Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = opto-mechanical design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 692 KiB  
Article
Contrast Sensitivity Comparison of Daily Simultaneous-Vision Center-Near Multifocal Contact Lenses: A Pilot Study
by David P. Piñero, Ainhoa Molina-Martín, Elena Martínez-Plaza, Kevin J. Mena-Guevara, Violeta Gómez-Vicente and Dolores de Fez
Vision 2025, 9(3), 67; https://doi.org/10.3390/vision9030067 (registering DOI) - 1 Aug 2025
Abstract
Our purpose is to evaluate the binocular contrast sensitivity function (CSF) in a presbyopic population and compare the results obtained with four different simultaneous-vision center-near multifocal contact lens (MCL) designs for distance vision under two illumination conditions. Additionally, chromatic CSF (red-green and blue-yellow) [...] Read more.
Our purpose is to evaluate the binocular contrast sensitivity function (CSF) in a presbyopic population and compare the results obtained with four different simultaneous-vision center-near multifocal contact lens (MCL) designs for distance vision under two illumination conditions. Additionally, chromatic CSF (red-green and blue-yellow) was evaluated. A randomized crossover pilot study was conducted. Four daily disposable lens designs, based on simultaneous-vision and center-near correction, were compared. The achromatic contrast sensitivity function (CSF) was measured binocularly using the CSV1000e test under two lighting conditions: room light on and off. Chromatic CSF was measured using the OptoPad-CSF test. Comparison of achromatic results with room lighting showed a statistically significant difference only for 3 cpd (p = 0.03) between the baseline visit (with spectacles) and all MCLs. Comparison of achromatic results without room lighting showed no statistically significant differences between the baseline and all MCLs for any spatial frequency (p > 0.05 in all cases). Comparison of CSF-T results showed a statistically significant difference only for 4 cpd (p = 0.002). Comparison of CSF-D results showed no statistically significant difference for all frequencies (p > 0.05 in all cases). The MCL designs analyzed provided satisfactory achromatic contrast sensitivity results for distance vision, similar to those obtained with spectacles, with no remarkable differences between designs. Chromatic contrast sensitivity for the red-green and blue-yellow mechanisms revealed some differences from the baseline that should be further investigated in future studies. Full article
Show Figures

Figure 1

22 pages, 2422 KiB  
Article
OSIRIS4CubeSat—The World’s Smallest Commercially Available Laser Communication Terminal
by Benjamin Rödiger, Christian Roubal, Fabian Rein, René Rüddenklau, Anil Morab Vishwanath and Christopher Schmidt
Aerospace 2025, 12(8), 655; https://doi.org/10.3390/aerospace12080655 - 23 Jul 2025
Viewed by 182
Abstract
The New Space movement led to an exponential increase in the number of the smallest satellites in orbit in the last two decades. The number of required communication channels increased with that as well and revealed the limitations of classical radio frequency channels. [...] Read more.
The New Space movement led to an exponential increase in the number of the smallest satellites in orbit in the last two decades. The number of required communication channels increased with that as well and revealed the limitations of classical radio frequency channels. Free-space optical communication overcomes these challenges and has been successfully demonstrated, with operational systems in orbit on large and small satellites. The next step is to miniaturize the technology of laser communication to make it usable on CubeSats. Thus, the German Aerospace Center (DLR) developed, together with Tesat-Spacecom GmbH & Co. KG in Backnang, Germany, a highly miniaturized and power-efficient laser terminal, which is based on a potential customer’s use case. OSIRIS4CubeSat uses a new patented design that combines electronics and optomechanics into a single system architecture to achieve a high compactness following the CubeSat standard. Interfaces and software protocols that follow established standards allowed for an easy transition to the industry for a commercial mass market. The successful demonstration of OSIRIS4CubeSat during the PIXL-1 mission proved its capabilities and the advantages of free-space optical communication in the final environment. This paper gives an overview of the system architecture and the development of the single subsystems. The system’s capabilities are verified by the already published in-orbit demonstration results. Full article
(This article belongs to the Special Issue On-Board Systems Design for Aerospace Vehicles (2nd Edition))
Show Figures

Figure 1

15 pages, 2557 KiB  
Article
Multiline Laser Interferometry for Non-Contact Dynamic Morphing of Hierarchical Surfaces
by Biagio Audia, Caterina Maria Tone, Pasquale Pagliusi, Alfredo Mazzulla, George Papavieros, Vassilios Constantoudis and Gabriella Cipparrone
Biomimetics 2025, 10(8), 486; https://doi.org/10.3390/biomimetics10080486 - 23 Jul 2025
Viewed by 323
Abstract
Hierarchical surface structuring is a critical aspect of advanced materials design, impacting fields ranging from optics to biomimetics. Among several laser-based methods for complex structuring of photo-responsive surfaces, the broadband vectorial interferometry proposed here offers unique performances. Such a method leverages a polychromatic [...] Read more.
Hierarchical surface structuring is a critical aspect of advanced materials design, impacting fields ranging from optics to biomimetics. Among several laser-based methods for complex structuring of photo-responsive surfaces, the broadband vectorial interferometry proposed here offers unique performances. Such a method leverages a polychromatic laser source, an unconventional choice for holographic encoding, to achieve deterministic multiscale surface structuring through interference light patterning. Azopolymer films are used as photosensitive substrates. By exploring the interaction between optomechanical stress modulations at different spatial periodicities induced within the polymer bulk, we demonstrate the emergence of hierarchical Fourier surfaces composed of multiple deterministic levels. These structures range from sub-micrometer to tens of micrometers scale, exhibiting a high degree of control over their morphology. The experimental findings reveal that the optical encoding scheme significantly influences the resulting topographies. The polarization light patterns lead to more regular and symmetric hierarchical structures compared to those obtained with intensity patterns, underscoring the role of vectorial light properties in controlling surface morphologies. The proposed method is fully scalable, compatible with more complex recording schemes (including multi-beam interference), and it is applicable to a wide range of advanced technological fields. These include optics and photonics (diffractive elements, polarimetric devices), biomimetic surfaces, topographical design, information encoding, and anti-counterfeiting, offering a rapid, reliable, and versatile strategy for high-precision surface structuring at a submicrometric scale. Full article
Show Figures

Figure 1

17 pages, 5455 KiB  
Article
Associations of Lower Limb Muscle–Tendon Properties with Dual-Task Gait Variability: A Cross-Age Study
by Zheng Dong, YoungJin Moon, Sang Ki Lee, Hwi-yeol Yun, JuWon Song, JiaHao Xu, Min Ju Shin, DuBin Im and XuanRu Wang
Healthcare 2025, 13(12), 1375; https://doi.org/10.3390/healthcare13121375 - 9 Jun 2025
Viewed by 485
Abstract
Objectives: This study is the first to investigate the association between lower limb muscle–tendon mechanical properties and dual-task gait variability using a handheld, non-invasive myotonometer (MyotonPRO). Methods: A cross-sectional design was employed, involving 48 participants (older adults: 72.05 ± 3.52 years; younger adults: [...] Read more.
Objectives: This study is the first to investigate the association between lower limb muscle–tendon mechanical properties and dual-task gait variability using a handheld, non-invasive myotonometer (MyotonPRO). Methods: A cross-sectional design was employed, involving 48 participants (older adults: 72.05 ± 3.52 years; younger adults: 24.8 ± 2.36 years). The stiffness and elasticity of dominant lower limb muscles and tendons were assessed using the MyotonPRO. Gait variability—including step length, stride length, and gait cycle time—was measured using the OptoGait system. Results: Compared to the younger group, older adults showed increased stiffness of the patellar tendon (p < 0.001) and decreased stiffness of the Achilles tendon (p < 0.047). Additionally, both the rectus femoris and biceps femoris exhibited significantly higher stiffness (p < 0.05) and reduced elasticity (p < 0.001). Patellar tendon stiffness was positively correlated with gait variability (r = 0.55 to 0.68, p < 0.01), whereas Achilles tendon stiffness showed a negative correlation (r = −0.32 to −0.40, p < 0.05). Conclusions: This study provides preliminary evidence linking muscle–tendon mechanical properties with dual-task gait stability in older adults. Increased stiffness in the patellar tendon and decreased stiffness in the Achilles tendon suggest these structural characteristics may play a crucial role in gait control and hold potential as predictive markers of fall risk. Linking non-invasive MyotonPRO-derived mechanical properties with key spatiotemporal gait parameters may support its potential use in the early detection of gait instability in older adults. Full article
Show Figures

Figure 1

9 pages, 3584 KiB  
Article
Parameter Study of 500 nm Thick Slot-Type Photonic Crystal Cavities for Cavity Optomechanical Sensing
by Zhe Li, Jun Liu, Yi Zhang, Chenguwei Xian, Yifan Wang, Kai Chen, Gen Qiu, Guangwei Deng, Yongjun Huang and Boyu Fan
Photonics 2025, 12(6), 584; https://doi.org/10.3390/photonics12060584 - 8 Jun 2025
Viewed by 2538
Abstract
In recent years, research on light-matter interactions in silicon-based micro/nano cavity optomechanical systems demonstrates high-resolution sensing capabilities (e.g., sub-fm-level displacement sensitivity). Conventional 2D photonic crystal (PhC) cavity optomechanical sensors face inherent limitations: thin silicon layers (200–300 nm) restrict both the mass block (critical [...] Read more.
In recent years, research on light-matter interactions in silicon-based micro/nano cavity optomechanical systems demonstrates high-resolution sensing capabilities (e.g., sub-fm-level displacement sensitivity). Conventional 2D photonic crystal (PhC) cavity optomechanical sensors face inherent limitations: thin silicon layers (200–300 nm) restrict both the mass block (critical for thermal noise suppression) and optical Q-factor. Enlarging the detection mass in such thin layers exacerbates in-plane height nonuniformity, severely limiting high-precision sensing. This study proposes a 500 nm thick silicon-based 2D slot-type PhC cavity design for advanced sensing applications, fabricated on a silicon-on-insulator (SOI) substrate with optimized air slot structures. Systematic parameter optimization via finite element simulations defines structural parameters for the 1550 nm band, followed by 6 × 6 × 6 combinatorial experiments on lattice constant, air hole radius, and line-defect waveguide width. Experimental results demonstrate a loaded Q-factor of 57,000 at 510 nm lattice constant, 175 nm air hole radius, and 883 nm line-defect waveguide width (measured sidewall angle: 88.4°). The thickened silicon layer delivers dual advantages: enhanced mass block for thermal noise reduction and high Q-factor for optomechanical coupling efficiency, alongside improved ridge waveguide compatibility. This work advances the practical development of CMOS-compatible micro-opto-electromechanical systems (MOEMS). Full article
Show Figures

Figure 1

27 pages, 10156 KiB  
Article
A Distributed Time-of-Flight Sensor System for Autonomous Vehicles: Architecture, Sensor Fusion, and Spiking Neural Network Perception
by Edgars Lielamurs, Ibrahim Sayed, Andrejs Cvetkovs, Rihards Novickis, Anatolijs Zencovs, Maksis Celitans, Andis Bizuns, George Dimitrakopoulos, Jochen Koszescha and Kaspars Ozols
Electronics 2025, 14(7), 1375; https://doi.org/10.3390/electronics14071375 - 29 Mar 2025
Viewed by 914
Abstract
Mechanically scanning LiDAR imaging sensors are abundantly used in applications ranging from basic safety assistance to high-level automated driving, offering excellent spatial resolution and full surround-view coverage in most scenarios. However, their complex optomechanical structure introduces limitations, namely limited mounting options and blind [...] Read more.
Mechanically scanning LiDAR imaging sensors are abundantly used in applications ranging from basic safety assistance to high-level automated driving, offering excellent spatial resolution and full surround-view coverage in most scenarios. However, their complex optomechanical structure introduces limitations, namely limited mounting options and blind zones, especially in elongated vehicles. To mitigate these challenges, we propose a distributed Time-of-Flight (ToF) sensor system with a flexible hardware–software architecture designed for multi-sensor synchronous triggering and fusion. We formalize the sensor triggering, interference mitigation scheme, data aggregation and fusion procedures and highlight challenges in achieving accurate global registration with current state-of-the-art methods. The resulting surround view visual information is then applied to Spiking Neural Network (SNN)-based object detection and probabilistic occupancy grid mapping (OGM) for enhanced environmental awareness. The proposed system is demonstrated on a test vehicle, achieving coverage of blind zones in a range of 0.5–6 m with a scalable and reconfigurable sensor mounting setup. Using seven ToF sensors, we can achieve a 10 Hz synchronized frame rate, with a 360° point cloud registration and fusion latency below 40 ms. We collected real-world driving data to evaluate the system, achieving 65% mean Average Precision (mAP) in object detection with our SNN. Overall, this work presents a replacement or addition to LiDAR in future high-level automation tasks, offering improved coverage and system integration. Full article
(This article belongs to the Section Electrical and Autonomous Vehicles)
Show Figures

Figure 1

18 pages, 1880 KiB  
Article
Proposal for a Battery to Evaluate Functional Capacity in Older Adults with Disabilities
by Josu Ascondo, Iñaki Llodio, Bingen Marcos-Rivero, Cristina Granados, Sheila Romero, Aitor Iturricastillo and Javier Yanci
Sensors 2025, 25(6), 1813; https://doi.org/10.3390/s25061813 - 14 Mar 2025
Viewed by 614
Abstract
The purpose was to design and validate a battery of physical tests, called EFEPD-1.0, adapted to assess functionality in people with disabilities. In addition, we sought to analyze the validity and reliability of this battery both for the total group and differentiated by [...] Read more.
The purpose was to design and validate a battery of physical tests, called EFEPD-1.0, adapted to assess functionality in people with disabilities. In addition, we sought to analyze the validity and reliability of this battery both for the total group and differentiated by sex. A total of 43 adults with disabilities (32 women and 11 men) participated (57.11 ± 10.12 years). The battery was composed of five blocks of functionality: neuromuscular, combined actions, acceleration, balance, and cardiovascular. The neuromuscular functionality was measured by the vertical and horizontal jump test using the optical system (Opto Jump Next®, Microgate, Bolzano, Italy) as well as the Hand Grip (HG) test using a (5030J1, Jamar®, Sammons Preston, Inc, Nottinghamshire, UK) hand dynamometer. The combined actions and balance functionality were assessed with the Time Up and Go (TUG) test, the 30 s Chair Stand (30CTS) test, and the One-Leg Stance (OLS) test measured by a manual stopwatch (HS-80TW-1EF, Casio®, Tokyo, Japan). The acceleration functionality was evaluated through 20 m sprints and the 505 change of direction (COD505) test, using the (Microgate, Witty®, Bolzano, Italy) photocell system. The cardiovascular functionality was evaluated with the Six-Minute Walking Test (6MWT), where heart rate was monitored using the (Polar Team Sport System®, Polar Electro Oy, Kempele, Finland), and additional walking mechanics were recorded with Stryd (Stryd Everest 12 Firmware 1.18 Software 3, Stryd Inc., Boulder, CO, USA). The results showed that the intraclass correlation coefficients (ICCs) ranged from moderate to almost perfect (ICC = 0.65–0.98) between test repetitions. Some tests could significantly differentiate (p < 0.05) men and women, highlighting better neuromuscular capacity in men and better balance in women. The correlations between tests showed significant convergent validity. The Evaluation of Functionality in the Disabled Population (EFEPD-1.0) battery not only consistently measures functional capacities in people with disabilities, but it can also discriminate between different subgroups within this population. Full article
(This article belongs to the Collection Sensors for Globalized Healthy Living and Wellbeing)
Show Figures

Figure 1

12 pages, 10206 KiB  
Proceeding Paper
Portable Biomedical System for Acquisition, Display and Analysis of Cardiac Signals (SCG, ECG, ICG and PPG)
by Valery Sofía Zúñiga Gómez, Adonis José Pabuena García, Breiner David Solorzano Ramos, Saúl Antonio Pérez Pérez, Jean Pierre Coll Velásquez, Pablo Daniel Bonaveri and Carlos Gabriel Díaz Sáenz
Eng. Proc. 2025, 83(1), 19; https://doi.org/10.3390/engproc2025083019 - 23 Jan 2025
Viewed by 1084
Abstract
This study introduces a mechatronic biomedical device engineered for concurrent acquisition and analysis of four cardiac non-invasive signals: Electrocardiogram (ECG), Phonocardiogram (PCG), Impedance Cardiogram (ICG), and Photoplethysmogram (PPG). The system enables assessment of individual and simultaneous waveforms, allowing for detailed scrutiny of cardiac [...] Read more.
This study introduces a mechatronic biomedical device engineered for concurrent acquisition and analysis of four cardiac non-invasive signals: Electrocardiogram (ECG), Phonocardiogram (PCG), Impedance Cardiogram (ICG), and Photoplethysmogram (PPG). The system enables assessment of individual and simultaneous waveforms, allowing for detailed scrutiny of cardiac electrical and mechanical dynamics, encompassing heart rate variability, systolic time intervals, pre-ejection period (PEP), and aortic valve opening and closing timings (ET) through an application programmed with MATLAB App Designer, which applies derivative filters, smoothing, and FIR digital filters and evaluates the delay of each one, allowing the synchronization of all signals. These metrics are indispensable for deriving critical hemodynamic indices such as Stroke Volume (SV) and Cardiac Output (CO), paramount in the diagnostic armamentarium against cardiovascular pathologies. The device integrates an assembly of components including five electrodes, operational and instrumental amplifiers, infrared opto-couplers, accelerometers, and advanced filtering subsystems, synergistically tailored for precision and fidelity in signal processing. Rigorous validation utilizing a cohort of healthy subjects and benchmarking against established commercial instrumentation substantiates an accuracy threshold below 4.3% and an Interclass Correlation Coefficient (ICC) surpassing 0.9, attesting to the instrument’s exceptional reliability and robustness in quantification. These findings underscore the clinical potency and technical prowess of the developed device, empowering healthcare practitioners with an advanced toolset for refined diagnosis and management of cardiovascular disorders. Full article
Show Figures

Figure 1

20 pages, 9636 KiB  
Article
Optimization of Ultra Lightweight Mirror and Opto-Mechanical–Thermal Coupling Analysis Based on Solar Thermal Radiation
by Quanliang Dong, Jinhe Yang, Tong Zhang and Xiaoming Wang
Sensors 2025, 25(2), 483; https://doi.org/10.3390/s25020483 - 16 Jan 2025
Viewed by 938
Abstract
To improve maneuverability, the focus of photoelectric theodolites is on reducing the weight of the primary mirror and enhancing its optical performance. This study uses MOAT and Sobol methods to identify key parameters that affect design. Using the high-sensitivity part as the optimization [...] Read more.
To improve maneuverability, the focus of photoelectric theodolites is on reducing the weight of the primary mirror and enhancing its optical performance. This study uses MOAT and Sobol methods to identify key parameters that affect design. Using the high-sensitivity part as the optimization domain, six optimization results were obtained based on the multi-objective SIMP topology optimization method and synthesized into a compromise optimization structure. The performance of the mirror before and after optimization was compared on the opto-mechanical–thermal level. Modal analysis shows the optimized structure has a first natural frequency of 716.84 Hz, indicating excellent stiffness and avoiding low-frequency resonance, with a 30.37% weight reduction. Optical performance is also improved, with a 6 μm reduction in the spot diagram radius and an 8.95 nm decrease in RMS. Simulations under real-world conditions show that the lightweight mirror performs better in resisting gravity deformation and maintaining imaging quality. At maximum thermal deformation, the spot diagram radius of the optimized mirror is 1521.819 μm, with only a 0.145% difference in imaging quality compared to the original. In conclusion, the optimized structure shows comprehensive advantages. Constructing the optical system components and the real physical environment of the site provides a valuable reference for the optimization and analysis of the mirror. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

19 pages, 5242 KiB  
Article
Unlocking the Luminescent Potential of Fish-Scale-Derived Carbon Nanoparticles for Multicolor Conversion
by Najeeb S. Abdulla II, Marvin Jose F. Fernandez, Bakhytzhan Baptayev and Mannix P. Balanay
Int. J. Mol. Sci. 2024, 25(20), 10929; https://doi.org/10.3390/ijms252010929 - 11 Oct 2024
Viewed by 1557
Abstract
This study introduces a novel approach to addressing environmental issues by developing fish-scale carbon nanoparticles (FSCNPs) with a wide range of colors from discarded fish scales. The process involves hydrothermally synthesizing raw tamban (Sardinella) fish scales sourced from Universal Canning, Inc. in Zamboanga [...] Read more.
This study introduces a novel approach to addressing environmental issues by developing fish-scale carbon nanoparticles (FSCNPs) with a wide range of colors from discarded fish scales. The process involves hydrothermally synthesizing raw tamban (Sardinella) fish scales sourced from Universal Canning, Inc. in Zamboanga City, Philippines. The optimization of the synthesis was achieved using the response surface methodology with a Box–Behnken design. The resulting FSCNPs exhibited unique structural and chemical properties akin to carbonized polymer dots, enhancing their versatility. The solid-state fluorescence of these nanoparticles can be modulated by varying their concentration in a polyvinylpyrrolidone matrix, yielding colors such as blue, green, yellow, and red-orange with Commission Internationale de l’Eclairage coordinates of (0.23, 0.38), (0.32, 0.43), (0.37, 0.43), and (0.46, 0.48), respectively. An analysis of the luminescence mechanism highlights cross-linking emissions, aggregation-induced emissions, and non-covalent interactions, which contribute to concentration-dependent fluorescence and tunable emission colors. These optical characteristics suggest that FSCNPs have significant potential for diverse applications, particularly in opto-electronic devices. Full article
(This article belongs to the Special Issue Properties and Applications of Nanoparticles and Nanomaterials)
Show Figures

Figure 1

15 pages, 3589 KiB  
Article
Numerical Investigation of Localized Surface Plasmons in Gold Nano-Ridge Dimer-on-Mirror Structures
by Mohamed El Ghafiani, Adnane Noual, Madiha Amrani, Mohammed Moutaouekkil and El Houssaine El Boudouti
Photonics 2024, 11(9), 817; https://doi.org/10.3390/photonics11090817 - 30 Aug 2024
Viewed by 1514
Abstract
The study of localized surface plasmons (LSPs) in nanoscale structures is an essential step towards identifying optimal plasmonic modes that can facilitate robust optomechanical coupling and deepen our understanding of light–matter interactions at the nanoscale. This paper investigates, numerically, using the finite element [...] Read more.
The study of localized surface plasmons (LSPs) in nanoscale structures is an essential step towards identifying optimal plasmonic modes that can facilitate robust optomechanical coupling and deepen our understanding of light–matter interactions at the nanoscale. This paper investigates, numerically, using the finite element method, LSP modes in a design comprising two coupled nano-ridges deposited on a gold layer with an interposing polymer spacer layer. Such a structure, usually referred to as a particle-on-mirror structure, shows exquisite optical properties at the nanoscale. We first examine the LSP modes of a single nano-ridge through the analysis of its scattering cross-section in the visible and infrared ranges. To enhance the plasmonic response, a thin polymer layer is placed at the middle of the ridge, which introduces additional LSP modes confined within the former. Then, we extend the analysis to the dimer configuration, which exhibits more complex and enhanced plasmonic behavior compared to a single nano-ridge. In particular, the dimer configuration yields LSP resonances with a quality factor enhancement of approximately threefold relative to a single nano-ridge. Furthermore, the presence of the polymer layer within the ridges significantly improves plasmon field localization and the quality factor. These findings underscore the potential of nano-ridge-based structures in advancing optomechanical coupling and offering valuable insights for the development of high-performance acousto-plasmonic devices. In particular, the proposed device could help significantly improve the design of nano-acousto-optic modulators, operating in the visible or in the near-infrared ranges, that require an enhanced light–phonon coupling rate. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Nonlinear Photonics)
Show Figures

Figure 1

13 pages, 5473 KiB  
Article
Designs of Miniature Optomechanical Sensors for Measurements of Acceleration with Frequencies of Hundreds of Hertz
by Marina Rezinkina and Claus Braxmaier
Designs 2024, 8(4), 67; https://doi.org/10.3390/designs8040067 - 4 Jul 2024
Cited by 3 | Viewed by 3888
Abstract
Some applications, such as aerospace testing and monitoring the operating conditions of equipment on space missions, require mechanical sensors capable of measuring accelerations at frequencies of several hundred hertz. For such measurements, optomechanical sensors can be used, providing the ability to measure accelerations [...] Read more.
Some applications, such as aerospace testing and monitoring the operating conditions of equipment on space missions, require mechanical sensors capable of measuring accelerations at frequencies of several hundred hertz. For such measurements, optomechanical sensors can be used, providing the ability to measure accelerations without calibration. To enable such measurements, improved designs of drum-type sensors with the assigned performance have been elaborated. Such designs make it possible to provide the necessary levels of natural frequencies for optomechanical sensors and eliminate crosstalk. Using mathematical modeling, the dependencies of the mechanical characteristics of the proposed types of acceleration sensors versus their parameters were obtained. The use of such sensor designs ensures their compactness, making their manufacturing more technologically sound and suitable for use, in particular, in space missions. Full article
Show Figures

Figure 1

12 pages, 7441 KiB  
Article
Black TiO2 and Oxygen Vacancies: Unraveling the Role in the Thermal Anatase-to-Rutile Transformation
by Mattia Allieta, Mauro Coduri and Alberto Naldoni
Appl. Nano 2024, 5(2), 72-83; https://doi.org/10.3390/applnano5020007 - 3 May 2024
Cited by 3 | Viewed by 2570
Abstract
Understanding the role of oxygen vacancies in the phase transformation of metal oxide nanomaterials is fundamental to design more efficient opto-electronic devices for a variety of applications, including sensing, spintronics, photocatalysis, and photo-electrochemistry. However, the structural mechanisms behind the phase transformation in reducible [...] Read more.
Understanding the role of oxygen vacancies in the phase transformation of metal oxide nanomaterials is fundamental to design more efficient opto-electronic devices for a variety of applications, including sensing, spintronics, photocatalysis, and photo-electrochemistry. However, the structural mechanisms behind the phase transformation in reducible oxides remain poorly described. Here, we compare P25 and black TiO2 during the thermal anatase-to-rutile transformation using in situ synchrotron powder diffraction. The precise measurement of the phase fractions, unit cell parameters, and Ti-O bond sheds light on the phase transformation dynamics. Notably, we observe distinct temperature-dependent shifts in the relative phase fractions of anatase and rutile in both materials highlighting the role of the oxygen vacancy in promoting the phase transformation. We employ bond valence concepts for structural modeling, revealing unique trends in temperature evolution of Ti-O distances of black rutile, confirming that this TiO2 phase is preferentially reduced over anatase. These findings not only enhance our understanding of phase transitions in TiO2 but also open new ways for the design of advanced photocatalytic materials through targeted phase control. Full article
(This article belongs to the Collection Feature Papers for Applied Nano)
Show Figures

Figure 1

18 pages, 8045 KiB  
Article
Designs of Optomechanical Acceleration Sensors with the Natural Frequency from 5 Hz to 50 kHz
by Marina Rezinkina and Claus Braxmaier
Designs 2024, 8(2), 33; https://doi.org/10.3390/designs8020033 - 7 Apr 2024
Cited by 2 | Viewed by 2110
Abstract
In many applications, such as space navigation, metrology, testing, and geodesy, it is necessary to measure accelerations with frequencies ranging from fractions of a hertz to several kilohertz. For this purpose, optomechanical sensors are used. The natural frequency of such sensors should be [...] Read more.
In many applications, such as space navigation, metrology, testing, and geodesy, it is necessary to measure accelerations with frequencies ranging from fractions of a hertz to several kilohertz. For this purpose, optomechanical sensors are used. The natural frequency of such sensors should be approximately ten times greater than the frequency of the measured acceleration. In the case of triaxial acceleration measurements, a planar design with two sensors that measure accelerations in two perpendicular in-plane directions and a third sensor that measures out-of-plane acceleration is effective. The mechanical characteristics of the existing designs of both in-plane and out-of-plane types of sensors were analyzed, and the improved designs were elaborated. Using numerical simulation, the dependencies of the natural frequency level in the range from several hertz to tens of kilohertz on the designs and geometric parameters of opto-mechanical accelerometers were modeled. This allows one to select the accelerometer design and its parameters to measure the acceleration at the assigned frequency. It is shown that the opto-mechanical accelerometers of the proposed designs have reduced dissipation losses and crosstalk. Full article
(This article belongs to the Special Issue Design Sensitivity Analysis and Engineering Optimization)
Show Figures

Figure 1

18 pages, 6450 KiB  
Article
Design and Analysis of Optomechanical Micro-Gyroscope for Angular-Vibration Detection
by Jamal N. A. Hassan, Wenyi Huang, Xing Yan, Senyu Zhang, Dingwei Chen, Guangjun Wen and Yongjun Huang
Photonics 2024, 11(2), 186; https://doi.org/10.3390/photonics11020186 - 18 Feb 2024
Cited by 3 | Viewed by 2986
Abstract
Micro-gyroscopes based on the Coriolis principle are widely employed in inertial navigation, motion control, and vibration analysis applications. Conventional micro-gyroscopes often exhibit limitations, including elevated noise levels and suboptimal performance metrics. Conversely, the advent of cavity optomechanical system technology heralds an innovative approach [...] Read more.
Micro-gyroscopes based on the Coriolis principle are widely employed in inertial navigation, motion control, and vibration analysis applications. Conventional micro-gyroscopes often exhibit limitations, including elevated noise levels and suboptimal performance metrics. Conversely, the advent of cavity optomechanical system technology heralds an innovative approach to micro-gyroscope development. This method enhances the device’s capabilities, offering elevated sensitivity, augmented precision, and superior resolution. This paper presents our main contributions which include a novel dual-frame optomechanical gyroscope, a unique photonic crystal cavity design, and advanced numerical simulation and optimization methods. The proposed design utilizes an optical cavity formed between dual oscillating frames, whereby input rotation induces a measurable phase shift via optomechanical coupling. Actuation of the frames is achieved electrostatically via an interdigitated comb-drive design. Through theoretical modeling based on cavity optomechanics and finite element simulation, the operating principle and performance parameters are evaluated in detail. The results indicate an expected angular rate sensitivity of 22.8 mV/°/s and an angle random walk of 7.1 × 10−5 °/h1/2, representing superior precision to existing micro-electromechanical systems gyroscopes of comparable scale. Detailed analysis of the optomechanical transduction mechanism suggests this dual-frame approach could enable angular vibration detection with resolution exceeding state-of-the-art solutions. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

Back to TopTop