Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (227)

Search Parameters:
Keywords = organic farming cultivation systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1056 KiB  
Article
Dual Production of Full-Fat Soy and Expanded Soybean Cake from Non-GMO Soybeans: Agronomic and Nutritional Insights Under Semi-Organic Cultivation
by Krystian Ambroziak and Anna Wenda-Piesik
Appl. Sci. 2025, 15(15), 8154; https://doi.org/10.3390/app15158154 - 22 Jul 2025
Viewed by 254
Abstract
The diversification of plant protein sources is a strategic priority for European food systems, particularly under the EU Green Deal and Farm to Fork strategies. In this study, dual production of full-fat soy (FFS) and expanded soybean cake (ESC) was evaluated using non-GMO [...] Read more.
The diversification of plant protein sources is a strategic priority for European food systems, particularly under the EU Green Deal and Farm to Fork strategies. In this study, dual production of full-fat soy (FFS) and expanded soybean cake (ESC) was evaluated using non-GMO soybeans cultivated under semi-organic conditions in Central Poland. Two agronomic systems—post-emergence mechanical weeding with rotary harrow weed control (P1) and conventional herbicide-based control (P2)—were compared over a four-year period. The P1 system produced consistently higher yields (e.g., 35.6 dt/ha in 2024 vs. 33.4 dt/ha in P2) and larger seed size (TSW: up to 223 g). Barothermal and press-assisted processing yielded FFS with protein content of 32.4–34.5% and oil content of 20.8–22.4%, while ESC exhibited enhanced characteristics: higher protein (37.4–39.0%), lower oil (11.6–13.3%), and elevated dietary fiber (15.8–16.3%). ESC also showed reduced anti-nutritional factors (e.g., trypsin inhibitors and phytic acid) and remained microbiologically and oxidatively stable over six months. The semi-organic P1 system offers a scalable, low-input approach to local soy production, while the dual-product model supports circular, zero-waste protein systems aligned with EU sustainability targets. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

20 pages, 1341 KiB  
Article
Endophytic Diversity in Sicilian Olive Trees: Identifying Optimal Conditions for a Functional Microbial Collection
by Dalila Crucitti, Stefano Barone, Salvadora Navarro-Torre, Paola Quatrini, Francesco Carimi, Tiziano Caruso and Davide Pacifico
Microorganisms 2025, 13(7), 1502; https://doi.org/10.3390/microorganisms13071502 - 27 Jun 2025
Viewed by 425
Abstract
This study aims to identify the optimal conditions—host, plant material, seasonality, and agricultural practices—for isolating and developing a collection of culturable endophytic microorganisms to support sustainable Olea europaea L. cultivation. Samples were collected from three Sicilian olive cultivars (‘Nocellara del Belice’, ‘Nocellara Etnea’, [...] Read more.
This study aims to identify the optimal conditions—host, plant material, seasonality, and agricultural practices—for isolating and developing a collection of culturable endophytic microorganisms to support sustainable Olea europaea L. cultivation. Samples were collected from three Sicilian olive cultivars (‘Nocellara del Belice’, ‘Nocellara Etnea’, and ‘Nocellara Messinese’) and six wild olive accessions across different phenological phases and under organic and conventional agronomic management. Endophytes were isolated from leaves and twigs using a culture-dependent approach, and their taxonomic diversity and plant-growth-promoting (PGP) traits were analyzed. A total of 133 endophytic isolates were identified, spanning bacterial (Proteobacteria, Firmicutes, and Actinobacteria) and fungal (Ascomycota and Basidiomycota) phyla. Wild olive trees contributed more than cultivated varieties to enriching the diversity and composition of culturable endophyte collection as well as twigs instead of leaves. Winter sampling allowed to implement the taxonomic genera of olive endophyte collection. Both farming systems favored an increase in the composition of microbial collection, though organic farming systems supported greater microbial richness. Functional analysis highlighted key PGP traits in a selection of bacterial isolates, including indole-3-acetic acid and siderophore production, nitrogen fixation, and antifungal activity. Bacillus spp. dominated enzymatic activities, such as amylase, protease, and lipase production, as well as antifungal activity against the olive fungal pathogen Neofusicoccum vitifusiforme. This research highlights the significant diversity and functional potential of Mediterranean olive endophytes. Our findings emphasize the role of native microbial communities as bio-inoculants, promoting plant growth, nutrient uptake, and disease resistance. These insights lay the groundwork for developing targeted olive-microbial consortia for biocontrol and stress tolerance applications. Full article
(This article belongs to the Special Issue Plant Growth-Promoting Bacteria)
Show Figures

Figure 1

25 pages, 1529 KiB  
Review
From Nutrition to Energy: Evaluating the Role of Rye (Secale cereale L.) Grain in Sustainable Food Systems and Biofuel Applications
by Adam Kleofas Berbeć and Marta Wyzińska
Foods 2025, 14(11), 1971; https://doi.org/10.3390/foods14111971 - 1 Jun 2025
Cited by 1 | Viewed by 671
Abstract
Rye (Secale cereale L.), a cereal with valuable agronomic and nutritional benefits, contributes to sustainable agriculture, especially in areas where more demanding crops cannot be cultivated due to the poor agronomic value of soil. This review explores rye grain quality optimization strategies [...] Read more.
Rye (Secale cereale L.), a cereal with valuable agronomic and nutritional benefits, contributes to sustainable agriculture, especially in areas where more demanding crops cannot be cultivated due to the poor agronomic value of soil. This review explores rye grain quality optimization strategies through production techniques. The quality and yield of grain are under the significant impact of agronomic factors, such as variety selection, crop rotation, soil tillage, fertilization, sowing practices, chemical protection, and harvest timing. It is also under the strong influence of the chosen farm’s management strategy, like organic or conventional farming system. This review emphasizes its diverse potential utilization routes, and the importance of bioactive compounds, dietary fibers, phenolic acids, phytoestrogens, and benzoxazinoids that enhance its value as a functional food. Cereal grain with quality issues cannot be used as food for humans, however, it can still be utilized alternatively as a renewable biofuel. This review showed rye grain to have a potential to contribute to sustainable agriculture and at the same time build farms’ resilience through possible alternative utilization strategies. It can serve as both a food source and a sustainable biofuel, offering a dual-purpose solution within the circular bioeconomy. Full article
Show Figures

Figure 1

14 pages, 864 KiB  
Article
Influence of Cultivation System and Proportion of Local Cultivars ‘Caaveiro’ and ‘Callobre’ in Flour Mixtures on the Nutritional Quality of Galician Bread
by M Pilar España-Fariñas, Joaquín Camba-Carrión, María Belén García-Gómez, María Lourdes Vázquez-Odériz, Matilde Lombardero-Fernández, Santiago Pereira-Lorenzo, Luis Urquijo-Zamora, Ángel Cobos, Olga Díaz and María Ángeles Romero-Rodríguez
Foods 2025, 14(10), 1712; https://doi.org/10.3390/foods14101712 - 13 May 2025
Viewed by 549
Abstract
Bread is one of the main symbols of the culinary heritage of Galicia (NW Spain). This study evaluates the nutritional quality of Galician breads made from local wheat varieties, ‘Caaveiro’ and ‘Callobre’, under organic and conventional farming systems. Breads were prepared using 100% [...] Read more.
Bread is one of the main symbols of the culinary heritage of Galicia (NW Spain). This study evaluates the nutritional quality of Galician breads made from local wheat varieties, ‘Caaveiro’ and ‘Callobre’, under organic and conventional farming systems. Breads were prepared using 100% local wheat flour and a mixture of 25% local flour with 75% commercial flour, in accordance with the Protected Geographical Indication (PGI) ‘Pan Galego’. Nutritional composition was assessed using official AOAC procedures and validated enzymatic assays, including macronutrients, fiber, starch fractions, sugars and minerals. The results reveal that 100% local wheat breads showed significantly higher levels of protein, carbohydrates and minerals, which are beneficial for human health. Specifically, ‘Caaveiro’ breads were richer in protein, while ‘Callobre’ breads exhibited higher carbohydrate and mineral content. Although the cultivation system had a minor effect, it was still relevant when combined with the proportion of local flour. The study highlights the potential of local wheat varieties to enhance the nutritional value of Galician bread. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

22 pages, 1466 KiB  
Article
Crop Technology, Cultivation System, and Maize Production Characteristics
by Daniel Păcurar, Horia Pop, Ioan Oroian, Petru Burduhos, Oana Abrudan (Radu), Cristian Mălinaș and Antonia Cristina Maria Odagiu
Sustainability 2025, 17(9), 4132; https://doi.org/10.3390/su17094132 - 2 May 2025
Viewed by 602
Abstract
The maize crop is an essential contributor to food security. At a global level, it is the cereal with the highest production, and the second imported commodity. This study evaluates the impact of precision agriculture on the morpho-productive traits and agronomic efficiency of [...] Read more.
The maize crop is an essential contributor to food security. At a global level, it is the cereal with the highest production, and the second imported commodity. This study evaluates the impact of precision agriculture on the morpho-productive traits and agronomic efficiency of the Turda 201 maize hybrid under distinct cultivation systems. A bifactorial field trial was conducted in Cojocna, Transylvania (Romania), using two factors: the farming system (organic vs. conventional) and the cultivation technology (standard vs. precision). The work hypothesis is that precision agriculture can enhance maize performance compared to standard methods. The results indicated that morphological traits such as plant height (197 cm), cob length (17.20 cm), and leaf number (10.60) were significantly higher in the conventional system, particularly under precision technology. In the organic system, while improvements were observed with precision input, overall growth and yield remained lower. The same trends are seen in production traits, which are lower in an organic system compared with conventional (6464.22 kg/ha vs. 9204 kg/ha, when precision technology was used). Agronomic efficiency has a spectacular increase in the conventional–precision experimental variant (4.92 kg/kg) compared with the organic–standard experimental variant (0.002 kg/kg). Crude protein, dry matter, nitrogen-free matter, and starch content are the main qualitative maize characteristics influenced by the cropping system and technology. The conventional–precision experimental variant led to the highest values of the above-mentioned parameters compared with the organic–standard experimental variant (86.90% vs. 83.60% dry matter; 10.75% vs. 8.65% crude protein; 72.60% vs. 64.40% nitrogen-free matter; 83.15% vs. 79.50% starch). Principal Component Analysis revealed that the crop system (PC1) was the dominant factor influencing morpho-productive traits, while environmental factors (PC2) contributed mainly to the variability of the characteristics. These findings support the use of precision agriculture as a tool for enhancing sustainable maize production, particularly in conventional systems. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

10 pages, 226 KiB  
Review
Enhancing Agroecosystem Sustainability by Means of Cover Crops in the Era of Climate Change
by Ioannis Gazoulis, Panagiotis Kanatas, Dimitra Petraki, Nikolaos Antonopoulos, Metaxia Kokkini, Marios Danaskos and Ilias Travlos
Agronomy 2025, 15(5), 1051; https://doi.org/10.3390/agronomy15051051 - 27 Apr 2025
Viewed by 626
Abstract
Climate change has become one of the biggest challenges for farmers, advisors, researchers, and policymakers in recent years. Concerns about food security and the economic future have led these groups to search for methods to adapt to and mitigate climate change. In this [...] Read more.
Climate change has become one of the biggest challenges for farmers, advisors, researchers, and policymakers in recent years. Concerns about food security and the economic future have led these groups to search for methods to adapt to and mitigate climate change. In this context, cover crops have emerged as an important tool to improve soil health, prevent nitrate leaching, and increase crop productivity. The main objective of this review is to explore the multiple benefits of cover crops, including their role in improving soil health, sequestering CO2, fixing N2, and enhancing gas exchange, all of which contribute to the sustainability of agricultural systems under climate change conditions. One of the key findings of this research is that cover crop cultivation must be carefully tailored to the specific site, farm, intended purpose, and top priority, taking into account factors such as species selection, crop duration, and termination methods. Certain cover crop species have the potential to mitigate important climate change factors, such as soil erosion and nitrogen leaching, while increasing soil organic matter. However, many studies often focus on only one aspect of cover crops, overlooking the full range of ecosystem services they provide. In addition, future research must also address the economic challenges associated with cover crops. Full article
(This article belongs to the Special Issue Agroclimatology and Crop Production: Adapting to Climate Change)
24 pages, 22656 KiB  
Article
Influence of High Temperature and Ammonia and Nitrite Accumulation on the Physiological, Structural, and Genetic Aspects of the Biology of Largemouth Bass (Micropterus salmoides)
by Yuexing Zhang, Hui Qiao, Leyang Peng, Yujie Meng, Guili Song, Cheng Luo and Yong Long
Antioxidants 2025, 14(4), 495; https://doi.org/10.3390/antiox14040495 - 20 Apr 2025
Cited by 1 | Viewed by 624
Abstract
Hyperthermia and nitrogenous pollutants like ammonia and nitrite are common risk factors that adversely affect fish health and pose significant threats to the aquaculture industry. However, the impacts of high temperatures on the accumulation of nitrogenous pollutants in the water of the aquaculture [...] Read more.
Hyperthermia and nitrogenous pollutants like ammonia and nitrite are common risk factors that adversely affect fish health and pose significant threats to the aquaculture industry. However, the impacts of high temperatures on the accumulation of nitrogenous pollutants in the water of the aquaculture systems and their toxicity to farmed fish are not well understood. In this study, juvenile largemouth bass (Micropterus salmoides, LMB) were kept at 28 °C and 34 °C in a closed aquatic system to investigate the effects of higher temperatures on ammonia and nitrite accumulation. The fish were fed 2% of their body weight daily for a 14-day experiment. Ammonia levels gradually increased, peaking on day 7 at 34 °C and on day 9 at 28 °C, then decreased to near zero. Nitrite levels remained low initially and increased rapidly along with the reduction in ammonia levels at both temperatures. The 34 °C high temperature accelerated the accumulation of ammonia and its transformation into nitrite compared to 28 °C. Fish were sampled on day 1 (low ammonia and low nitrite, LALN), day 8 (high ammonia and low nitrite, HALN), and day 14 (low ammonia and high nitrite, LAHN) to explore toxic effects. Successive exposure to high levels of ammonia and nitrite caused oxidative stress in the liver and significant pathogenic changes in the liver and spleen, with more pronounced impacts observed at 34 °C. Significant changes in gene expression were detected in the liver and spleen of fish sampled at HALN and LAHN, compared to those at LALN, with upregulated genes primarily associated with extracellular matrix (ECM) and cytoskeleton organization. A second experiment was conducted at the same temperatures but without ammonia/nitrite accumulation. The results of this experiment confirmed the combined effects of hyperthermia and ammonia/nitrite toxicity on the expression of genes involved in ECM–receptor interaction and TGF-beta signaling. These findings are valuable for optimizing cultivation environments and promoting the health of farmed LMB. Full article
Show Figures

Figure 1

23 pages, 6507 KiB  
Article
Revitalizing Marginal Areas of Basilicata (Southern Italy) with Saffron: A Strategy Approach Mixing Alternative Cultivation System and Land Suitability Analysis
by Nunzia Cicco, Vincenzo Candido, Rosa Coluzzi, Vito Imbrenda, Maria Lanfredi, Michele Larocca, Annarita Lorusso, Carla Benelli and Adriano Sofo
Land 2025, 14(4), 902; https://doi.org/10.3390/land14040902 - 19 Apr 2025
Viewed by 1039
Abstract
The abandonment of farmland in Europe is a significant issue due to its environmental, socio-economic, and landscape consequences. This tendency mainly impacts marginal and inner areas, located far from large urban districts, because of biophysical and/or socio-economic factors. Although European and national regulations [...] Read more.
The abandonment of farmland in Europe is a significant issue due to its environmental, socio-economic, and landscape consequences. This tendency mainly impacts marginal and inner areas, located far from large urban districts, because of biophysical and/or socio-economic factors. Although European and national regulations try to turn the fragility of these territories into an opportunity for sustainable development, many of these areas, especially in southern Europe, continue to suffer socio-economic disparities. For this reason, it is necessary to consider regional and district-wide initiatives that can economically revitalize marginal areas while safeguarding their natural capital. Alternative cropping systems, capable of optimizing the quality of some food crops, can play an essential role in the economic development of populations living in marginal areas. These areas, represented by inland zones often abandoned due to the difficulty of applying mechanized agriculture, can represent an opportunity to rediscover sustainable and profitable practices. Among the high-value crops, saffron (Crocus sativus L.), “red gold” and “king of spices”, stands out for its potential. Indeed, thanks to the use of tuff tubs, a more eco-sustainable choice compared to the plastic pots already mentioned in the literature, it is possible to improve the quality of this spice. Furthermore, Crocus sativus L. not only lends itself to multiple uses but also represents a valid opportunity to supplement agricultural income. This is made possible by its high profitability and beneficial properties for human health, offering a way to diversify agricultural production with positive economic and social impacts. It is known that the saffron market in Italy suffers from competition from developing countries (Iran, Morocco, India) capable of producing saffron at lower costs than European countries, thanks to the lower cost of labor. Therefore, this study seeks to identify marginal areas that can be recovered and valorized through an eco-sustainable cultivation system with the potential to enhance the quality of this spice, making it unique and resilient to competition. Specifically, this paper is organized on a dual scale of investigation: (a) at the local level to demonstrate the economic-ecological feasibility of saffron cultivation through the adoption of an alternative farming technique on an experimental site located in Tricarico (Basilicata—Southern Italy, 40°37′ N, 16°09′ E; 472 m. a.s.l.) that, although fertile, is not suitable for mechanized cropping systems; (b) at the regional level through a spatially explicit land suitability analysis to indicate the possible location where to export saffron cultivation. The final map, obtained by combining geo-environmental variables, can be considered a precious tool to support policymakers and farmers to foster a broad agricultural strategy founded on new crop management systems. The adoption of this alternative agroecological system could optimize the use of land resources in the perspective of increasing crop productivity and profitability in marginal agricultural areas. Full article
(This article belongs to the Special Issue Feature Papers for "Land, Soil and Water" Section)
Show Figures

Figure 1

30 pages, 17629 KiB  
Article
Aerobic Composting of Auricularia auricula (L.) Residues: Investigating Nutrient Dynamics and Microbial Interactions with Different Substrate Compositions
by Qian Liu, Yuxin Tian, Pengbing Wu, Junyan Zheng, Yuhe Xing, Ying Qu, Xingchi Guo and Xu Zhang
Diversity 2025, 17(4), 279; https://doi.org/10.3390/d17040279 - 16 Apr 2025
Viewed by 476
Abstract
Auricularia auricula (L.) is a widely cultivated edible mushroom, and the resource utilization of its residues offers significant opportunities for sustainable waste management and nutrient recovery. This study investigated the effects of substrate composition on nutrient dynamics and microbial diversity during the aerobic [...] Read more.
Auricularia auricula (L.) is a widely cultivated edible mushroom, and the resource utilization of its residues offers significant opportunities for sustainable waste management and nutrient recovery. This study investigated the effects of substrate composition on nutrient dynamics and microbial diversity during the aerobic composting of Auricularia auricula (L.) residues. Two treatments were established: composting of Auricularia auricula (L.) residues alone (CR) and composting supplemented with green grass (CRG) over a 49-day period. The results showed that both treatments achieved compost maturity, characterized by a slightly alkaline pH, a germination index (GI) above 80%, and an electrical conductivity below 4 mS/cm. Both composts were odorless, insect-free, and dark brown. Compared to CR, the CRG treatment exhibited higher total organic carbon (TOC) degradation, cumulative total phosphorus (TP) and potassium (TK) levels, as well as enhanced urease, cellulase, and β-glucosidase activities. In contrast, CR retained higher total nitrogen (TN), humic carbon (HEC), fulvic acid carbon (FAC), humic acid carbon (HAC), and a greater humic-to-fulvic acid (HA/FA) ratio. Microbial community analysis revealed diverse bacterial and fungal taxa, with certain species positively correlated with nutrient cycling. Notably, specific substrate compositions promoted beneficial microbial proliferation, essential for efficient composting and nutrient mineralization. These findings not only provide a scientific basis for optimizing composting strategies of mushroom residues but also offer a practical pathway to convert agricultural waste into high-quality organic fertilizers. By enhancing soil fertility, reducing reliance on synthetic fertilizers, and promoting circular bioeconomy practices, this study contributes directly to sustainable agricultural development. CR and CRG treatments, respectively, support either nutrient retention or release, allowing tailored application based on crop demand and soil condition. This study underscores the potential of Auricularia auricula (L.) residues in composting systems, contributing to waste reduction and soil fertility enhancement through tailored substrate management, and offers practical insights into optimizing composting strategies for Auricularia farming by-products. Full article
Show Figures

Graphical abstract

32 pages, 5148 KiB  
Article
Evaluation of Commercial Tomato Hybrids for Climate Resilience and Low-Input Farming: Yield and Nutritional Assessment Across Cultivation Systems
by Maria Gerakari, Diamantia Mitkou, Christos Antoniadis, Anastasia Giannakoula, Stefanos Stefanou, Zoe Hilioti, Michael Chatzidimopoulos, Maria Tsiouni, Alexandra Pavloudi, Ioannis N. Xynias and Ilias D. Avdikos
Agronomy 2025, 15(4), 929; https://doi.org/10.3390/agronomy15040929 - 10 Apr 2025
Cited by 1 | Viewed by 1006
Abstract
Commercial tomato hybrids exhibit robust performance in modern high-input agricultural systems. However, their suitability for low-input farming remains uncertain. With the goal that by 2030, 25% of European agricultural production must be organic as part of the European Green Deal, this study aims [...] Read more.
Commercial tomato hybrids exhibit robust performance in modern high-input agricultural systems. However, their suitability for low-input farming remains uncertain. With the goal that by 2030, 25% of European agricultural production must be organic as part of the European Green Deal, this study aims to assess whether existing commercial tomato hybrids can offer a viable solution for low-input farming. Additionally, the impact of beneficial microorganisms such as plant growth-promoting rhizobacteria (PGPR), in relation to the growth and productivity of tomato hybrids under low-input cultivation is assessed. For this purpose, a well-defined microbial consortium, including Azotobacter chroococcum, Clostridium pasteurianum, Lactobacillus plantarum, Bacillus subtilis, and Acetobacter diazotrophicus, was applied as a liquid suspension to enhance root colonization and promote plant growth. Seven commercial tomatoes (Solanum lycopersicum L.) hybrids—the most popular in the Greek market—were evaluated for their performance under high-input (hydroponic) and low-input cultivation systems (with and without the use of PGPR). Several parameters related to yield, fruit quality, nutritional value, descriptive traits, and leaf elemental concentration were evaluated. In addition, a techno-economic analysis was conducted to assess whether hybrids developed under high-input conditions and intended for such cultivation environments suit low-input farming systems. The results indicated that such hybrids are not a viable, efficient, or profitable strategy for low-input cultivation. These findings underscore the importance of breeding tomato varieties, specifically adapted to low-input farming, highlighting the need for targeted breeding strategies to enhance sustainability and resilience in future agricultural systems. Notably, this study is among the first to comprehensively assess the response of commercial tomato hybrids under low-input conditions, addressing a critical gap in the current literature. Full article
(This article belongs to the Special Issue Genetics and Breeding of Field Crops in the 21st Century)
Show Figures

Figure 1

16 pages, 3318 KiB  
Article
Utilizing Remote Sensing Data to Ascertain Weed Infestation Levels in Maize Fields
by Tetiana P. Fedoniuk, Petro V. Pyvovar, Pavlo P. Topolnytskyi, Oleksandr O. Rozhkov, Mykola M. Kravchuk, Oleh V. Skydan, Viktor M. Pazych and Taras V. Petruk
Agriculture 2025, 15(7), 711; https://doi.org/10.3390/agriculture15070711 - 27 Mar 2025
Viewed by 566
Abstract
This study presents the evaluation of tools for weed analysis and management to support agroecological practices in organic farming, emphasizing agriculture digitalization, and remote sensing. The main aim was to provide techniques for monitoring and predicting weed spread using multispectral satellite and drone [...] Read more.
This study presents the evaluation of tools for weed analysis and management to support agroecological practices in organic farming, emphasizing agriculture digitalization, and remote sensing. The main aim was to provide techniques for monitoring and predicting weed spread using multispectral satellite and drone data, without the use of chemical inputs. Key findings indicate that VV and VH channels of Sentinel-1 and B2, B3, B4, and B8 channels of Sentinel-2 are not different regarding tillage, herbicide use, or sowing density. However, RE and NIR channels of drone detected significant variations and proved effectiveness for weediness monitoring. The NIR channel is sensitive to agrotechnical factors such as cultivation type, making it valuable for field monitoring. Correlation and regression analyses revealed that B2, B3, B8 channels of Sentinel-2, and RE and NIR drone channels are the most reliable for predicting weed levels. Conversely, Sentinel-1 showed limited predictive utility. Random effect models confirmed that Sentinel-2 and drone channels can accurately account for site characteristics and timing of weed proliferation. Taken together, these tools provide effective organic weed monitoring systems, enabling rapid identification of problem areas and adjustments in agronomic practices. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

11 pages, 1904 KiB  
Article
Selection of New Field Pea Varieties for the Organic and Conventional Farming Systems in the Nemoral Climatic Zone
by Žydrė Kadžiulienė, Monika Toleikienė, Kristyna Razbadauskienė, Lina Šarūnaitė, Irena Deveikytė, Skaidrė Supronienė, Roma Semaškienė and Aušra Arlauskienė
Agriculture 2025, 15(7), 687; https://doi.org/10.3390/agriculture15070687 - 24 Mar 2025
Cited by 1 | Viewed by 570
Abstract
Field pea (Pisum sativum L.) is one of the most important grain legumes in European agriculture, having many benefits for agro-ecosystems and also one of the lowest carbon footprints of any crop. However, this crop has many more drawbacks when grown organically [...] Read more.
Field pea (Pisum sativum L.) is one of the most important grain legumes in European agriculture, having many benefits for agro-ecosystems and also one of the lowest carbon footprints of any crop. However, this crop has many more drawbacks when grown organically as opposed to conventionally. Therefore, our study aims to investigate the performance of newly bred field pea varieties and to test their differences of adaptivity to organic and conventional farming systems. Our study evaluated productivity, as well as the biological and nutritional parameters of the following four new field pea varieties: Lina DS, Egle DS, Ieva DS and Jura DS, all cultivated in the Nemoral climatic zone, where field peas are widely produced. The performance was compared with the long-term standard field pea variety Ingrid. Our study showed that all investigated new varieties had higher productivity compared to the long-term standard Ingrid. The organic cropping system limited the grain yield of field pea, and different varieties tended to respond differently to this type of crop management. Therefore, different varieties should be selected and suggested for organic and conventional cropping systems. Furthermore, with various different responses to the precipitation level, different varieties could be suggested for farming in different regions. The nutritional value (content of proteins and amino acids) also responded significantly to the management system and the selection of field pea variety. Newly bred variety Egle DS demonstrated the highest grain yields, and the highest content of proteins and essential amino acids in the seeds of field pea grown in an organic farming system. Egle DS accumulated 30 percent higher content of arginine compared to the standard variety. Full article
Show Figures

Figure 1

19 pages, 1779 KiB  
Article
Polyphenolic and Immunometric Profiling of Wheat Varieties: Impact of Organic and Conventional Farming on Allergenic and Bioactive Compounds
by Adrian Bartos, Alicja Malik, Beata Feledyn-Szewczyk, Krzysztof Jończyk, Renata Kazimierczak, Ewelina Hallmann and Joanna Leszczyńska
Molecules 2025, 30(6), 1313; https://doi.org/10.3390/molecules30061313 - 14 Mar 2025
Viewed by 672
Abstract
This study investigates the impact of organic and conventional farming on the allergenic and bioactive properties of wheat. The primary aim was to assess the immunometric parameters and polyphenolic composition in four varieties of winter and four varieties of spring wheat cultivated under [...] Read more.
This study investigates the impact of organic and conventional farming on the allergenic and bioactive properties of wheat. The primary aim was to assess the immunometric parameters and polyphenolic composition in four varieties of winter and four varieties of spring wheat cultivated under both farming systems. Immunometric assays focused on gluten content, the allergenic QQQPP peptide, and the panallergenic profilin Tri a 12. While gluten levels (15–20 g/kg) showed no clear dependence on farming type, organic wheat exhibited a mild yet significant increase in QQQPP-dependent immunoreactivity in five samples (>20 µg/g). However, all organic wheat samples demonstrated a notable reduction in profilin content (<0.6 µg/g), suggesting that the type of wheat cultivation could influence allergenic risk for individuals with wheat-related allergies. Polyphenolic profiling revealed that kaempferol, p-coumaric acid, and gallic acid were the predominant compounds, with organic wheat displaying slightly higher polyphenol levels on average. Despite these differences, the variations were insufficient to determine a superior cultivation method. These findings highlight the potential allergenic and nutritional implications of organic versus conventional wheat farming. Full article
(This article belongs to the Special Issue Nutrition and Sensory Analysis of Food)
Show Figures

Figure 1

11 pages, 429 KiB  
Article
13C Isotope Discrimination Variation in Guar [Cyamopsis tetragronoloba (L.) Taub.] Under Water-Deficit Conditions
by Aurora Manley, Waltram Ravelombola, Curtis Adams, Rajan Shrestha, Philip Hinson and Calvin Trostle
Int. J. Plant Biol. 2025, 16(1), 31; https://doi.org/10.3390/ijpb16010031 - 1 Mar 2025
Viewed by 1705
Abstract
Guar is a legume cultivated for its high seed galactomannan content. India is the major guar producer globally and the U.S. has the largest guar market worldwide. Guar is drought-tolerant and suitable as a summer rotational crop in dryland farming systems. Studies have [...] Read more.
Guar is a legume cultivated for its high seed galactomannan content. India is the major guar producer globally and the U.S. has the largest guar market worldwide. Guar is drought-tolerant and suitable as a summer rotational crop in dryland farming systems. Studies have shown correlations between carbon δ13 isotope (C13) discrimination and water-use efficiency in other crops. The objective of this study was to assess the variation in carbon δ13 isotope discrimination among 30 guar accessions. Accessions were grown under greenhouse conditions in 3.79 L pots, including drought-stressed and well-watered treatments. For each accession, beginning at the V5–V8 growth stage, one pot was continuously irrigated, whereas irrigation was withheld from the other until wilting symptoms appeared after 50 days. Each treatment pair (well-watered/drought-stressed) was organized in a completely randomized design with three replications. Aboveground fresh and dry biomass data were collected, and the dry leaves were used for C13 isotope analysis. The results showed an increase in leaf C13 under drought stress. There were no differences among genotypes in C13 for well-watered plants (p = 0.63), but drought-stressed plants differed (p < 0.001). Significant positive correlations were identified between C13 under drought stress and the fresh (r = 0.70) and dry biomass (r = 0.68) of drought-stressed plants. These results demonstrate that C13 has potential as a criterion to identify drought-tolerant guar lines. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Figure 1

29 pages, 2068 KiB  
Review
Spent Mushroom Substrate-Derived Biochar and Its Applications in Modern Agricultural Systems: An Extensive Overview
by Worawoot Aiduang, Kritsana Jatuwong, Tanongkiat Kiatsiriroat, Wassana Kamopas, Pimsiri Tiyayon, Rotsukon Jawana, Orlavanh Xayyavong and Saisamorn Lumyong
Life 2025, 15(2), 317; https://doi.org/10.3390/life15020317 - 18 Feb 2025
Cited by 3 | Viewed by 2748
Abstract
Spent mushroom substrate (SMS), a nutrient-dense byproduct of mushroom cultivation, has emerged as a promising feedstock for biochar production, offering a sustainable solution to modern agricultural and environmental challenges. This review explores SMS properties, its conversion into biochar, and its various applications. Due [...] Read more.
Spent mushroom substrate (SMS), a nutrient-dense byproduct of mushroom cultivation, has emerged as a promising feedstock for biochar production, offering a sustainable solution to modern agricultural and environmental challenges. This review explores SMS properties, its conversion into biochar, and its various applications. Due to its lignocellulosic structure, high organic matter (OM), and essential nutrients, SMS is ideal for pyrolysis, a process that enhances biochar’s porosity, nutrient retention, and carbon stability. These properties improve soil fertility, water retention, microbial activity, and plant growth while also contributing to climate change mitigation through carbon sequestration. SMS-derived biochar stands out for its superior benefits, including a balanced pH, a rich nutrient profile, and the ability to adsorb heavy metals, which mitigates soil and water contamination and minimizes toxic risks in the food chain. By enhancing soil structure, nutrient cycling, and moisture retention, SMS-derived biochar supports sustainable farming practices that reduce chemical fertilizer use and boost climate resilience. Beyond soil applications, SMS-derived biochar is effective in wastewater treatment, mitigating plant diseases, and improving mushroom cultivation substrates, thereby enhancing mycelial growth and productivity. Economically, it is a cost-effective alternative due to the abundant availability and inexpensive nature of SMS. Nevertheless, challenges still exist, particularly in optimizing production methods and ensuring consistency in biochar properties, influenced by variations in pyrolysis conditions and SMS types. Advances in production technology and sustainable practices are vital for scaling up SMS-derived biochar production. This paper emphasizes the transformative potential of SMS-derived biochar, advocating for its integration into circular economy frameworks and sustainable agricultural systems. Recommendations for future research and policy support are provided to maximize the ecological and economic benefits of SMS-derived biochar, fostering its widespread adoption in global agricultural and environmental strategies. Full article
Show Figures

Figure 1

Back to TopTop