Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (759)

Search Parameters:
Keywords = orbit transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5159 KB  
Article
DynaG Algorithm-Based Optimal Power Flow Design for Hybrid Wind–Solar–Storage Power Systems Considering Demand Response
by Xuan Ruan, Lingyun Zhang, Jie Zhou, Zhiwei Wang, Shaojun Zhong, Fuyou Zhao and Bo Yang
Energies 2025, 18(17), 4576; https://doi.org/10.3390/en18174576 - 28 Aug 2025
Viewed by 341
Abstract
With a high proportion of renewable energy sources connected to the distribution network, traditional optimal power flow (OPF) methods face significant challenges including multi-objective co-optimization and dynamic scenario adaptation. This paper proposes a dynamic optimization framework based on the Dynamic Gravitational Search Algorithm [...] Read more.
With a high proportion of renewable energy sources connected to the distribution network, traditional optimal power flow (OPF) methods face significant challenges including multi-objective co-optimization and dynamic scenario adaptation. This paper proposes a dynamic optimization framework based on the Dynamic Gravitational Search Algorithm (DynaG) for a multi-energy complementary distribution network incorporating wind power, photovoltaic, and energy storage systems. A multi-scenario OPF model is developed considering the time-varying characteristics of wind and solar penetration (low/medium/high), seasonal load variations, and demand response participation. The model aims to minimize both network loss and operational costs, while simultaneously optimizing power supply capability indicators such as power transfer rates and capacity-to-load ratios. Key enhancements to DynaG algorithm include the following: (1) an adaptive gravitational constant adjustment strategy to balance global exploration and local exploitation; (2) an inertial mass updating mechanism constrained to improve convergence for high-dimensional decision variables; and (3) integration of chaotic initialization and dynamic neighborhood search to enhance solution diversity under complex constraints. Validation using the IEEE 33-bus system demonstrates that under 30% penetration scenarios, the proposed DynaG algorithm reduces capacity ratio volatility by 3.37% and network losses by 1.91% compared to non-dominated sorting genetic algorithm III (NSGA-III), multi-objective particle swarm optimization (MOPSO), multi-objective atomic orbital search algorithm (MOAOS), and multi-objective gravitational search algorithm (MOGSA). These results show the algorithm’s robustness against renewable fluctuations and its potential for enhancing the resilience and operational efficiency of high-penetration renewable energy distribution networks. Full article
Show Figures

Figure 1

22 pages, 1390 KB  
Article
Masked and Clustered Pre-Training for Geosynchronous Satellite Maneuver Detection
by Shu-He Tian, Yu-Qiang Fang, Hua-Fei Diao, Di Luo and Ya-Sheng Zhang
Remote Sens. 2025, 17(17), 2994; https://doi.org/10.3390/rs17172994 - 28 Aug 2025
Viewed by 257
Abstract
Geosynchronous satellite maneuver detection is critical for enhancing space situational awareness and inferring satellite intent. However, traditional methods often require high-quality orbital sequence data and heavily rely on hand-crafted features, limiting their effectiveness in complex real-world environments. While recent neural network-based approaches have [...] Read more.
Geosynchronous satellite maneuver detection is critical for enhancing space situational awareness and inferring satellite intent. However, traditional methods often require high-quality orbital sequence data and heavily rely on hand-crafted features, limiting their effectiveness in complex real-world environments. While recent neural network-based approaches have shown promise, they are typically trained in scene or task-specific settings, resulting in limited generalization and adaptability. To address these challenges, we propose MC-MD, a pre-training framework that integrates Masked and Clustered learning strategies to improve the robustness and transferability of geosynchronous satellite Maneuver Detection. Specifically, we introduce a masked prediction module that applies both time- and frequency-domain masking to help the model capture temporal dynamics more effectively. Meanwhile, a cluster-based module guides the model to learn discriminative representations of different maneuver patterns through unsupervised clustering, mitigating the negative impact of distribution shifts across scenarios. By combining these two strategies, MC-MD captures diverse maneuver behaviors and enhances cross-scenario detection performance. Extensive experiments on both simulated and real-world datasets demonstrate that MCMD achieves significant performance gains over the strongest baseline, with improvements of 8.54% in Precision and 7.8% in F1-Score. Furthermore, reconstructed trajectories analysis shows that MC-MD more accurately aligns with the ground-truth maneuver sequence, highlighting its effectiveness in satellite maneuver detection tasks. Full article
Show Figures

Figure 1

14 pages, 5572 KB  
Article
Ir- and Pt-Doped InTe Monolayers as Potential Sensors for SF6 Decomposition Products: A DFT Investigation
by Juanjuan Tan, Shuying Huang, Jianhong Dong, Jiaming Fan, Dejian Hou and Shaomin Lin
Materials 2025, 18(17), 4022; https://doi.org/10.3390/ma18174022 - 28 Aug 2025
Viewed by 294
Abstract
The burgeoning demand for reliable fault detection in high-voltage power equipment necessitates advanced sensing materials capable of identifying trace sulfur hexafluoride SF6 decomposition products (SDPs). In this work, the first-principles calculations were employed to comprehensively evaluate the potential of Ir- and Pt-doped [...] Read more.
The burgeoning demand for reliable fault detection in high-voltage power equipment necessitates advanced sensing materials capable of identifying trace sulfur hexafluoride SF6 decomposition products (SDPs). In this work, the first-principles calculations were employed to comprehensively evaluate the potential of Ir- and Pt-doped InTe (Ir-InTe and Pt-InTe) monolayers as high-performance gas sensors for the four specific SDPs (H2S, SO2, SOF2, SO2F2). The results reveal that Ir and Pt atoms are stably incorporated into the hollow sites of the InTe monolayer, significantly reducing the intrinsic bandgap from 1.536 eV to 0.278 eV (Ir-InTe) and 0.593 eV (Pt-InTe), thereby enhancing the material’s conductivity. Furthermore, Ir-InTe exhibits selective chemisorption for H2S, SO2, and SOF2, with adsorption energies exceeding −1.35 eV, while Pt-InTe shows chemisorption capability for all four SDPs. These interactions are further supported by significant charge transfer and orbital hybridization. Crucially, these interactions induce notable bandgap changes, with Ir-InTe showing up to a 65.5% increase (for SOF2) and Pt-InTe showing an exceptional 105.2% increase (for SO2F2), alongside notable work function variations. Furthermore, recovery time analysis indicates that Ir-InTe is suitable for reusable H2S sensing at 598 K (0.24 s), whereas Pt-InTe offers recyclable detection of SO2 (5.27 s) and SOF2 (0.16 s) at the same temperature. This work provides theoretical guidance for the development of next-generation InTe-based gas sensors for the fault diagnosis in high-voltage power equipment. Full article
(This article belongs to the Special Issue Ab Initio Modeling of 2D Semiconductors and Semimetals)
Show Figures

Figure 1

17 pages, 4213 KB  
Article
Physical Mechanisms of Linear and Nonlinear Optical Responses in Ferrocene-Embedded Cycloparaphenylenes
by Gang Zhang, Qianqian Wang, Yi Zou, Ying Jin and Jingang Wang
Chemistry 2025, 7(5), 136; https://doi.org/10.3390/chemistry7050136 - 25 Aug 2025
Viewed by 291
Abstract
This study employs molecular orbital (MO) analysis, density of states (DOS) analysis, and advanced techniques such as charge density difference (CDD), transition density matrix (TDM), transition electric dipole moment density (TEDM), and transition magnetic dipole moment density (TMDM) to systematically investigate the electronic [...] Read more.
This study employs molecular orbital (MO) analysis, density of states (DOS) analysis, and advanced techniques such as charge density difference (CDD), transition density matrix (TDM), transition electric dipole moment density (TEDM), and transition magnetic dipole moment density (TMDM) to systematically investigate the electronic structure characteristics of Fc-[8]CPP and Fc-[11]CPP. Using density functional theory (DFT) and time-dependent DFT (TD-DFT), the π-electron delocalization properties and optical behaviors of these molecules were analyzed. Furthermore, their responses to external electromagnetic fields were explored through electronic circular dichroism (ECD) and Raman spectroscopy, comparing chiral optical responses and electron–vibration coupling effects to elucidate their photophysical properties. The results reveal that the HOMO-LUMO energy gaps of Fc-[8]CPP and Fc-[11]CPP are 5.81 eV and 5.95 eV, respectively, with a slight increase as ring size grows; Fc-[8]CPP exhibits a stronger chiral response, while Fc-[11]CPP shows reduced chirality due to enhanced symmetry. Finally, TD-DFT calculations demonstrate that their optical absorption is dominated by localized excitations with partial charge transfer contributions. These findings provide a theoretical foundation for designing conjugated macrocyclic materials with superior optoelectronic performance. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Figure 1

20 pages, 2262 KB  
Article
Luminescent Arylalkynyltitanocenes: Effect of Modifying the Electron Density at the Arylalkyne Ligand, or Adding Steric Bulk or Constraint to the Cyclopentadienyl Ligand
by Matilda Barker, Samantha C. Walter, Elizabeth A. McCallum, River S. Golden, John H. Zimmerman, Jackson S. McCarthy, Colin D. McMillen and Paul S. Wagenknecht
Crystals 2025, 15(8), 745; https://doi.org/10.3390/cryst15080745 - 21 Aug 2025
Viewed by 347
Abstract
Photocatalysis using complexes of d0 metals with ligand-to-metal charge-transfer (LMCT) excited states is an active area of research. Because titanium is the second most abundant transition metal in the earth’s crust, d0 complexes of TiIV are an appropriate target for [...] Read more.
Photocatalysis using complexes of d0 metals with ligand-to-metal charge-transfer (LMCT) excited states is an active area of research. Because titanium is the second most abundant transition metal in the earth’s crust, d0 complexes of TiIV are an appropriate target for this research. Recently, our group has demonstrated that the arylethynyltitanocene Cp2Ti(C2Ph)2CuBr is not emissive in room-temperature fluid solution, whereas the corresponding Cp* complex, Cp*2Ti(C2Ph)2CuBr, is emissive. The Cp* ligand is hypothesized to provide steric constraint that inhibits excited-state structural rearrangement. However, modifying the structure also changes the orbital character of the excited state. To investigate the impact of the excited-state orbital character on the photophysics, herein we characterize complexes similar to Cp*2Ti(C2Ph)2CuBr—but one with a more electron-rich arylethynyl ligand, ethynyldimethylaniline (C2DMA), and one with a more electron-poor arylethynyl ligand, ethynyl-α,α,α-trifluorotoluene. We have also prepared complexes with the C2DMA ligand but with different Cp ligands that adjust the steric bulk and constraint around the Ti, by replacing the Cp* ligands with either indenyl ligands or an ansa-cyclopentadienyl ligand where the two Cp ligands are bridged by a dimethylsilylene. All four target complexes have been characterized crystallographically and structure activity relationships are highlighted. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

18 pages, 2540 KB  
Article
Using Solar Sails to Rendezvous with Asteroid 2024 YR4
by Alessandro A. Quarta
Technologies 2025, 13(8), 373; https://doi.org/10.3390/technologies13080373 - 20 Aug 2025
Viewed by 254
Abstract
This paper aims to present a set of possible transfer trajectories for a rendezvous mission with asteroid 2024 YR4, using a spacecraft propelled by a photonic solar sail. Asteroid 2024 YR4 was discovered in late December 2024 and was briefly classified as Torino [...] Read more.
This paper aims to present a set of possible transfer trajectories for a rendezvous mission with asteroid 2024 YR4, using a spacecraft propelled by a photonic solar sail. Asteroid 2024 YR4 was discovered in late December 2024 and was briefly classified as Torino Scale 3 for three weeks in early 2025, before being downgraded to zero at the end of February. In this study, rapid Earth-to-asteroid transfers are analyzed by solving a typical optimal control problem, in which the thrust vector generated by the solar sail is modeled using the optical force approach. Numerical simulations are carried out assuming a low-to-medium performance solar sail, considering both a simplified orbit-to-orbit transfer and a more accurate scenario that incorporates the actual ephemerides of the celestial bodies. The numerical results indicate that a medium-performance solar sail can reach asteroid 2024 YR4, achieving the global minimum flight time and arriving before its perihelion passage in late December 2032. Full article
Show Figures

Figure 1

24 pages, 1481 KB  
Article
Optimal Heliocentric Orbit Raising of CubeSats with a Monopropellant Electrospray Multimode Propulsion System
by Alessandro A. Quarta, Marco Bassetto and Giulia Becatti
Appl. Sci. 2025, 15(16), 9169; https://doi.org/10.3390/app15169169 - 20 Aug 2025
Viewed by 257
Abstract
A Multimode Propulsion System (MPS) is an innovative spacecraft thruster concept that integrates two or more propulsion modes sharing the same type of propellant. A spacecraft equipped with an MPS can potentially combine the advantages of continuous-thrust electric propulsion and medium-to-high-thrust chemical propulsion [...] Read more.
A Multimode Propulsion System (MPS) is an innovative spacecraft thruster concept that integrates two or more propulsion modes sharing the same type of propellant. A spacecraft equipped with an MPS can potentially combine the advantages of continuous-thrust electric propulsion and medium-to-high-thrust chemical propulsion within a single vehicle, while reducing the overall mass compared to traditional configurations where each propulsion system uses a different propellant. This feature makes the MPS concept particularly attractive for small spacecraft, such as the well-known CubeSats, which have now reached a high level of technological maturity and are employed not only in geocentric environments but also in interplanetary missions as support elements for conventional deep-space vehicles. Within the MPS framework, a Monopropellant-Electrospray Multimode Propulsion System (MEMPS) represents a specific type of micropropulsion technology that enables a single miniaturized propulsion unit to operate in either catalytic-chemical or electrospray-electric mode. This paper investigates the flight performance of a MEMPS-equipped CubeSat in a classical circle-to-circle orbit-raising (or lowering) maneuver within a two-dimensional mission scenario. Specifically, the study derives the optimal guidance law that allows the CubeSat to follow a transfer trajectory optimized either for minimum flight time or minimum propellant consumption, starting from a parking orbit of assigned radius and targeting a final circular orbit. Numerical simulations indicate that a heliocentric orbit raising, increasing the initial solar distance by 20%, can be achieved with a flight time of approximately 11 months and a propellant consumption slightly below 6 kg. The proposed method is applied to a heliocentric case study, although the procedure can be readily extended to geocentric transfer missions, which represent a more common application scenario for current CubeSat-based scientific missions. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

16 pages, 7190 KB  
Article
The Influences of π-Conjugated Aliphatic Chains in Ionic Liquids of Antimony Pentachloride with Pyridine Imidazolium Hybrid Salts: A DFT Study
by Manuel Luque-Román, Jesús Baldenebro-López, José J. Campos-Gaxiola, Adriana Cruz-Enríquez, Carlos A. Peñuelas, Alberto Báez-Castro, Rody Soto-Rojo, Tomás Delgado-Montiel, Samuel Soto-Acosta and Daniel Glossman-Mitnik
Inorganics 2025, 13(8), 269; https://doi.org/10.3390/inorganics13080269 - 16 Aug 2025
Viewed by 408
Abstract
A theoretical study was performed using Density Functional Theory (DFT) to investigate the impact of π-conjugated aliphatic chain growth on the chemical and electronic properties of hybrid antimony pentachloride salts with pyridine- and imidazolium-based cations. Ten molecular systems were optimized to determine their [...] Read more.
A theoretical study was performed using Density Functional Theory (DFT) to investigate the impact of π-conjugated aliphatic chain growth on the chemical and electronic properties of hybrid antimony pentachloride salts with pyridine- and imidazolium-based cations. Ten molecular systems were optimized to determine their ground-state geometry. Using conceptual DFT, parameters such as chemical hardness, electrophilicity index, electroaccepting power, and electrodonating power were studied. The energy gap was obtained for all ten molecular systems, ranging from −4.038 to −3.706 eV as the chain length increased, favoring intramolecular charge transfer in long-chain systems. Natural bond orbital (NBO) analysis showed charge redistribution between anion and cation as the π-conjugated aliphatic chain grows. At the same time, non-covalent interaction (NCI) studies revealed key attractions and repulsive interactions, such as H···Cl and Cl···π, which are modulated by chain length. These results demonstrate that the structural modification of the cation allows for the fine-tuning of the electronic properties of ionic liquids (ILs). Increasing the conjugated aliphatic chain length was observed to reduce the chemical hardness and electrophilicity index, as well as affecting the Egap of the molecular systems. This work demonstrates that there is an optimal size for the inorganic ion, allowing it to form an optimal IL compound. Full article
(This article belongs to the Special Issue Advances in Metal Ion Research and Applications)
Show Figures

Figure 1

23 pages, 4240 KB  
Article
Heliocentric Orbital Repositioning of a Sun-Facing Diffractive Sail with Controlled Binary Metamaterial Arrayed Grating
by Alessandro A. Quarta
Appl. Sci. 2025, 15(15), 8755; https://doi.org/10.3390/app15158755 - 7 Aug 2025
Viewed by 359
Abstract
This paper investigates the performance of a spacecraft equipped with a diffractive sail in a heliocentric mission scenario that requires phasing along a prescribed elliptical orbit. The diffractive sail represents an evolution of the more traditional reflective solar sail, which converts solar radiation [...] Read more.
This paper investigates the performance of a spacecraft equipped with a diffractive sail in a heliocentric mission scenario that requires phasing along a prescribed elliptical orbit. The diffractive sail represents an evolution of the more traditional reflective solar sail, which converts solar radiation pressure into thrust using a large reflective surface typically coated with a thin metallic film. In contrast, the diffractive sail proposed by Swartzlander leverages the properties of an advanced metamaterial-based film to generate a net transverse thrust even when the sail is Sun-facing, i.e., in a configuration that can be passively maintained by a suitably designed spacecraft. Specifically, this study considers a sail membrane covered with a set of electro-optically controlled diffractive panels. These panels employ a (controlled) binary metamaterial arrayed grating to steer the direction of photons exiting the diffractive film. This control technique has recently been applied to achieve a circle-to-circle interplanetary transfer using a Sun-facing diffractive sail. In this work, an optimal control law is employed to execute a rapid phasing maneuver along an elliptical heliocentric orbit with specified characteristics, such as those of Earth and Mercury. The analysis also includes a limiting case involving a circular heliocentric orbit. For this latter scenario, a simplified and elegant control law is proposed based on a linearized form of the equations of motion to describe the heliocentric dynamics of the diffractive sail-based spacecraft during the phasing maneuver. Full article
Show Figures

Figure 1

19 pages, 2843 KB  
Article
Influence of Nitrogen Doping on Vacancy-Engineered T-Graphene Fragments: Insights into Electronic and Optical Properties
by Jyotirmoy Deb and Pratim Kumar Chattaraj
Chemistry 2025, 7(4), 126; https://doi.org/10.3390/chemistry7040126 - 7 Aug 2025
Viewed by 364
Abstract
This study investigates the influence of vacancy engineering and nitrogen doping on the structural, electronic, and optical properties of T-graphene fragments (TFs) using density functional theory (DFT) and time-dependent DFT (TD-DFT). A central vacancy and five pyridinic nitrogen doping configurations are explored to [...] Read more.
This study investigates the influence of vacancy engineering and nitrogen doping on the structural, electronic, and optical properties of T-graphene fragments (TFs) using density functional theory (DFT) and time-dependent DFT (TD-DFT). A central vacancy and five pyridinic nitrogen doping configurations are explored to modulate the optoelectronic behavior. All systems are thermodynamically stable, exhibiting tunable HOMO–LUMO gaps, orbital distributions, and charge transfer characteristics. Optical absorption spectra show redshifts and enhanced oscillator strengths in doped variants, notably v-NTF2 and v-NTF4. Nonlinear optical (NLO) analysis reveals significant enhancement in both static and frequency-dependent responses. v-NTF2 displays an exceptionally high first-order hyperpolarizability (⟨β⟩ = 1228.05 au), along with a strong electro-optic Pockels effect (β (−ω; ω, 0)) and second harmonic generation (β (−2ω; ω, ω)). Its third-order response, γ (−2ω; ω, ω, 0), also exceeds 1.2 × 105 au under visible excitation. Conceptual DFT descriptors and energy decomposition analysis further supports the observed trends in reactivity, charge delocalization, and stability. These findings demonstrate that strategic nitrogen doping in vacancy-engineered TFs is a powerful route to tailor electronic excitation, optical absorption, and nonlinear susceptibility. The results offer valuable insight into the rational design of next-generation carbon-based materials for optoelectronic, photonic, and NLO device applications. Full article
(This article belongs to the Special Issue Modern Photochemistry and Molecular Photonics)
Show Figures

Figure 1

27 pages, 2361 KB  
Review
Review of Thrust Regulation and System Control Methods of Variable-Thrust Liquid Rocket Engines in Space Drones
by Meng Sun, Xiangzhou Long, Bowen Xu, Haixia Ding, Xianyu Wu, Weiqi Yang, Wei Zhao and Shuangxi Liu
Actuators 2025, 14(8), 385; https://doi.org/10.3390/act14080385 - 4 Aug 2025
Viewed by 595
Abstract
Variable-thrust liquid rocket engines are essential for precision landing in deep-space exploration, reusable launch vehicle recovery, high-accuracy orbital maneuvers, and emergency obstacle evasions of space drones. However, with the increasingly complex space missions, challenges remain with the development of different technical schemes. In [...] Read more.
Variable-thrust liquid rocket engines are essential for precision landing in deep-space exploration, reusable launch vehicle recovery, high-accuracy orbital maneuvers, and emergency obstacle evasions of space drones. However, with the increasingly complex space missions, challenges remain with the development of different technical schemes. In view of these issues, this paper systematically reviews the technology’s evolution through mechanical throttling, electromechanical precision regulation, and commercial space-driven deep throttling. Then, the development of key variable thrust technologies for liquid rocket engines is summarized from the perspective of thrust regulation and control strategy. For instance, thrust regulation requires synergistic flow control devices and adjustable pintle injectors to dynamically match flow rates with injection pressure drops, ensuring combustion stability across wide thrust ranges—particularly under extreme conditions during space drones’ high-maneuver orbital adjustments—though pintle injector optimization for such scenarios remains challenging. System control must address strong multivariable coupling, response delays, and high-disturbance environments, as well as bottlenecks in sensor reliability and nonlinear modeling. Furthermore, prospects are made in response to the research progress, and breakthroughs are required in cryogenic wide-range flow regulation for liquid oxygen-methane propellants, combustion stability during deep throttling, and AI-based intelligent control to support space drones’ autonomous orbital transfer, rapid reusability, and on-demand trajectory correction in complex deep-space missions. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

12 pages, 736 KB  
Article
Hybrid Framework of Fermi–Dirac Spin Hydrodynamics
by Zbigniew Drogosz
Physics 2025, 7(3), 31; https://doi.org/10.3390/physics7030031 - 1 Aug 2025
Viewed by 288
Abstract
The paper outlines the hybrid framework of spin hydrodynamics, combining classical kinetic theory with the Israel–Stewart method of introducing dissipation. The local equilibrium expressions for the baryon current, the energy–momentum tensor, and the spin tensor of particles with spin 1/2 following the Fermi–Dirac [...] Read more.
The paper outlines the hybrid framework of spin hydrodynamics, combining classical kinetic theory with the Israel–Stewart method of introducing dissipation. The local equilibrium expressions for the baryon current, the energy–momentum tensor, and the spin tensor of particles with spin 1/2 following the Fermi–Dirac statistics are obtained and compared with the earlier derived versions where the Boltzmann approximation was used. The expressions in the two cases are found to have the same form, but the coefficients are shown to be governed by different functions. The relative differences between the tensor coefficients in the Fermi–Dirac and Boltzmann cases are found to grow exponentially with the baryon chemical potential. In the proposed formalism, nonequilibrium processes are studied including mathematically possible dissipative corrections. Standard conservation laws are applied, and the condition of positive entropy production is shown to allow for the transfer between the spin and orbital parts of angular momentum. Full article
(This article belongs to the Special Issue High Energy Heavy Ion Physics—Zimányi School 2024)
Show Figures

Figure 1

10 pages, 1555 KB  
Article
Lithium-Decorated C26 Fullerene in DFT Investigation: Tuning Electronic Structures for Enhanced Hydrogen Storage
by Jiangang Yu, Lili Liu, Quansheng Li, Zhidong Xu, Yujia Shi and Cheng Lei
Molecules 2025, 30(15), 3223; https://doi.org/10.3390/molecules30153223 - 31 Jul 2025
Viewed by 332
Abstract
Hydrogen energy holds immense potential to address the global energy crisis and environmental challenges. However, its large-scale application is severely hindered by the lack of efficient hydrogen storage materials. This study systematically investigates the H2 adsorption properties of intrinsic C26 fullerene [...] Read more.
Hydrogen energy holds immense potential to address the global energy crisis and environmental challenges. However, its large-scale application is severely hindered by the lack of efficient hydrogen storage materials. This study systematically investigates the H2 adsorption properties of intrinsic C26 fullerene and Li-decorated C26 fullerene using density functional theory (DFT) calculations. The results reveal that Li atoms preferentially bind to the H5-5 site of C26, driven by significant electron transfer (0.90 |e|) from Li to C26. This electron redistribution modulates the electronic structure of C26, as evidenced by projected density of states (PDOS) analysis, where the p orbitals of C atoms near the Fermi level undergo hybridization with Li orbitals, enhancing the electrostatic environment for H2 adsorption. For Li-decorated C26, the average adsorption energy and consecutive adsorption energy decrease as more H2 molecules are adsorbed, indicating a gradual weakening of adsorption strength and signifying a saturation limit of three H2 molecules. Charge density difference and PDOS analyses further demonstrate that H2 adsorption induces synergistic electron transfer from both Li (0.89 |e| loss) and H2 (0.01 |e| loss) to C26 (0.90 |e| gain), with orbital hybridization between H s orbitals, C p orbitals, and Li orbitals stabilizing the adsorbed system. This study aimed to provide a comprehensive understanding of the microscopic mechanism underlying Li-enhanced H2 adsorption on C26 fullerene and offer insights into the rational design of metal-decorated fullerene-based systems for efficient hydrogen storage. Full article
Show Figures

Graphical abstract

16 pages, 3038 KB  
Article
The Interaction Mechanism Between Modified Selective Catalytic Reduction Catalysts and Volatile Organic Compounds in Flue Gas: A Density Functional Theory Study
by Ke Zhuang, Hanwen Wang, Zhenglong Wu, Yao Dong, Yun Xu, Chunlei Zhang, Xinyue Zhou, Yangwen Wu and Bing Zhang
Catalysts 2025, 15(8), 728; https://doi.org/10.3390/catal15080728 - 31 Jul 2025
Viewed by 438
Abstract
The overall efficiency of combining denitrification and volatile organic compound (VOC) removal through selective catalytic reduction (SCR) technology is currently mainly limited by the VOC removal aspect. However, existing studies have not studied the microscopic mechanism of the interaction between VOCs and catalysts, [...] Read more.
The overall efficiency of combining denitrification and volatile organic compound (VOC) removal through selective catalytic reduction (SCR) technology is currently mainly limited by the VOC removal aspect. However, existing studies have not studied the microscopic mechanism of the interaction between VOCs and catalysts, failing to provide a theoretical basis for catalysts. Therefore, this work explored the interaction mechanisms between SCR catalysts doped with different additives and typical VOCs (acetone and toluene) in flue gas based on density functional theory (DFT) calculations. The results showed that the VNi-TiO2 surface exhibited a high adsorption energy of −0.80 eV for acetone and a high adsorption energy of −1.02 eV for toluene on the VMn-TiO2 surface. Electronic structure analysis revealed the VMn-TiO2 and VNi-TiO2 surfaces exhibited more intense orbital hybridization with acetone and toluene, promoting charge transfer between the two and resulting in stronger interactions. The analysis of temperature on adsorption free energy showed that VMn-TiO2 and VNi-TiO2 still maintained high activity at high temperatures. This work contributes to clarifying the interaction mechanism between SCR and VOCs and enhancing the VOC removal efficiency. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Graphical abstract

13 pages, 1132 KB  
Review
M-Edge Spectroscopy of Transition Metals: Principles, Advances, and Applications
by Rishu Khurana and Cong Liu
Catalysts 2025, 15(8), 722; https://doi.org/10.3390/catal15080722 - 30 Jul 2025
Viewed by 631
Abstract
M-edge X-ray absorption spectroscopy (XAS), which probes 3p→3d transitions in first-row transition metals, provides detailed insights into oxidation states, spin-states, and local electronic structure with high element and orbital specificity. Operating in the extreme ultraviolet (XUV) region, this technique provides [...] Read more.
M-edge X-ray absorption spectroscopy (XAS), which probes 3p→3d transitions in first-row transition metals, provides detailed insights into oxidation states, spin-states, and local electronic structure with high element and orbital specificity. Operating in the extreme ultraviolet (XUV) region, this technique provides sharp multiplet-resolved features with high sensitivity to ligand field and covalency effects. Compared to K- and L-edge XAS, M-edge spectra exhibit significantly narrower full widths at half maximum (typically 0.3–0.5 eV versus >1 eV at the L-edge and >1.5–2 eV at the K-edge), owing to longer 3p core-hole lifetimes. M-edge measurements are also more surface-sensitive due to the lower photon energy range, making them particularly well-suited for probing thin films, interfaces, and surface-bound species. The advent of tabletop high-harmonic generation (HHG) sources has enabled femtosecond time-resolved M-edge measurements, allowing direct observation of ultrafast photoinduced processes such as charge transfer and spin crossover dynamics. This review presents an overview of the fundamental principles, experimental advances, and current theoretical approaches for interpreting M-edge spectra. We further discuss a range of applications in catalysis, materials science, and coordination chemistry, highlighting the technique’s growing impact and potential for future studies. Full article
(This article belongs to the Special Issue Spectroscopy in Modern Materials Science and Catalysis)
Show Figures

Graphical abstract

Back to TopTop