothermal alteration. Full article
Show Figures

Figure 1

22 pages, 4895 KiB  
Article
Ore Genesis of the Huanggang Iron-Tin-Polymetallic Deposit, Inner Mongolia: Constraints from Fluid Inclusions, H–O–C Isotopes, and U-Pb Dating of Garnet and Zircon
by Hanwen Xue, Keyong Wang, Qingfei Sun, Junchi Chen, Xue Wang and Haoming Li
Minerals 2025, 15(5), 518; https://doi.org/10.3390/min15050518 - 14 May 2025
Viewed by 481
Abstract
The Huanggang iron-tin deposit, located in the southern Greater Khingan Range, is one of the largest Fe-Sn deposits in Northern China (NE China). Iron-tin mineralization occurs mainly in the contact zone between granitoid intrusions and the marble of the Huanggang and Dashizhai formations. [...] Read more.
The Huanggang iron-tin deposit, located in the southern Greater Khingan Range, is one of the largest Fe-Sn deposits in Northern China (NE China). Iron-tin mineralization occurs mainly in the contact zone between granitoid intrusions and the marble of the Huanggang and Dashizhai formations. Six mineralization stages are identified: (I) anhydrous skarn, (II) hydrous skarn, (III) cassiterite-quartz-calcite, (IV) pyrite-arsenopyrite-quartz-fluorite, (V) polymetallic sulfides-quartz, and (VI) carbonate ones. Fluid inclusions (FIs) analysis reveals that Stage I garnet and Stage II–III quartz host liquid-rich (VL-type), vapor-rich two-phase (LV-type), and halite-bearing three-phase (SL-type) inclusions. Stage IV quartz and fluorite, along with Stage V quartz, are dominated by VL- and LV-type inclusions, while Stage VI calcite contains exclusively VL-type inclusions. The FIs in Stages I to VI homogenized at 392–513, 317–429, 272–418, 224–347, 201–281, and 163–213 °C, with corresponding salinities of 3.05–56.44, 2.56–47.77, 2.89–45.85, 1.39–12.42, 0.87–10.62, and 4.48–8.54 wt% NaCl equiv., respectively. The H–O–C isotopes data imply that fluids of the anhydrous skarn stage (δD = −101.2 to −91.4‰, δ18OH2O = 5.0 to 6.0‰) were of magmatic origin, the fluids of hydrous skarn and oxide stages (δD = −106.3 to −104.7‰, δ18OH2O = 4.3 to 4.9‰) were characterized by fluid mixing with minor meteoric water, while the fluids of sulfide stages (δD = −117.4 to −108.6‰, δ18OH2O = −3.4 to 0.3‰, δ13CV-PDB= −12.2 to −10.9‰, and δ18OV-SMOW = −2.2 to −0.7‰) were characterized by mixing of significant amount of meteoric water. The ore-forming fluids evolved from a high-temperature, high-salinity NaCl−H2O boiling system to a low-temperature, low-salinity NaCl−H2O mixing system. The garnet U-Pb dating constrains the formation of skarn to 132.1 ± 4.7 Ma (MSWD = 0.64), which aligns, within analytical uncertainty, with the weighted-mean U−Pb age of zircon grains in ore-related K-feldspar granite (132.6 ± 0.9 Ma; MSWD = 1.5). On the basis of these findings, the Huanggang deposit, formed in the Early Cretaceous, is a typical skarn-type system, in which ore precipitation was principally controlled by fluid boiling and mixing. Full article
Show Figures

Figure 1

36 pages, 9140 KiB  
Article
The Geochemical Characteristics of Ore-Forming Fluids in the Jebel Stah Fluorite Deposit in Northeast Tunisia: Insights from LA-ICP-MS and Sr Isotope Analyses
by Chaima Somrani, Fouad Souissi, Radhia Souissi, Giovanni De Giudici, Eduardo Ferreira da Silva, Dario Fancello, Francesca Podda, José Francisco Santos, Tamer Abu-Alam, Sara Ribeiro and Fernando Rocha
Minerals 2025, 15(4), 331; https://doi.org/10.3390/min15040331 - 21 Mar 2025
Cited by 1 | Viewed by 1092
Abstract
The Zaghouan Fluorite Province (ZFP) encloses F-Ba(Pb-Zn) ores hosted within Jurassic carbonate series, in northeastern Tunisia. Critical breakthroughs on the Jebel Stah fluorite deposits, an MVT-style F-mineralization, have been made within the Lower Jurassic limestones along the Zaghouan Fault, which is a major [...] Read more.
The Zaghouan Fluorite Province (ZFP) encloses F-Ba(Pb-Zn) ores hosted within Jurassic carbonate series, in northeastern Tunisia. Critical breakthroughs on the Jebel Stah fluorite deposits, an MVT-style F-mineralization, have been made within the Lower Jurassic limestones along the Zaghouan Fault, which is a major target for mineralization. This study presents the first REE-Y analyses conducted by LA-ICP-MS on fluorites in Tunisia, and specifically on the fluorites of Jebel Stah deposit. This analytical technique provides highly accurate insights into the geochemical regime of mineralizing fluids and the related scavenging sources. Distinct geochemical characteristics between two fluorite generations (G1 and G2) were revealed. Fluorites (Fl2) from the early generation (G1) showed low ΣREE + Y (36.3 and 39.73 ppm, respectively). When normalized to chondrites, early fluorite G1 displayed a bell-shaped REE + Y pattern with a depletion in LREE relative to HREE and a slight MREE hump. Late fluorite (Fl3) generation (G2) displayed higher ΣREE + Y concentrations (77.43 ppm), but an almost similar REE pattern. Ce/Ce* ratios demonstrated strong negative Ce anomalies in all fluorites, while Eu/Eu* ratios indicated weak negative Eu anomalies. The positive Y anomaly observed in the REE + Y patterns of fluorites G1 and G2 suggests Y-Ho fractionation in the fluid system. Moreover, significant degrees of differentiation between terbium (Tb) and lanthanum (La) have been observed in all fluorite samples. The plot of fluorites from both fluorite generations on the Tb/La–Tb/Ca diagram gives evidence of the sedimentary hydrothermal origin of the ore-forming fluids in the Jebel Stah F-deposit. Sr isotopes show that the mineralizing fluids are radiogenic and deeply sourced basinal brines, whereas the small variation in 87Sr/86Sr ratios suggests a similar source for Sr in fluorites G1 and G2. These results allow us to conclude that the economic fluorite (G1) ore of Jebel Stah was deposited due to the interaction of the deeply sourced hydrothermal fluid with the carbonated host rocks (dolomitization, an increase in pH, and Ca activity), whereas the late fluorite (G2) is an accessory and could have resulted from the mixing of the hydrothermal fluid with shallow meteoric waters. Full article
Show Figures

Figure 1

27 pages, 46975 KiB  
Article
A Study of the Geochemical Characteristics of Tourmaline-Supergroup Minerals from the Bozhushan Composite Granite Body in Southeastern Yunnan
by Xianchao Chen, Liurunxuan Chen, Shitao Zhang, Xuelong Liu, Qiuyun Song, Linlong Sun, Ruohan Zuo, Bode Lu and Jiehu Zhou
Minerals 2025, 15(3), 316; https://doi.org/10.3390/min15030316 - 19 Mar 2025
Viewed by 607
Abstract
The Bozhushan in southeastern Yunnan is a composite granite body that was formed by multi-phase magmatic intrusion. The genesis of the tourmaline-supergroup minerals occurring therein remains uncertain, as it has been the subject of only a limited number of studies. This investigation employs [...] Read more.
The Bozhushan in southeastern Yunnan is a composite granite body that was formed by multi-phase magmatic intrusion. The genesis of the tourmaline-supergroup minerals occurring therein remains uncertain, as it has been the subject of only a limited number of studies. This investigation employs an integrated analytical approach combining EPMA, LA-ICP-MS, and boron isotope geochemistry, supplemented by detailed field geological investigations and petrographic observations of tourmaline textural characteristics. This study aims to elucidate the genetic relationships between distinct tourmaline varieties, establish temporal correlations between mineral crystallization stages and magmatic–hydrothermal evolution processes, and evaluate the petrogenetic significance of tourmaline geochemical signatures for regional mineralization events. This study analyzes tourmaline-supergroup minerals in granitic pegmatites and aplites, which occur as nodular, radial, and columnar aggregates. Most tourmaline crystals exhibit well-defined rhythmic zoning patterns, which are clearly observable under cross-polarized light microscopy. Chemical composition analysis has identified two tourmaline species: schorl and dravite. The formation of tourmaline is primarily of magmatic origin and is characterized by a magmatic–hydrothermal transition. It predominantly belongs to the alkali subgroup and is formed in Li-poor granitoids and associated pegmatites and aplites, Ca-poor metapelites, metapsammites, and quartz-tourmaline rocks. The inter-ionic substitution mechanism in this system is predominantly governed by Fe2+Mg−1 and (XvacAl)(NaR2+)−1 exchange equilibria. Additionally, geochemical evidence indicates that the primary ore-forming fluids originate from granitic magmas, which are likely sourced from the partial melting of metasedimentary rocks. During the late Yanshan period, the upwelling of granitic magma in the Bozhushan area introduced a substantial heat source and mineralizing fluids, which interacted with the Cambrian units to form tungsten–tin mineralization. The geochemical data on tourmaline indicate that the Bozhushan granite body has considerable potential for ore mineralization. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

28 pages, 11310 KiB  
Article
In Situ Geochemical and Sulfur Isotopic Composition of Pyrites from the Jiepailing Tin–Beryllium Polymetallic Deposit, Southern Hunan Province, China: Implications for Ore-Forming Processes
by Gao-Feng Du, Xiang-Ying Ling, Dan Wang, Wei-Jian Zhou, Liu Yang, You-Yue Lu and Zun-Zun Zhang
Minerals 2025, 15(3), 312; https://doi.org/10.3390/min15030312 - 18 Mar 2025
Viewed by 570
Abstract
The Jiepailing deposit in southern Hunan is a typical large to super-large polymetallic tin deposit enriched in beryllium and other rare metals. To enhance the understanding of the mineralization processes of the Jiepailing deposit, detailed mineralogical, in situ geochemical, and sulfur isotopic analyses [...] Read more.
The Jiepailing deposit in southern Hunan is a typical large to super-large polymetallic tin deposit enriched in beryllium and other rare metals. To enhance the understanding of the mineralization processes of the Jiepailing deposit, detailed mineralogical, in situ geochemical, and sulfur isotopic analyses were conducted on pyrite closely associated with tin–polymetallic mineralization. Five types of pyrite have been identified in the deposit: (1) euhedral to subhedral medium- to coarse-grained pyrite (PyI) in tungsten–tin ore; anhedral fine-grained pyrite (PyII) in tin polymetallic–fluorite ore; anhedral fine-grained or aggregate pyrite (PyIII) in lead–zinc ore; euhedral to subhedral coarse-grained pyrite (PyIV) in beryllium–fluorite mineralization; and subhedral to anhedral fine-grained pyrite (PyV) in carbonate veinlets developed in the wall rock. Backscattered electron imaging indicates consistent structural features across the five types of pyrite. In situ trace element analysis reveals differences in trace element concentrations among the pyrite types. PyI is relatively enriched in Sn, Cu, and Co. In contrast, PyIII is enriched in Pb, Zn, Sn, and Ti, while PyIV and PyV are enriched in Ag and Sb. PyI has a Co/Ni ratio more than 1, while the Co/Ni ratios in the other four types of pyrite are less than 1. LA-MC-ICP-MS in situ sulfur isotope analysis shows δ34S values ranging from 2.5‰ to 5.8‰ (average 4.3‰, PyI), 2.5‰ to 5.8‰ (average 4.3‰, PyII), −7.6‰ to 9.5‰ (average 3.9‰, PyIII), −3.7‰ to 10.6‰ (average 3.6‰, PyIV), and 6.8‰ to 14.1‰ (average 9.2‰, PyV). Based on previous studies, regional geological background, deposit characteristics, and the in situ trace element and sulfur isotope compositions of pyrite, it is inferred that the various ore bodies in the Jiepailing deposit are products of Late Cretaceous magmatic–hydrothermal activity. The early ore-forming fluid originated from magmatic sources and during the migration into the wall rock and shallow formations, mixed with fluids primarily derived from atmospheric precipitation. Temperature, pressure, and composition changed of the ore-forming fluid which carried a large amount of substances, leading to tungsten–tin, tin polymetallic–fluorite, lead–zinc, and beryllium–fluorite mineralization, followed by carbonation during the late-stage mineralization. Full article
Show Figures

Figure 1

25 pages, 24416 KiB  
Article
Origin of the Yangwantuan Gold Deposit in the Jiangnan Orogen (South China): Constraints from Sericite Rb-Sr Isotopes and Quartz Trace Elements
by Kun Chen, Junhong Liao, Yao Tang, Yuanlin Lou, Jiting Tang, Qiancheng Feng, Xiang Gao and Yu Zhang
Minerals 2025, 15(2), 172; https://doi.org/10.3390/min15020172 - 13 Feb 2025
Viewed by 693
Abstract
The Jiangnan Orogen (South China) hosts abundant gold deposits, but the absence of accurate constraints on the ore-forming age and process has resulted in significant controversy regarding their origins. The Yangwantuan gold deposit, located in the central part of the Jiangnan Orogen, is [...] Read more.
The Jiangnan Orogen (South China) hosts abundant gold deposits, but the absence of accurate constraints on the ore-forming age and process has resulted in significant controversy regarding their origins. The Yangwantuan gold deposit, located in the central part of the Jiangnan Orogen, is characterized by multi-stage quartz veins linked to mineralization and alteration. The mineralization can be divided into three stages, namely the barren quartz–sericite stage (I); the quartz–sericite–native gold–polymetallic sulfide stage (II, including the quartz–sericite–dolomite–native gold–polymetallic sulfide (IIA) and quartz–chlorite–sericite–native gold–arsenopyrite (IIB) substages); and the quartz–dolomite–calcite–arsenopyrite (III) stage. On the basis of the mineralization and alteration sequence and quartz’s internal texture, 11 generations of quartz are determined, including gray QzIa and dark QzIb in Stage I; oscillatory-zoning QzIIa, homogeneous QzIIb, and veined QzIIc in Stage IIA; homogeneous QzIId, QzIIe trapping sulfide inclusions, and veined QzIIf in Stage IIB; and gray QzIIIa, dark QzIIIb, and veined QzIIIc in Stage III. The decrease in Al content corresponds to an increase in pH from QzIa to QzIb, favoring the transportation of gold in the fluid. The sharp drop in temperature and the increment of pH, revealed by Al and Ti content variations from QzIIa to QzIIb, indicates a strong water–rock interaction, consistent with the occurrence of arsenopyrite in the wall rock. Therefore, the gold precipitation in Stage IIA may be triggered by the consumption of H2S through water–rock interaction, whereas during Stage IIB and III, the precipitation of gold is attributed to the consumption of H2S as a result of the formation of abundant sulfide, which is supported by the coexistence of sulfide and QzIIf and QzIIIc. The Stage IIA sericite Rb-Sr isochron age of 397 ± 11 Ma (MSWD = 0.8, n = 32) suggests that the mineralization age is closely related to the Devonian Orogeny. The absence of contemporaneous magmatic rock and quartz Al and Ti concentrations both indicate that the Yangwantuan deposit may be classified as an orogenic gold deposit. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

18 pages, 6484 KiB  
Article
Geochemistry of Pyrite from the Jiaojia Gold Deposit, Jiaodong Peninsula, North China Craton: Implications for Source of Ore-Forming Fluids and Gold Precipitation
by Yayi Fang, Yayun Liang, Rui Xia, Lei Shu, Bi He, Wenhao Xue, Chenxi Zhang, Haiyi Wang and Senmiao Xue
Appl. Sci. 2025, 15(3), 1548; https://doi.org/10.3390/app15031548 - 3 Feb 2025
Cited by 1 | Viewed by 1124
Abstract
The Jiaojia gold deposit in the Jiaodong Peninsula, located in the northwestern part of the Jiaodong gold province in eastern China, has a gold reserve of over 300 t. Gold mineralization in Jiaojia deposit occurred in three stages: (1) The Pyrite–Quartz–Sericite Stage (Stage [...] Read more.
The Jiaojia gold deposit in the Jiaodong Peninsula, located in the northwestern part of the Jiaodong gold province in eastern China, has a gold reserve of over 300 t. Gold mineralization in Jiaojia deposit occurred in three stages: (1) The Pyrite–Quartz–Sericite Stage (Stage I) developed primary minerals that included quartz, sericite, and a small amount of anhedral pyrite, appearing as disseminations within milky quartz and foliated sericite. (2) The Quartz–Pyrite Stage (Stage II) developed quartz that appears smoky gray and pyrite that appears with a euhedral cubic morphology, with crystal faces oriented in a longitudinal pattern. Native gold occurs as fracture filling in pyrite. (3) The Quartz–Polymetallic Sulfides Stage (Stage III) developed polymetallic sulfides, including pyrite, chalcopyrite, galena, sphalerite, and magnetite. Native gold filled the pyrite fractures and was enclosed within the pyrite. (4) The Quartz–Carbonate Stage (Stage IV) developed the main minerals of quartz and carbonate, with scattered occurrences of pyrite. In situ geochemical analysis of pyrite, the main gold-carrying mineral from mineralization Stages I to III in the Jiaojia gold deposit, was conducted, including major element, trace element, and sulfur isotope analyses. The δ34S values of Jiaojia pyrite range from 4.5 to 8.0‰. Pyrite in Stage I (Py I) has δ34S values ranging from 4.5 to 7.4‰, with an average of 6.4‰. Pyrite in the Stage II (Py II) has δ34S values ranging from 5.9 to 8.0‰, with an average of 6.8‰. Pyrite in Stage III (Py III) has δ34S values ranging from 6.4 to 7.9‰, with an average of 7.4‰. Combined with the C-D-O-He isotopes, the ore-forming fluids of the Jiaojia gold deposit likely originated from subducted oceanic plate-related metasomatized mantle. The Co/Ni ratios of Jiaojia pyrite range from 0.50 to 1.47 in Stage I, 0.27 to 1.69 in Stage II, and 0.58 to 295 in Stage III. The Cu/Au ratios in the Jiaojia pyrite in all mineralization stages were >1. These geochemical features imply that the ore-forming fluids of the Jiaojia gold deposit were in a medium- to low-temperature reducing environment, with temperatures gradually decreasing from ore Stages I to III. The increase in Co and As in the pyrite of Stage III implies that gold precipitation resulted from fluid immiscibility caused by a decrease in pressure and temperature and an increase in the oxygen fugacity of the ore-forming fluid. Full article
(This article belongs to the Special Issue Advances in Metallic Mineral Deposits and Geochemistry)
Show Figures

Figure 1

26 pages, 8849 KiB  
Article
The Evolution of Permian Mafic–Ultramafic Magma of the Yunhai Intrusion in the Northern Tianshan, Northwest China, and Its Implications for Cu-Ni Mineralization
by Yuxuan Pei, Mengting Chen, Yujing Zhao, Dahai Li, Jiashun Chen, Zhaoying Chen, Xiaojie Li and Shilin Sun
Minerals 2025, 15(2), 102; https://doi.org/10.3390/min15020102 - 22 Jan 2025
Viewed by 974
Abstract
The early Permian mafic–ultramafic intrusion-related Cu-Ni mineralization in Northern Tianshan offers valuable insights into the nature of the mantle beneath the Central Asian Orogenic Belt (CAOB) and enhances the understanding of magmatic sulfide mineralization processes in orogenic environments. The Yunhai intrusion, rich in [...] Read more.
The early Permian mafic–ultramafic intrusion-related Cu-Ni mineralization in Northern Tianshan offers valuable insights into the nature of the mantle beneath the Central Asian Orogenic Belt (CAOB) and enhances the understanding of magmatic sulfide mineralization processes in orogenic environments. The Yunhai intrusion, rich in Cu-Ni sulfides, marks a significant advancement for Cu-Ni exploration in the covered regions of the western Jueluotag orogenic belt in Northern Tianshan. This intrusion is well-differentiated, featuring a lithological assemblage of olivine pyroxenite, hornblende pyroxenite, gabbro, and diorite, and contains about 50 kilotons of sulfides with average grades of 0.44 wt% Ni and 0.62 wt% Cu. Sulfide mineralization occurs predominantly as concordant layers or lenses of sparsely and densely disseminated sulfides within the olivine pyroxenite and hornblende pyroxenite. In situ zircon U-Pb dating for the Yunhai intrusion indicates crystallization ages between 288 ± 1 and 284 ± 1 Ma, aligning with several Cu-Ni mineralization-associated mafic–ultramafic intrusions in Northern Tianshan. Samples from the Yunhai intrusion exhibit enrichment in light rare earth elements (LREE), distinct negative Nb and Ta anomalies, positive εNd(t) values ranging from 2.75 to 6.56, low initial (87Sr/86Sr)i ratios between 0.7034 and 0.7053, and positive εHf(t) values from 9.27 to 15.9. These characteristics, coupled with low Ce/Pb (0.77–6.55) and Nb/U (5.47–12.0) ratios and high Ti/Zr values (38.7–102), suggest very restricted amounts (ca. 5%) of crustal assimilation. The high Rb/Y (0.35–4.27) and Th/Zr (0.01–0.03) ratios and low Sm/Yb (1.47–2.32) and La/Yb (3.10–7.52) ratios imply that the primary magma of the Yunhai intrusion likely originated from 2%–10% partial melting of weak slab fluids–metasomatized subcontinental lithospheric mantle (peridotite with 2% spinel and/or 1% garnet) in a post-collisional environment. The ΣPGE levels in the Yunhai rocks and sulfide-bearing ores range from 0.50 to 54.4 ppb, which are lower compared to PGE-undepleted Ni-Cu sulfide deposits. This PGE depletion in the Yunhai intrusion’s parental magma may have been caused by early sulfide segregation from the primary magma at depth due to the high Cu/Pd ratios (43.5 × 103 to 2353 × 103) of all samples. The fractional crystallization of minerals such as olivine and pyroxene might be a critical factor in provoking significant sulfide segregation at shallower levels, leading to the extensive disseminated Cu-Ni mineralization at Yunhai. These characteristics are similar to those of typical deposits in the eastern section of the Jueluotage orogenic belt (JLOB), which may indicate that the western and eastern sections of the belt have the same ore-forming potential. Full article
(This article belongs to the Special Issue Metallogenesis of the Central Asian Orogenic Belt)
Show Figures

Figure 1

27 pages, 13692 KiB  
Article
Evolution of the Hydrothermal Fluids Inferred from the Occurrence and Isotope Characteristics of the Carbonate Minerals at the Pogo Gold Deposit, Alaska, USA
by Yuichi Morishita and Jamie R. Rogers
Minerals 2025, 15(1), 67; https://doi.org/10.3390/min15010067 - 12 Jan 2025
Viewed by 1095
Abstract
Pogo is identified as a deep-seated, intrusion-related gold deposit. Carbonate minerals have a close spatial relationship to hydrothermal gold mineralization in all of its principal ore zones. The carbon and oxygen isotopic ratios of carbonate minerals (siderite, ankerite, and calcite) present within the [...] Read more.
Pogo is identified as a deep-seated, intrusion-related gold deposit. Carbonate minerals have a close spatial relationship to hydrothermal gold mineralization in all of its principal ore zones. The carbon and oxygen isotopic ratios of carbonate minerals (siderite, ankerite, and calcite) present within the deposit illustrate the isotopic evolution of the ore-forming fluid. The initial hydrothermal fluid phase is interpreted to be magmatic in origin. The fluid evolution was characterized by a gradual decrease in δ18O and a slight increase in δ13C with decreasing temperature. The dominant carbon-bearing species was CO2, with methane introduced sporadically. Siderite is associated with early-stage mineralization and occurs with ankerite in main-stage ore assemblages. Calcite is recognized in the later stages of mineralization. Gold in the Pogo deposit occurs as native gold, Au-Bi-Te minerals, inclusions in sulfide minerals, or as “invisible gold”. The latter is found in pyrite, chalcopyrite, arsenopyrite, and quartz, based on ion microprobe analysis. The presence of invisible gold in these minerals has significant metallurgical implications for gold processing at the Pogo mine. Full article
(This article belongs to the Special Issue Geochemistry and Genesis of Hydrothermal Ore Deposits)
Show Figures

Figure 1

22 pages, 4121 KiB  
Article
Geochemistry and Fluid Inclusion of Epithermal Gold-Silver Deposits in Kamchatka, Russia
by Maria Shapovalova, Elena Shaparenko and Nadezhda Tolstykh
Minerals 2025, 15(1), 2; https://doi.org/10.3390/min15010002 - 24 Dec 2024
Cited by 2 | Viewed by 1344
Abstract
The work focuses on five epithermal Au-Ag deposits of the Kamchatka volcanogenic belts: Rodnikovoe, Baranyevskoe, Kumroch, Lazurnoe (adularia-sericite type–Ad-Ser) and Maletoyvayam (acid-sulfate type–Ac-Sul). The geochemical characteristics of the deposits were presented based on the results of ICP-OES and fire-assay analysis. The compositions and [...] Read more.
The work focuses on five epithermal Au-Ag deposits of the Kamchatka volcanogenic belts: Rodnikovoe, Baranyevskoe, Kumroch, Lazurnoe (adularia-sericite type–Ad-Ser) and Maletoyvayam (acid-sulfate type–Ac-Sul). The geochemical characteristics of the deposits were presented based on the results of ICP-OES and fire-assay analysis. The compositions and physicochemical parameters of ore-forming fluids were based on microthermometry, Raman spectroscopy and gas chromatography-mass spectrometry. It was shown that all deposits were comparable in terms of temperatures, salinity and the predominance of H2O and CO2 in ore-forming fluids. The deposits were formed at temperatures of 160–308 °C by aqueous fluids with salinities of 0.5–6.8 wt. % (NaCl-eq.). The Maletoyvayam deposit differed from the other ones in significant enrichment in Se, Te, Sb, Bi and As, as well as much higher concentrations of hydrocarbons, nitrogenated and sulfonated compounds (31.4 rel.% in total) in the composition of fluid inclusions. This gave us a reason to assume that organic compounds favourably affected the concentrations of these elements in the mineralising fluid. Kumroch and Lazurnoe were distinguished from Rodnikovoe and Baranyevskoe by high Zn, Pb and Cu contents, where each of them represented a single system combining both Ad-Ser type epithermal gold-silver and copper porphyry mineralisations. The presence of alkanes, esters, ketones, carboxylic acids and aldehydes in different quantities at all deposits were indicators of the combination of biogenic and thermogenic origins of organic compounds. The contents of ore-forming elements in ores were consistent with the specificity of mineral assemblages in the Kamchatka deposits. Full article
Show Figures

Figure 1

30 pages, 7429 KiB  
Article
Isotope Geochemistry and Metallogenic Model of the Bailugou Vein-Type Zn-Pb-Ag Deposit, Eastern Qinling Orogen, China
by Yan Yang, Hui Chen, Nana Guo, Donghao Wu, Zhenshan Pang and Yanjing Chen
Minerals 2024, 14(12), 1244; https://doi.org/10.3390/min14121244 - 6 Dec 2024
Cited by 1 | Viewed by 888
Abstract
The large-scale vein-type Zn-Pb-Ag deposit in the Eastern Qinling Orogen (EQO) has sparked a long-standing debate over whether magmatism or metamorphism was the primary control or factor in its formation. Among the region’s vein-type deposits, the large-sized Bailugou deposit offers a unique opportunity [...] Read more.
The large-scale vein-type Zn-Pb-Ag deposit in the Eastern Qinling Orogen (EQO) has sparked a long-standing debate over whether magmatism or metamorphism was the primary control or factor in its formation. Among the region’s vein-type deposits, the large-sized Bailugou deposit offers a unique opportunity to study this style of mineralization. Similar to other deposits in the area, the vein-type orebodies of the Bailugou deposit are hosted in dolomitic marbles (carbonate–shale–chert association, CSC) of the Mesoproterozoic Guandaokou Group. Faults control the distribution of the Bailugou deposit but do not show apparent spatial links to the regional Yanshanian granitic porphyry. This study conducted comprehensive H–O–C–S–Pb isotopic analyses to constrain the sources of the ore-forming metals and metal endowments of the Bailugou deposit. The δ34SCDT values of sulfides range from 1.1‰ to 9.1‰ with an average of 4.0‰, indicating that the sulfur generated from homogenization during the high-temperature source acted on host sediments. The Pb isotopic compositions obtained from 31 sulfide samples reveal that the lead originated from the host sediments rather than from the Mesozoic granitic intrusions. The results indicate that the metals for the Bailugou deposit were jointly sourced from host sediments of the Mid-Late Proterozoic Meiyaogou Fm. and the Nannihu Fm. of the Luanchuan Group and Guandaokou Group, as well as lower crust and mantle materials. The isotopic composition of carbon, hydrogen, and oxygen collectively indicate that the metallogenic constituents of the Bailugou deposit were contributed by ore-bearing surrounding rocks, lower crust, and mantle materials. In summary, the study presents a composite geologic-metallogenic model suggesting that the Bailugou mineral system, along with other lead-zinc-silver deposits, porphyry-skarn molybdenum-tungsten deposits, and the small granitic intrusions in the Luanchuan area, are all products of contemporaneous hydrothermal diagenetic mineralization. This mineralization event transpired during a continental collision regime between the Yangtze and the North China Block (including syn- to post-collisional settings), particularly during the transition from collisional compression to extension around 140 Ma. The Bailugou lead-zinc-silver mineralization resembles an orogenic-type deposit formed by metamorphic fluid during the Yanshanian Orogeny. Full article
Show Figures

Figure 1

26 pages, 8215 KiB  
Article
Genesis of the Bailugou Vein-Type Zinc-Lead-Silver Deposit, Eastern Qinling Orogen, China: Constraints from Ore Geology and Fluid Inclusions
by Yan Yang, Nana Guo, Hui Chen, Donghao Wu, Zhenshan Pang and Yanjing Chen
Minerals 2024, 14(11), 1119; https://doi.org/10.3390/min14111119 - 4 Nov 2024
Cited by 1 | Viewed by 1003
Abstract
The Bailugou vein-type zinc-lead-silver deposit is located in the Eastern Qinling Orogen, China. There has been a long-standing debate about whether its formation is related to magmatism or metamorphism. To determine the origin of ore-forming materials and fluids, we conducted a geological and [...] Read more.
The Bailugou vein-type zinc-lead-silver deposit is located in the Eastern Qinling Orogen, China. There has been a long-standing debate about whether its formation is related to magmatism or metamorphism. To determine the origin of ore-forming materials and fluids, we conducted a geological and fluid inclusion investigation of the Bailugou. Field surveys show that the vein-type orebodies are controlled by faults in the dolomitic marbles of the Mesoproterozoic Guandaokou Group, and they are distal to the regional Yanshanian intrusions. Four ore stages, i.e., quartz–pyrite ± sphalerite (Stage 1), quartz–polymetallic sulfides (Stage 2), dolomite–polymetallic sulfides (Stage 3), and calcite (Stage 4), are identified through microscopic observation. The homogenization temperatures of measured fluid inclusions vary in the range of 100 °C to 400 °C, with the dominating concentration at 350 °C to 400 °C, displaying a descending trend from early to late stages. The estimated formation depth of the Bailugou deposit varies from 2 km to 12 km, which is deeper than the metallogenic limit of the epithermal hydrothermal deposit but conforms to the typical characteristics of a fault-controlled deposit. The ore-forming fluid in Stage 1 originates from a fluid mixture and experiences a phase separation (or fluid immiscibility) between the metamorphic-sourced fluid and the fluids associated with ore-bearing carbonate-shale-chert association (CSC) strata. This process results in the transition to metamorphic hydrothermal fluid due to water–rock interactions in Stage 2, culminating in gradual weakening and potential fluid boiling during the mineralization of Stage 3. Collectively, the Bailugou lead-zinc-silver mineralization resembles an orogenic-type deposit formed by metamorphic fluids in the Qinling Yanshanian intracontinental orogeny. Full article
Show Figures

Figure 1

22 pages, 23051 KiB  
Article
The Sources of Ore-Forming Materials and Fluids for the Jinqingding Gold Deposit in the Mouping–Rushan Metallogenic Belt, Jiaodong Peninsula: Evidence from S-H-O Isotopes and Trace Elements in Pyrite
by Xin Huang, Deyou Sun, Song Yu, Yongjun Wang, Lijun Shen, Yubao Shao, Changyong Lu, Qian Song and Tingting Xiao
Minerals 2024, 14(11), 1064; https://doi.org/10.3390/min14111064 - 23 Oct 2024
Cited by 1 | Viewed by 933
Abstract
The Jinqingding gold deposit, characterized as an extra-large quartz-vein-type deposit, is located in the middle of the Mouping–Rushan metallogenic belt in the Jiaodong Peninsula, and there is still controversy over its sources of ore-forming materials and fluids. This paper divides the mineralization of [...] Read more.
The Jinqingding gold deposit, characterized as an extra-large quartz-vein-type deposit, is located in the middle of the Mouping–Rushan metallogenic belt in the Jiaodong Peninsula, and there is still controversy over its sources of ore-forming materials and fluids. This paper divides the mineralization of Jinqinding gold deposits into four stages, based on a field geological investigation and indoor petrographic observations: (1) coarse-grained pyrite–quartz stage, (2) quartz–fine-grained pyrite stage, (3) quartz–polymetallic sulfide stage, and (4) quartz–carbonate stage. The quartz fluid inclusions showed δD values of −96.0 to −81.8‰ and δOV-SMOW values of 0.70 to 6.32‰, indicating that the ore-forming fluids were mainly magmatic water, with some metamorphic water and atmospheric precipitation. The in situ δ34S values in different subzones of the pyrites of the Jinqingding gold deposit range from 6.69 to 10.86‰. The δ34S value range of the Jinqingding gold deposit is basically consistent with the contemporaneous intermediate–basic dikes in the region, suggesting a shared material source. In situ LA-ICP-MS geochemical analyses of the pyrites show large variations of Co/Ni ratios (0.21 to 99.5), which suggest a hydrothermal origin for the gold deposit. We infer that the ore-forming fluid of the Jinqingding gold deposit originated from the magma from the upper mantle and the mantle–crust transition zone. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

Back to TopTop