Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (648)

Search Parameters:
Keywords = orientation representation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3619 KiB  
Article
An Adaptive Underwater Image Enhancement Framework Combining Structural Detail Enhancement and Unsupervised Deep Fusion
by Semih Kahveci and Erdinç Avaroğlu
Appl. Sci. 2025, 15(14), 7883; https://doi.org/10.3390/app15147883 - 15 Jul 2025
Abstract
The underwater environment severely degrades image quality by absorbing and scattering light. This causes significant challenges, including non-uniform illumination, low contrast, color distortion, and blurring. These degradations compromise the performance of critical underwater applications, including water quality monitoring, object detection, and identification. To [...] Read more.
The underwater environment severely degrades image quality by absorbing and scattering light. This causes significant challenges, including non-uniform illumination, low contrast, color distortion, and blurring. These degradations compromise the performance of critical underwater applications, including water quality monitoring, object detection, and identification. To address these issues, this study proposes a detail-oriented hybrid framework for underwater image enhancement that synergizes the strengths of traditional image processing with the powerful feature extraction capabilities of unsupervised deep learning. Our framework introduces a novel multi-scale detail enhancement unit to accentuate structural information, followed by a Latent Low-Rank Representation (LatLRR)-based simplification step. This unique combination effectively suppresses common artifacts like oversharpening, spurious edges, and noise by decomposing the image into meaningful subspaces. The principal structural features are then optimally combined with a gamma-corrected luminance channel using an unsupervised MU-Fusion network, achieving a balanced optimization of both global contrast and local details. The experimental results on the challenging Test-C60 and OceanDark datasets demonstrate that our method consistently outperforms state-of-the-art fusion-based approaches, achieving average improvements of 7.5% in UIQM, 6% in IL-NIQE, and 3% in AG. Wilcoxon signed-rank tests confirm that these performance gains are statistically significant (p < 0.01). Consequently, the proposed method significantly mitigates prevalent issues such as color aberration, detail loss, and artificial haze, which are frequently encountered in existing techniques. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

20 pages, 4820 KiB  
Article
Sem-SLAM: Semantic-Integrated SLAM Approach for 3D Reconstruction
by Shuqi Liu, Yufeng Zhuang, Chenxu Zhang, Qifei Li and Jiayu Hou
Appl. Sci. 2025, 15(14), 7881; https://doi.org/10.3390/app15147881 - 15 Jul 2025
Abstract
Under the upsurge of research on the integration of Simultaneous Localization and Mapping (SLAM) and neural implicit representation, existing methods exhibit obvious limitations in terms of environmental semantic parsing and scene understanding capabilities. In response to this, this paper proposes a SLAM system [...] Read more.
Under the upsurge of research on the integration of Simultaneous Localization and Mapping (SLAM) and neural implicit representation, existing methods exhibit obvious limitations in terms of environmental semantic parsing and scene understanding capabilities. In response to this, this paper proposes a SLAM system that integrates a full attention mechanism and a multi-scale information extractor. This system constructs a more accurate 3D environmental model by fusing semantic, shape, and geometric orientation features. Meanwhile, to deeply excavate the semantic information in images, a pre-trained frozen 2D segmentation algorithm is employed to extract semantic features, providing a powerful support for 3D environmental reconstruction. Furthermore, a multi-layer perceptron and interpolation techniques are utilized to extract multi-scale features, distinguishing information at different scales. This enables the effective decoding of semantic, RGB, and Truncated Signed Distance Field (TSDF) values from the fused features, achieving high-quality information rendering. Experimental results demonstrate that this method significantly outperforms the baseline-based methods in terms of mapping and tracking accuracy on the Replica and ScanNet datasets. It also shows superior performance in semantic segmentation and real-time semantic mapping tasks, offering a new direction for the development of SLAM technology. Full article
(This article belongs to the Special Issue Applications of Data Science and Artificial Intelligence)
Show Figures

Figure 1

24 pages, 8171 KiB  
Article
Breast Cancer Image Classification Using Phase Features and Deep Ensemble Models
by Edgar Omar Molina Molina and Victor H. Diaz-Ramirez
Appl. Sci. 2025, 15(14), 7879; https://doi.org/10.3390/app15147879 - 15 Jul 2025
Abstract
Breast cancer is a leading cause of mortality among women worldwide. Early detection is crucial for increasing patient survival rates. Artificial intelligence, particularly convolutional neural networks (CNNs), has enabled the development of effective diagnostic systems by digitally processing mammograms. CNNs have been widely [...] Read more.
Breast cancer is a leading cause of mortality among women worldwide. Early detection is crucial for increasing patient survival rates. Artificial intelligence, particularly convolutional neural networks (CNNs), has enabled the development of effective diagnostic systems by digitally processing mammograms. CNNs have been widely used for the classification of breast cancer in images, obtaining accurate results similar in many cases to those of medical specialists. This work presents a hybrid feature extraction approach for breast cancer detection that employs variants of EfficientNetV2 network and convenient image representation based on phase features. First, a region of interest (ROI) is extracted from the mammogram. Next, a three-channel image is created using the local phase, amplitude, and orientation features of the ROI. A feature vector is constructed for the processed mammogram using the developed CNN model. The size of the feature vector is reduced using simple statistics, achieving a redundancy suppression of 99.65%. The reduced feature vector is classified as either malignant or benign using a classifier ensemble. Experimental results using a training/testing ratio of 70/30 on 15,506 mammography images from three datasets produced an accuracy of 86.28%, a precision of 78.75%, a recall of 86.14%, and an F1-score of 80.09% with the modified EfficientNetV2 model and stacking classifier. However, an accuracy of 93.47%, a precision of 87.61%, a recall of 93.19%, and an F1-score of 90.32% were obtained using only CSAW-M dataset images. Full article
(This article belongs to the Special Issue Object Detection and Image Processing Based on Computer Vision)
Show Figures

Figure 1

20 pages, 1012 KiB  
Article
Interaction with Tactile Paving in a Virtual Reality Environment: Simulation of an Urban Environment for People with Visual Impairments
by Nikolaos Tzimos, Iordanis Kyriazidis, George Voutsakelis, Sotirios Kontogiannis and George Kokkonis
Multimodal Technol. Interact. 2025, 9(7), 71; https://doi.org/10.3390/mti9070071 - 14 Jul 2025
Viewed by 130
Abstract
Blindness and low vision are increasing serious public health issues that affect a significant percentage of the population worldwide. Vision plays a crucial role in spatial navigation and daily activities. Its reduction or loss creates numerous challenges for an individual. Assistive technology can [...] Read more.
Blindness and low vision are increasing serious public health issues that affect a significant percentage of the population worldwide. Vision plays a crucial role in spatial navigation and daily activities. Its reduction or loss creates numerous challenges for an individual. Assistive technology can enhance mobility and navigation in outdoor environments. In the field of orientation and mobility training, technologies with haptic interaction can assist individuals with visual impairments in learning how to navigate safely and effectively using the sense of touch. This paper presents a virtual reality platform designed to support the development of navigation techniques within a safe yet realistic environment, expanding upon existing research in the field. Following extensive optimization, we present a visual representation that accurately simulates various 3D tile textures using graphics replicating real tactile surfaces. We conducted a user interaction study in a virtual environment consisting of 3D navigation tiles enhanced with tactile textures, placed appropriately for a real-world scenario, to assess user performance and experience. This study also assess the usability and user experience of the platform. We hope that the findings will contribute to the development of new universal navigation techniques for people with visual impairments. Full article
Show Figures

Figure 1

19 pages, 2468 KiB  
Article
A Dual-Branch Spatial-Frequency Domain Fusion Method with Cross Attention for SAR Image Target Recognition
by Chao Li, Jiacheng Ni, Ying Luo, Dan Wang and Qun Zhang
Remote Sens. 2025, 17(14), 2378; https://doi.org/10.3390/rs17142378 - 10 Jul 2025
Viewed by 217
Abstract
Synthetic aperture radar (SAR) image target recognition has important application values in security reconnaissance and disaster monitoring. However, due to speckle noise and target orientation sensitivity in SAR images, traditional spatial domain recognition methods face challenges in accuracy and robustness. To effectively address [...] Read more.
Synthetic aperture radar (SAR) image target recognition has important application values in security reconnaissance and disaster monitoring. However, due to speckle noise and target orientation sensitivity in SAR images, traditional spatial domain recognition methods face challenges in accuracy and robustness. To effectively address these challenges, we propose a dual-branch spatial-frequency domain fusion recognition method with cross-attention, achieving deep fusion of spatial and frequency domain features. In the spatial domain, we propose an enhanced multi-scale feature extraction module (EMFE), which adopts a multi-branch parallel structure to effectively enhance the network’s multi-scale feature representation capability. Combining frequency domain guided attention, the model focuses on key regional features in the spatial domain. In the frequency domain, we design a hybrid frequency domain transformation module (HFDT) that extracts real and imaginary features through Fourier transform to capture the global structure of the image. Meanwhile, we introduce a spatially guided frequency domain attention to enhance the discriminative capability of frequency domain features. Finally, we propose a cross-domain feature fusion (CDFF) module, which achieves bidirectional interaction and optimal fusion of spatial-frequency domain features through cross attention and adaptive feature fusion. Experimental results demonstrate that our method achieves significantly superior recognition accuracy compared to existing methods on the MSTAR dataset. Full article
Show Figures

Figure 1

20 pages, 252 KiB  
Article
“.____________.” Taking Wittgenstein’s Prayers Seriously
by Urszula Idziak-Smoczyńska
Religions 2025, 16(7), 878; https://doi.org/10.3390/rel16070878 - 8 Jul 2025
Viewed by 227
Abstract
This article examines Wittgenstein’s wartime private notebooks (MS 101–103), shifting attention from his philosophical reflections on religion and prayer to the abundance of written addresses to God found within the coded sections. Wittgenstein’s well-known assertion that “to pray means to think about the [...] Read more.
This article examines Wittgenstein’s wartime private notebooks (MS 101–103), shifting attention from his philosophical reflections on religion and prayer to the abundance of written addresses to God found within the coded sections. Wittgenstein’s well-known assertion that “to pray means to think about the meaning of life” is juxtaposed with direct invocations of God and the Spirit, including the Pater Noster and prayers for courage and submission to the divine will. These invocations, accompanied by strokes or varied long em dashes framed by dots or exclamation marks which Martin Pilch has hypothesized to be symbolic representations of prayers—invite further reflection. Wittgenstein’s religious utterances are not merely outpourings of anguish, but manifestations of a sustained effort to align both life and work with the will of God, and to offer them for His glory. A compelling illustration of this spiritual orientation appears in M. O’C. Drury’s recollection of Wittgenstein’s declaration that his only wish was for his work to conform to the divine will. The interplay between philosophical inquiry and prayer evokes the Confessions of Saint Augustine, a spirit present throughout Wittgenstein’s work. Augustine’s integration of prayer and confession has similarly inspired 20th-century thinkers such as Jacques Derrida and Jean-François Lyotard. These Augustinian traces challenge conventional understandings of language and its limits, as well as the role of written language and punctuation, demanding a profound hermeneutics of the philosopher’s prayer. Full article
(This article belongs to the Special Issue New Work on Wittgenstein's Philosophy of Religion)
18 pages, 5274 KiB  
Article
DRFW-TQC: Reinforcement Learning for Robotic Strawberry Picking with Dynamic Regularization and Feature Weighting
by Anping Zheng, Zirui Fang, Zixuan Li, Hao Dong and Ke Li
AgriEngineering 2025, 7(7), 208; https://doi.org/10.3390/agriengineering7070208 - 2 Jul 2025
Viewed by 297
Abstract
Strawberry harvesting represents a labor-intensive agricultural operation where existing end-effector pose control algorithms frequently exhibit insufficient precision in fruit grasping, often resulting in unintended damage to target fruits. Concurrently, deep learning-based pose control algorithms suffer from inherent training instability, slow convergence rates, and [...] Read more.
Strawberry harvesting represents a labor-intensive agricultural operation where existing end-effector pose control algorithms frequently exhibit insufficient precision in fruit grasping, often resulting in unintended damage to target fruits. Concurrently, deep learning-based pose control algorithms suffer from inherent training instability, slow convergence rates, and inefficient learning processes in complex environments characterized by high-density fruit clusters and occluded picking scenarios. To address these challenges, this paper proposes an enhanced reinforcement learning framework DRFW-TQC that integrates Dynamic L2 Regularization for adaptive model stabilization and a Group-Wise Feature Weighting Network for discriminative feature representation. The methodology further incorporates a picking posture traction mechanism to optimize end-effector orientation control. The experimental results demonstrate the superior performance of DRFW-TQC compared to the baseline. The proposed approach achieves a 16.0% higher picking success rate and a 20.3% reduction in angular error with four target strawberries. Most notably, the framework’s transfer strategy effectively addresses the efficiency challenge in complex environments, maintaining an 89.1% success rate in eight-strawberry while reducing the timeout count by 60.2% compared to non-adaptive methods. These results confirm that DRFW-TQC successfully resolves the tripartite challenge of operational precision, training stability, and environmental adaptability in robotic fruit harvesting systems. Full article
Show Figures

Figure 1

16 pages, 3735 KiB  
Article
A Novel Trustworthy Toxic Text Detection Method with Entropy-Oriented Invariant Representation Learning for Portuguese Community
by Wenting Fan, Haoyan Song and Jun Zhang
Mathematics 2025, 13(13), 2136; https://doi.org/10.3390/math13132136 - 30 Jun 2025
Viewed by 187
Abstract
With the rapid development of digital technologies, data-driven methods have demonstrated commendable performance in the toxic text detection task. However, several challenges remain unresolved, including the inability to fully capture the nuanced semantic information embedded in text languages, the lack of robust mechanisms [...] Read more.
With the rapid development of digital technologies, data-driven methods have demonstrated commendable performance in the toxic text detection task. However, several challenges remain unresolved, including the inability to fully capture the nuanced semantic information embedded in text languages, the lack of robust mechanisms to handle the inherent uncertainty of text languages, and the utilization of static fusion strategies for multi-view information. To address these issues, this paper proposes a comprehensive and dynamic toxic text detection method. Specifically, we design a multi-view feature augmentation module by combining bidirectional long short-term memory and BERT as a dual-stream framework. This module captures a more holistic representation of semantic information by learning both local and global features of texts. Next, we introduce an entropy-oriented invariant learning module by minimizing the conditional entropy between view-specific representations to align consistent information, thereby enhancing the representation generalization. Meanwhile, we devise a trustworthy text recognition module by defining the Dirichlet function to model uncertainty estimation of text prediction. And then, we perform the evidence-based information fusion strategy to dynamically aggregate decision information between views with the help of the Dirichlet distribution. Through these components, the proposed method aims to overcome the limitations of traditional methods and provide a more accurate and reliable solution for toxic language detection. Finally, extensive experiments on the two real-world datasets show the effectiveness and superiority of the proposed method in comparison with seven methods. Full article
(This article belongs to the Special Issue Artificial Intelligence and Data Science, 2nd Edition)
Show Figures

Figure 1

24 pages, 25315 KiB  
Article
PAMFPN: Position-Aware Multi-Kernel Feature Pyramid Network with Adaptive Sparse Attention for Robust Object Detection in Remote Sensing Imagery
by Xiaofei Yang, Suihua Xue, Lin Li, Sihuan Li, Yudong Fang, Xiaofeng Zhang and Xiaohui Huang
Remote Sens. 2025, 17(13), 2213; https://doi.org/10.3390/rs17132213 - 27 Jun 2025
Viewed by 318
Abstract
Deep learning methods have achieved remarkable success in remote sensing object detection. Existing object detection methods focus on integrating convolutional neural networks (CNNs) and Transformer networks to explore local and global representations to improve performance. However, existing methods relying on fixed convolutional kernels [...] Read more.
Deep learning methods have achieved remarkable success in remote sensing object detection. Existing object detection methods focus on integrating convolutional neural networks (CNNs) and Transformer networks to explore local and global representations to improve performance. However, existing methods relying on fixed convolutional kernels and dense global attention mechanisms suffer from computational redundancy and insufficient discriminative feature extraction, particularly for small and rotation-sensitive targets. To address these limitations, we propose a Dynamic Multi-Kernel Position-Aware Feature Pyramid Network (PAMFPN), which integrates adaptive sparse position modeling and multi-kernel dynamic fusion to achieve robust feature representation. Firstly, we design a position-interactive context module (PICM) that incorporates distance-aware sparse attention and dynamic positional encoding. It selectively focuses computation on sparse targets through a decay function that suppresses background noise while enhancing spatial correlations of critical regions. Secondly, we design a dual-kernel adaptive fusion (DKAF) architecture by combining region-sensitive attention (RSA) and reconfigurable context aggregation (RCA). RSA employs orthogonal large-kernel convolutions to capture anisotropic spatial features for arbitrarily oriented targets, while RCA dynamically adjusts the kernel scales based on content complexity, effectively addressing scale variations and intraclass diversity. Extensive experiments on three benchmark datasets (DOTA-v1.0, SSDD, HWPUVHR-10) demonstrate the effectiveness and versatility of the proposed PAMFPN. This work bridges the gap between efficient computation and robust feature fusion in remote sensing detection, offering a universal solution for real-world applications. Full article
(This article belongs to the Special Issue AI-Driven Hyperspectral Remote Sensing of Atmosphere and Land)
Show Figures

Figure 1

27 pages, 6102 KiB  
Article
Inverse Kinematics for Robotic Manipulators via Deep Neural Networks: Experiments and Results
by Ana Calzada-Garcia, Juan G. Victores, Francisco J. Naranjo-Campos and Carlos Balaguer
Appl. Sci. 2025, 15(13), 7226; https://doi.org/10.3390/app15137226 - 26 Jun 2025
Viewed by 306
Abstract
This paper explores the application of Deep Neural Networks (DNNs) to solve the Inverse Kinematics (IK) problem in robotic manipulators. The IK problem, crucial for ensuring precision in robotic movements, involves determining joint configurations for a manipulator to reach a desired position or [...] Read more.
This paper explores the application of Deep Neural Networks (DNNs) to solve the Inverse Kinematics (IK) problem in robotic manipulators. The IK problem, crucial for ensuring precision in robotic movements, involves determining joint configurations for a manipulator to reach a desired position or orientation. Traditional methods, such as analytical and numerical approaches, have limitations, especially for redundant manipulators, or involve high computational costs. Recent advances in machine learning, particularly with DNNs, have shown promising results and seem fit for addressing these challenges. This study investigates several DNN architectures, namely Feed-Forward Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), and Recurrent Neural Networks (RNNs), for solving the IK problem, using the TIAGo robotic arm with seven Degrees of Freedom (DOFs). Different training datasets, normalization techniques, and orientation representations are tested, and custom metrics are introduced to evaluate position and orientation errors. The performance of these models is compared, with a focus on curriculum learning to optimize training. The results demonstrate the potential of DNNs to efficiently solve the IK problem while avoiding issues such as singularities, competing with traditional methods in precision and speed. Full article
(This article belongs to the Special Issue Technological Breakthroughs in Automation and Robotics)
Show Figures

Figure 1

26 pages, 6668 KiB  
Article
Dark Ship Detection via Optical and SAR Collaboration: An Improved Multi-Feature Association Method Between Remote Sensing Images and AIS Data
by Fan Li, Kun Yu, Chao Yuan, Yichen Tian, Guang Yang, Kai Yin and Youguang Li
Remote Sens. 2025, 17(13), 2201; https://doi.org/10.3390/rs17132201 - 26 Jun 2025
Viewed by 379
Abstract
Dark ships, vessels deliberately disabling their AIS signals, constitute a grave maritime safety hazard, with detection efforts hindered by issues like over-reliance on AIS, inadequate surveillance coverage, and significant mismatch rates. This paper proposes an improved multi-feature association method that integrates satellite remote [...] Read more.
Dark ships, vessels deliberately disabling their AIS signals, constitute a grave maritime safety hazard, with detection efforts hindered by issues like over-reliance on AIS, inadequate surveillance coverage, and significant mismatch rates. This paper proposes an improved multi-feature association method that integrates satellite remote sensing and AIS data, with a focus on oriented bounding box course estimation, to improve the detection of dark ships and enhance maritime surveillance. Firstly, the oriented bounding box object detection model (YOLOv11n-OBB) is trained to break through the limitations of horizontal bounding box orientation representation. Secondly, by integrating position, dimensions (length and width), and course characteristics, we devise a joint cost function to evaluate the combined significance of multiple features. Subsequently, an advanced JVC global optimization algorithm is employed to ensure high-precision association in dense scenes. Finally, by integrating data from Gaofen-6 (optical) and Gaofen-3B (SAR) satellites, a day-and-night collaborative monitoring framework is constructed to address the blind spots of single-sensor monitoring during night-time or adverse weather conditions. Our results indicate that the detection model demonstrates a high average precision (AP50) of 0.986 on the optical dataset and 0.903 on the SAR dataset. The association accuracy of the multi-feature association algorithm is 91.74% in optical image and AIS data matching, and 91.33% in SAR image and AIS data matching. The association rate reaches 96.03% (optical) and 74.24% (SAR), respectively. This study provides an efficient technical tool for maritime safety regulation through multi-source data fusion and algorithm innovation. Full article
Show Figures

Graphical abstract

20 pages, 5589 KiB  
Article
Representations of Divinity Among Romanian Senior Students in Orthodox Theology Vocational High School
by Monica Defta and Daniela Sorea
Religions 2025, 16(7), 839; https://doi.org/10.3390/rel16070839 - 25 Jun 2025
Viewed by 344
Abstract
The process of secularization was long considered irreversible and characteristic of all contemporary culture. Nonetheless, more recent approaches view it as strictly linked to Western religiosity and in relation to a process of de-secularization and post-secular orientations regarding the sacred. For Romanian Orthodox [...] Read more.
The process of secularization was long considered irreversible and characteristic of all contemporary culture. Nonetheless, more recent approaches view it as strictly linked to Western religiosity and in relation to a process of de-secularization and post-secular orientations regarding the sacred. For Romanian Orthodox theologians, secularization represents more of a trial than a danger. The current article presents the results of qualitative research regarding the religiosity of future graduates of Orthodox vocational theological high schools in Romania. The students enrolled in the research were asked to graphically represent God and briefly explain their drawings. The data were theoretically coded and compared with the canonical attributes of God as acknowledged by Orthodox theology. The results indicated the canonical correctness of students’ representations of divinity. Orthodox vocational high school education proves to be effective in imposing the Christian dogmatic line to the detriment of popular religiosity characterized by old pre-Christian beliefs and practices. Full article
Show Figures

Figure 1

17 pages, 1312 KiB  
Article
Uncertainty Detection: A Multi-View Decision Boundary Approach Against Healthcare Unknown Intents
by Yongxiang Zhang and Raymond Y. K. Lau
Appl. Sci. 2025, 15(13), 7114; https://doi.org/10.3390/app15137114 - 24 Jun 2025
Viewed by 243
Abstract
Chatbots, an automatic dialogue system empowered by deep learning-oriented AI technology, have gained increasing attention in healthcare e-services for their ability to provide medical information around the clock. A formidable challenge is that chatbot dialogue systems have difficulty handling queries with unknown intents [...] Read more.
Chatbots, an automatic dialogue system empowered by deep learning-oriented AI technology, have gained increasing attention in healthcare e-services for their ability to provide medical information around the clock. A formidable challenge is that chatbot dialogue systems have difficulty handling queries with unknown intents due to the technical bottleneck and restricted user-intent answering scope. Furthermore, the wide variation in a user’s consultation needs and levels of medical knowledge further complicates the chatbot’s ability to understand natural human language. Failure to deal with unknown intents may lead to a significant risk of incorrect information acquisition. In this study, we develop an unknown intent detection model to facilitate chatbots’ decisions in responding to uncertain queries. Our work focuses on algorithmic innovation for high-risk healthcare scenarios, where asymmetric knowledge between patients and experts exacerbates intent recognition challenges. Given the multi-role context, we propose a novel query representation learning approach involving multiple views from chatbot users, medical experts, and system developers. Unknown intent detection is then accomplished through the transformed representation of each query, leveraging adaptive determination of intent decision boundaries. We conducted laboratory-level experiments and empirically validated the proposed method based on the real-world user query data from the Tianchi lab and medical information from the Xunyiwenyao website. Across all tested unknown intent ratios (25%, 50%, and 75%), our multi-view boundary learning method was proven to outperform all benchmark models on the metrics of accuracy score, macro F1-score, and macro F1-scores over known intent classes and over the unknown intent class. Full article
(This article belongs to the Special Issue Digital Innovations in Healthcare)
Show Figures

Figure 1

25 pages, 14188 KiB  
Article
WDARFNet: A Wavelet-Domain Adaptive Receptive Field Network for Improved Oriented Object Detection in Remote Sensing
by Jie Yang, Li Zhou and Yongfeng Ju
Appl. Sci. 2025, 15(13), 7035; https://doi.org/10.3390/app15137035 - 22 Jun 2025
Viewed by 536
Abstract
Oriented object detection in remote sensing images is a particularly challenging task, especially when it involves detecting tiny, densely arranged, or occluded objects. Moreover, such remote sensing images are often susceptible to noise, which significantly increases the difficulty of the task. To address [...] Read more.
Oriented object detection in remote sensing images is a particularly challenging task, especially when it involves detecting tiny, densely arranged, or occluded objects. Moreover, such remote sensing images are often susceptible to noise, which significantly increases the difficulty of the task. To address these challenges, we introduce the Wavelet-Domain Adaptive Receptive Field Network (WDARFNet), a novel architecture that combines Convolutional Neural Networks (CNNs) with Discrete Wavelet Transform (DWT) to enhance feature extraction and noise robustness. WDARFNet employs DWT to decompose feature maps into four distinct frequency components. Through ablation experiments, we demonstrate that selectively combining specific high-frequency and low-frequency features enhances the network’s representational capacity. Discarding diagonal high-frequency features, which contain significant noise, further enhances the model’s noise robustness. In addition, to capture long-range contextual information and adapt to varying object sizes and occlusions, WDARFNet incorporates a selective kernel mechanism. This strategy dynamically adjusts the receptive field based on the varying shapes of objects, ensuring optimal feature extraction for diverse objects. The streamlined and efficient WDARFNet achieves state-of-the-art performance on three challenging remote sensing object detection benchmarks: DOTA-v1.0, DIOR-R, and HRSC2016. Full article
(This article belongs to the Special Issue Advances in Image Recognition and Processing Technologies)
Show Figures

Figure 1

17 pages, 6780 KiB  
Article
A Metric Learning-Based Improved Oriented R-CNN for Wildfire Detection in Power Transmission Corridors
by Xiaole Wang, Bo Wang, Peng Luo, Leixiong Wang and Yurou Wu
Sensors 2025, 25(13), 3882; https://doi.org/10.3390/s25133882 - 22 Jun 2025
Viewed by 309
Abstract
Wildfire detection in power transmission corridors is essential for providing timely warnings and ensuring the safe and stable operation of power lines. However, this task faces significant challenges due to the large number of smoke-like samples in the background, the complex and diverse [...] Read more.
Wildfire detection in power transmission corridors is essential for providing timely warnings and ensuring the safe and stable operation of power lines. However, this task faces significant challenges due to the large number of smoke-like samples in the background, the complex and diverse target morphologies, and the difficulty of detecting small-scale smoke and flame objects. To address these issues, this paper proposed an improved Oriented R-CNN model enhanced with metric learning for wildfire detection in power transmission corridors. Specifically, a multi-center metric loss (MCM-Loss) module based on metric learning was introduced to enhance the model’s ability to differentiate features of similar targets, thereby improving the recognition accuracy in the presence of interference. Experimental results showed that the introduction of the MCM-Loss module increased the average precision (AP) for smoke targets by 2.7%. In addition, the group convolution-based network ResNeXt was adopted to replace the original backbone network ResNet, broadening the channel dimensions of the feature extraction network and enhancing the model’s capability to detect flame and smoke targets with diverse morphologies. This substitution led to a 0.6% improvement in mean average precision (mAP). Furthermore, an FPN-CARAFE module was designed by incorporating the content-aware up-sampling operator CARAFE, which improved multi-scale feature representation and significantly boosted performance in detecting small targets. In particular, the proposed FPN-CARAFE module improved the AP for fire targets by 8.1%. Experimental results demonstrated that the proposed model achieved superior performance in wildfire detection within power transmission corridors, achieving a mAP of 90.4% on the test dataset—an improvement of 6.4% over the baseline model. Compared with other commonly used object detection algorithms, the model developed in this study exhibited improved detection performance on the test dataset, offering research support for wildfire monitoring in power transmission corridors. Full article
(This article belongs to the Special Issue Object Detection and Recognition Based on Deep Learning)
Show Figures

Figure 1

Back to TopTop