Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (23,481)

Search Parameters:
Keywords = optical studies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 5618 KB  
Article
Energy-Efficient and Adversarially Resilient Underwater Object Detection via Adaptive Vision Transformers
by Leqi Li, Gengpei Zhang and Yongqian Zhou
Sensors 2025, 25(22), 6948; https://doi.org/10.3390/s25226948 (registering DOI) - 13 Nov 2025
Abstract
Underwater object detection is critical for marine resource utilization, ecological monitoring, and maritime security, yet it remains constrained by optical degradation, high energy consumption, and vulnerability to adversarial perturbations. To address these challenges, this study proposes an Adaptive Vision Transformer (A-ViT)-based detection framework. [...] Read more.
Underwater object detection is critical for marine resource utilization, ecological monitoring, and maritime security, yet it remains constrained by optical degradation, high energy consumption, and vulnerability to adversarial perturbations. To address these challenges, this study proposes an Adaptive Vision Transformer (A-ViT)-based detection framework. At the hardware level, a systematic power-modeling and endurance-estimation scheme ensures feasibility across shallow- and deep-water missions. Through the super-resolution reconstruction based on the Hybrid Attention Transformer (HAT) and the staged enhancement with the Deep Initialization and Deep Inception and Channel-wise Attention Module (DICAM), the image quality was significantly improved. Specifically, the Peak Signal-to-Noise Ratio (PSNR) increased by 74.8%, and the Structural Similarity Index (SSIM) improved by 375.8%. Furthermore, the Underwater Image Quality Measure (UIQM) rose from 3.00 to 3.85, while the Underwater Color Image Quality Evaluation (UCIQE) increased from 0.550 to 0.673, demonstrating substantial enhancement in both visual fidelity and color consistency. Detection accuracy is further enhanced by an improved YOLOv11-Coordinate Attention–High-order Spatial Feature Pyramid Network (YOLOv11-CA_HSFPN), which attains a mean Average Precision at Intersection over Union 0.5 (mAP@0.5) of 56.2%, exceeding the baseline YOLOv11 by 1.5 percentage points while maintaining 10.5 ms latency. The proposed A-ViT + ROI reduces inference latency by 27.3% and memory usage by 74.6% when integrated with YOLOv11-CA_HSFPN and achieves up to 48.9% latency reduction and 80.0% VRAM savings in other detectors. An additional Image-stage Attack QuickCheck (IAQ) defense module reduces adversarial-attack-induced latency growth by 33–40%, effectively preventing computational overload. Full article
(This article belongs to the Section Sensing and Imaging)
20 pages, 16078 KB  
Article
Shielding Gas Effect on Dendrite-Reinforced Composite Bronze Coatings via WAAM Cladding: Minimizing Defects and Intergranular Bronze Penetration into 09G2S Steel
by Artem Okulov, Yulia Khlebnikova, Olga Iusupova, Lada Egorova, Teona Suaridze, Yury Korobov, Boris Potekhin, Michael Sholokhov, Tushar Sonar, Majid Naseri, Tao He and Zaijiu Li
Technologies 2025, 13(11), 525; https://doi.org/10.3390/technologies13110525 (registering DOI) - 13 Nov 2025
Abstract
Bronze materials are indispensable across numerous industries for enhancing the durability and performance of components, primarily due to their excellent tribological properties, corrosion resistance, and machinability. This study investigates the impact of different atmospheric conditions on the properties of WAAM (wire arc additive [...] Read more.
Bronze materials are indispensable across numerous industries for enhancing the durability and performance of components, primarily due to their excellent tribological properties, corrosion resistance, and machinability. This study investigates the impact of different atmospheric conditions on the properties of WAAM (wire arc additive manufacturing) cladded bronze coatings on 09G2S steel substrate. Specifically, the research examines how varying atmospheres—including ambient air (N2/O2, no shielding gas), pure argon (Ar), carbon dioxide (CO2), and 82% Ar + 18% CO2 (Ar/CO2) mixture—influence coating defectiveness (porosity, cracks, non-uniformity), wettability (manifested as uniform layer formation and strong adhesion), and the extent of intergranular penetration (IGP), leading to the formation of characteristic infiltrated cracks or “bronze whiskers”. Modern investigative techniques such as optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were employed for comprehensive material characterization. Microhardness testing was also carried out to evaluate and confirm the homogeneity of the coating structure. The findings revealed that the bronze coatings primarily consisted of a dominant, highly textured FCC α-Cu phase and a minor BCC α-Fe phase, with Rietveld refinement quantifying a α-Fe volume fraction of ~5%, lattice parameters of a = 0.3616 nm for α-Cu and a = 0.2869 nm for α-Fe, and a modest microstrain of 0.001. The bronze coating deposited under a pure Ar atmosphere exhibited superior performance, characterized by excellent wettability, a uniform, near-defect-free structure with minimal porosity and cracks, and significantly suppressed formation of bronze whiskers, both in quantity and size. Conversely, the coating deposited without a protective atmosphere demonstrated the highest degree of defectiveness, including agglomerated pores and cracks, leading to an uneven interface and extensive whisker growth of varied morphologies. Microhardness tests confirmed that while the Ar-atmosphere coating displayed the lowest hardness (~130 HV0.1), it maintained consistent values across the entire analyzed area, indicating structural homogeneity. These results underscore the critical role of atmosphere selection in WAAM processing for achieving high-quality bronze coatings with enhanced interfacial integrity and functional performance. Full article
Show Figures

Graphical abstract

29 pages, 6467 KB  
Article
Shear Performance and Numerical Simulation of Adhesively Bonded Joints in Multi-Jet Fusion 3D-Printed Polyamide Components
by Frantisek Sedlacek, Martin Stejskal, Nikola Bednarova and Ondrej Spacek
Polymers 2025, 17(22), 3020; https://doi.org/10.3390/polym17223020 (registering DOI) - 13 Nov 2025
Abstract
Additive manufacturing technologies are no longer limited to rapid prototyping but are increasingly used for low-volume production of functional end-use components. Among advanced AM techniques, HP Multi-Jet Fusion (MJF) stands out for its high precision and efficiency. Polyamides, thanks to their balanced mechanical [...] Read more.
Additive manufacturing technologies are no longer limited to rapid prototyping but are increasingly used for low-volume production of functional end-use components. Among advanced AM techniques, HP Multi-Jet Fusion (MJF) stands out for its high precision and efficiency. Polyamides, thanks to their balanced mechanical and thermal properties, are commonly used as building materials in this technology. However, these materials are notoriously difficult to bond with conventional adhesives. This study investigates the shear strength of bonded joints made from two frequently used MJF materials—PA12 and glass-bead-filled PA12—using four different industrial adhesives. Experimental procedures were conducted according to ASTM standards. Specimens for single-lap-shear tests were fabricated on an HP MJF 4200 series printer, bonded using a custom jig, and tested on a Zwick-Roell Z250 electro-mechanical testing machine. Surface roughness of the adherends was measured with a 3D optical microscope to assess its influence on bonding performance. The polyurethane-based adhesive (3M Scotch-Weld DP620NS) demonstrated superior performance with maximum shear strengths of 5.0 ± 0.35 MPa for PA12 and 4.4 ± 0.03 MPa for PA12GB, representing 30% and 17% higher strength, respectively, compared to epoxy-based alternatives. The hybrid cyanoacrylate–epoxy adhesive (Loctite HY4090) was the only system showing improved performance with glass-bead-reinforced substrate (16.5% increase from PA12 to PA12GB). Statistical analysis confirmed significant differences between adhesive types (F3,24 = 31.37, p < 0.001), with adhesive selection accounting for 65.7% of total performance variance. In addition to the experimental work, a finite element-based numerical simulation was performed to analyze the distribution of shear and peel stresses across the adhesive layer using Siemens Simcenter 3D 2406 software with the NX Nastran solver. The numerical results were compared with analytical predictions from the Volkersen and Goland–Reissner models. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

22 pages, 1175 KB  
Review
Metallogels as Supramolecular Platforms for Biomedical Applications: A Review
by Pasqualina Liana Scognamiglio, Diego Tesauro and Giovanni N. Roviello
Processes 2025, 13(11), 3671; https://doi.org/10.3390/pr13113671 (registering DOI) - 13 Nov 2025
Abstract
Metallogels, three-dimensional supramolecular networks formed through metal–ligand coordination, have emerged as a new generation of adaptive soft materials with promising biomedical potential. By integrating the structural stability and tuneable functionality of metal centres with the dynamic self-assembly of organic gelators, these systems exhibit [...] Read more.
Metallogels, three-dimensional supramolecular networks formed through metal–ligand coordination, have emerged as a new generation of adaptive soft materials with promising biomedical potential. By integrating the structural stability and tuneable functionality of metal centres with the dynamic self-assembly of organic gelators, these systems exhibit exceptional mechanical strength, responsiveness, and multifunctionality. Recent studies demonstrate their diverse applications in drug delivery, anticancer therapy, antimicrobial and wound healing treatments, biosensing, bioimaging, and tissue engineering. Interestingly, the coordination of metal ions such as Ru(II), Zn(II), Fe(III), and lanthanides enables the creation of self-healing, thixotropic, and stimuli-responsive gels capable of controlled release and therapeutic action. Moreover, the incorporation of luminescent or redox-active metals adds optical and electronic properties suitable for diagnostic and monitoring purposes. This collection summarizes the most recent advances in the field, highlighting how rational molecular design and coordination chemistry contribute to the development of multifunctional, biocompatible, and responsive metallogels that bridge the gap between materials science and medicine. Full article
Show Figures

Figure 1

14 pages, 3077 KB  
Article
Theoretical and Experimental Investigation of Differential Modulation and Detection in FSO Systems
by Hao Zhou, Zhenning Yi, Jingyuan Wang, Jianhua Li, Zhiyong Xu, Jiyong Zhao and Yang Su
Photonics 2025, 12(11), 1120; https://doi.org/10.3390/photonics12111120 - 13 Nov 2025
Abstract
In free-space optical (FSO) communication systems, on–off keying (OOK) modulation is widely used due to its simplicity. However, systems applying OOK suffer from the BER floor in atmospheric turbulence channels, leading to persistently high BER even at high SNR. To mitigate this limitation [...] Read more.
In free-space optical (FSO) communication systems, on–off keying (OOK) modulation is widely used due to its simplicity. However, systems applying OOK suffer from the BER floor in atmospheric turbulence channels, leading to persistently high BER even at high SNR. To mitigate this limitation in atmospheric turbulence channels, differential modulation and detection (DMD) can be adopted. An in-depth theoretical and experimental investigation of DMD in FSO systems is conducted in this paper, considering the effects of turbulence. A comprehensive derivation of the system performance for DMD under atmospheric turbulence channels is also provided, with the results of research revealing that DMD outperforms OOK in high-SNR regions. To validate the theoretical analysis, an experimental platform is set up to sample the fluctuation of light intensity. Furthermore, the system performance of DMD is analyzed under varying scintillation indices, modulation depths, and transmission rates in this paper. Based on the data acquired from experiments, the results corroborate the analytical findings, confirming the great advantages of DMD in turbulent environments. The insights provided in this study establish a foundation for practical FSO system design, enabling the development of simpler and more reliable communication systems. Full article
(This article belongs to the Special Issue Advances in Free-Space Optical Communications)
Show Figures

Figure 1

17 pages, 1450 KB  
Article
In Vitro Evaluation of Biofilm Formation by Oral Microorganisms on Clear Aligner Materials: Influence of Mouthwash Exposure
by Vlad Tiberiu Alexa, Diana Obistioiu, Ramona Dumitrescu, Iuliana Cretescu, Anca Hulea, Vanessa Bolchis, Octavia Balean, Daniela Jumanca and Atena Galuscan
J. Funct. Biomater. 2025, 16(11), 424; https://doi.org/10.3390/jfb16110424 - 13 Nov 2025
Abstract
Clear aligners have gained popularity in orthodontics due to their aesthetics, comfort, and removability; however, their prolonged intraoral wear and frequent removal–reinsertion cycles create favorable conditions for microbial colonization. This in vitro study evaluated the efficacy of seven commercially available mouthwash formulations in [...] Read more.
Clear aligners have gained popularity in orthodontics due to their aesthetics, comfort, and removability; however, their prolonged intraoral wear and frequent removal–reinsertion cycles create favorable conditions for microbial colonization. This in vitro study evaluated the efficacy of seven commercially available mouthwash formulations in inhibiting biofilms of Streptococcus mutans, Streptococcus oralis, and Candida albicans formed on four different clear aligner materials. Standardized aligner fragments were incubated for 24 h with microbial suspensions to allow biofilm formation, treated for 1 min with one of the mouthwashes, and then assessed for residual viability through spectrophotometric optical density measurements after a further 24 h incubation. Biofilm inhibition varied according to both mouthwash composition and aligner material. The chlorhexidine-based rinse (MW-D) consistently showed the highest inhibition across microorganisms, while the fluoride–cetylpyridinium chloride rinse (MW-B) performed strongly for S. oralis and C. albicans. An essential oil-based formulation with xylitol (MW-G) showed notable antifungal activity against C. albicans. Monolayer polyurethane aligners generally achieved higher inhibition rates than multilayer or copolyester-based materials. These findings indicate that antimicrobial efficacy on aligners depends on both mouthwash type and material, supporting a tailored approach to biofilm management in clear aligner therapy to reduce the risk of caries, periodontal disease, and candidiasis. Full article
(This article belongs to the Special Issue Antimicrobial Biomaterials for Medical Applications)
Show Figures

Figure 1

14 pages, 8937 KB  
Article
Microstructure Evolution and Mechanical Properties of Fe-25Ni-15Cr Alloy During Cumulative Cold-Drawing Deformation Process
by Yunfei Zhang, Zhen Zhang, Wei Chen, Zhongjie Tian, Xueliang An, Yang Zhang and Zhongwu Zhang
Nanomaterials 2025, 15(22), 1717; https://doi.org/10.3390/nano15221717 - 13 Nov 2025
Abstract
In this study, we fabricated Fe-25Ni-15Cr alloy rods via vacuum induction melting, electroslag remelting, forging, hot rolling, and annealing. We systemically investigated the influence of varying cold-drawing deformation levels (10–60%) on microstructure evolution and mechanical properties, which were characterized by a variety of [...] Read more.
In this study, we fabricated Fe-25Ni-15Cr alloy rods via vacuum induction melting, electroslag remelting, forging, hot rolling, and annealing. We systemically investigated the influence of varying cold-drawing deformation levels (10–60%) on microstructure evolution and mechanical properties, which were characterized by a variety of multi-scale characterization techniques, including optical microscopy, scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The results show that when the cumulative deformation amount is less than 30%, the hardness, tensile strength, and yield strength increase significantly with the increase in deformation amount, while the elongation continues to decline; when the cumulative deformation amount exceeds 30%, the rates of increase in hardness and strength decrease significantly; and when the deformation amount increases to 50%, dislocation density accumulates preferentially at the grain boundaries and forms a cellular substructure, while the texture orientation gradually stabilizes from random distribution to the <111> direction. This alloy rod exhibits three strengthening mechanisms during cold drawing: grain refinement, second-phase precipitation, and work hardening. A predictive model for tensile strength is derived through theoretical calculations. This work has guiding significance for establishing a cold-drawing process window without intermediate annealing. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

10 pages, 1974 KB  
Article
Demonstration of Multiple Access FSO Communication System Based on Silicon Optical Phased Array
by Siwen Fan and Anpeng Song
Photonics 2025, 12(11), 1119; https://doi.org/10.3390/photonics12111119 - 13 Nov 2025
Abstract
The silicon photonic optical phased array (OPA) has attracted enormous interest in free-space optical communication (FSO) owing to its high integration and agile beam steering. However, existing studies have only used its ability for fast beam switching to achieve point-to-multipoint communication, which results [...] Read more.
The silicon photonic optical phased array (OPA) has attracted enormous interest in free-space optical communication (FSO) owing to its high integration and agile beam steering. However, existing studies have only used its ability for fast beam switching to achieve point-to-multipoint communication, which results in link disconnection and time waste during the switching process. To address this problem, we make full use of the light field manipulation capabilities of Si-OPA to generate beams with multiple main lobes pointing to different targets at the same time, and combine code division multiple access (CDMA) to achieve uninterrupted point-to-multipoint communication. Through detailed data analysis, it is experimentally demonstrated that the proposed method has improved the communication efficiency by 24.576% compared with the previous beam-switching solution. This method provides a new application idea for Si-OPA in FSO communication. Full article
(This article belongs to the Special Issue Advances in Free-Space Optical Communications)
Show Figures

Figure 1

19 pages, 17086 KB  
Article
Recovering the Reduced Scattering and Absorption Coefficients of Turbid Media from a Single Image
by Philipp Nguyen, David Hevisov, Florian Foschum and Alwin Kienle
Photonics 2025, 12(11), 1118; https://doi.org/10.3390/photonics12111118 - 13 Nov 2025
Abstract
This study introduces a physics-based inverse rendering method for determining the reduced scattering and absorption coefficients of turbid materials with arbitrary shapes, using a single image as input. The approach enables fully spectrally-resolved reconstruction of the wavelength-dependent behaviour of the optical properties while [...] Read more.
This study introduces a physics-based inverse rendering method for determining the reduced scattering and absorption coefficients of turbid materials with arbitrary shapes, using a single image as input. The approach enables fully spectrally-resolved reconstruction of the wavelength-dependent behaviour of the optical properties while also circumventing the specialised sample preparation required by established measurement techniques. Our approach employs a numerical solution of the Radiative Transfer Equation based on an inverse Monte Carlo framework, utilising an improved Levenberg–Marquardt algorithm. By rendering the edge effects accurately, particularly translucency, it becomes possible to differentiate between scattering and absorption from just one image. Importantly, the errors induced by only approximate prior knowledge of the phase function and refractive index of the material were quantified. The method was validated through theoretical studies on three materials spanning a range of optical parameters, initially using a simple cube geometry and later extended to more complex shapes. Evaluated via the CIE ΔE2000 colour difference, forward renderings based on the recovered properties were indistinguishable from those preset, which were obtained from integrating sphere measurements on real materials. The recovered optical properties showed less than 4% difference relative to these measurements. This work demonstrates a versatile approach for optical material characterisation, with significant potential for digital twin creation and soft-proofing in manufacturing. Full article
Show Figures

Figure 1

16 pages, 20222 KB  
Article
Resulted Mechanical and Microstructural Properties of Ballistic Protection Materials for Bulletproof Vest Applications Using Plasma Jet Thermal Spray Coatings
by Adrian Ioan Ropotoae, Corneliu Munteanu, Fabian Cezar Lupu, Bogdan Istrate, Marcelin Benchea, Adrian Nicolae Rotariu and Andrei Spoiala
Crystals 2025, 15(11), 977; https://doi.org/10.3390/cryst15110977 (registering DOI) - 13 Nov 2025
Abstract
This paper addresses ballistic protection, which is an important element in the performance of any military equipment. Improving ballistic properties is a necessity for individual protection through the use of protective vests. In this study, plasma jet thermal deposition was performed on ballistic [...] Read more.
This paper addresses ballistic protection, which is an important element in the performance of any military equipment. Improving ballistic properties is a necessity for individual protection through the use of protective vests. In this study, plasma jet thermal deposition was performed on ballistic protection materials, steel plates from the ARMOX category, using both metallic and ceramic powders. The samples with appropriate dimensions, covered with these types of powders, were analyzed from a microstructural point of view to determine their mechanical properties and evaluate the improvement in ballistic protection level. Microstructural analyses by optical and electronic microscopy, SEM (Scanning Electron Microscopy), allowed the performance of complex analyses regarding the adhesion of the deposits to the base material. It was possible to evaluate the microstructure, thickness, uniformity, and porosity of the deposits and the microstructural aspects at the interface between the base material and the deposit. For the efficient use of these deposits, tribological studies were carried out on the mechanical properties through scratch and microindentation analyses. The paper concludes the results obtained for the two types of deposits, metallic and ceramic, to streamline their use to increase the ballistic protection of bulletproof vests used in individual protection in military equipment. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

17 pages, 2314 KB  
Article
Process Optimization and Non-Destructive Evaluation of Micro-Voids in Submarine Composite Structures for Enhanced Mechanical Performance
by Woo-Suk Choi and Jong-Yong Park
J. Compos. Sci. 2025, 9(11), 631; https://doi.org/10.3390/jcs9110631 (registering DOI) - 13 Nov 2025
Abstract
This study presents a systematic approach to enhancing the mechanical performance of composite materials for submarine applications by quantitatively evaluating and controlling internal micro-voids generated during the manufacturing process. Three non-destructive evaluation techniques—ultrasonic testing, optical microscopy, and micro-computed tomography (Micro-CT)—were employed to assess [...] Read more.
This study presents a systematic approach to enhancing the mechanical performance of composite materials for submarine applications by quantitatively evaluating and controlling internal micro-voids generated during the manufacturing process. Three non-destructive evaluation techniques—ultrasonic testing, optical microscopy, and micro-computed tomography (Micro-CT)—were employed to assess the void content in fiber-reinforced composite specimens fabricated under various processing conditions. Tensile and flexural strength tests were conducted to investigate the correlation between the void content and mechanical properties. Among the methods, ultrasonic testing exhibited the strongest negative correlation (correlation coefficient = −0.703), confirming its effectiveness as a representative non-destructive evaluation technique. Furthermore, the statistical design of experiments, including factorial design, steepest ascent method, and response surface methodology (RSM), identified defoamer concentration and mixing time as the most influential process parameters in void reduction. The optimal processing conditions were determined to be 0.049% defoamer and 232 min of mixing. Under these conditions, the void content was minimized, and the mechanical properties were significantly improved. These findings offer practical guidance for void control and non-destructive evaluation in large-scale composite structures, contributing to improved reliability in underwater structural applications. Full article
Show Figures

Figure 1

20 pages, 4746 KB  
Article
The Efficiency and Mechanism of FeOCl/Ce-Catalyzed Persulfate for the Degradation of Caffeine Under Visible Light
by Zhao Bai, Mingyue Hu, Minrui Li, Weidong Wu, Chi Zhou and Yuru Wang
Molecules 2025, 30(22), 4381; https://doi.org/10.3390/molecules30224381 - 13 Nov 2025
Abstract
Despite extensive work on FeOCl-based photocatalysts, few studies have explored rare-earth (Ce) doping to simultaneously tune bandgap, suppress charge recombination, and enhance visible light-driven persulfate (PS) activation for the degradation of emerging contaminants. This study synthesized FeOCl/Ce composite photocatalysts via a partial pyrolysis [...] Read more.
Despite extensive work on FeOCl-based photocatalysts, few studies have explored rare-earth (Ce) doping to simultaneously tune bandgap, suppress charge recombination, and enhance visible light-driven persulfate (PS) activation for the degradation of emerging contaminants. This study synthesized FeOCl/Ce composite photocatalysts via a partial pyrolysis method and systematically characterized their physicochemical properties. The results show that Ce doping significantly lowers the bandgap energy of the photocatalyst, enhances its visible light absorption ability, and effectively suppresses the recombination of photogenerated electron–hole pairs, thereby markedly improving photocatalytic performance under visible light. Analyses including XRD, EDS, XPS, and FT-IR confirm that Ce is incorporated into the FeOCl matrix and modulates the radial growth behavior of FeOCl without altering its intrinsic crystal structure. Morphological observations reveal that FeOCl/Ce exhibits a uniform nanosheet layered structure, with larger particles formed by the aggregation of smaller nanosheets. The nitrogen adsorption–desorption isotherm of FeOCl/Ce shows characteristics of Type IV with a relatively small BET surface area. The broadened optical absorption edge of FeOCl/Ce and the results of PL spectra and I-T curves further confirm its enhanced visible light absorption capacity and reduced electron–hole recombination compared to pure FeOCl. At an initial caffeine (CAF) concentration of 10 μM, FeOCl/Ce dose of 0.5 g/L, PS concentration of 1 mM, and initial pH of 5.06, the FeOCl/Ce-catalyzed PS system under visible light irradiation can degrade 91.2% of CAF within 30 min. An acidic environment is more favorable for CAF degradation, while the presence of SO42−, Cl, and NO3 inhibits the process performance to varying degrees, possibly due to competitive adsorption on the photocatalyst surface or quenching of reactive species. Cyclic stability tests show that FeOCl/Ce maintains good catalytic performance over multiple runs. Mechanistic analysis indicates that OH and holes are the dominant reactive species for CAF degradation, while PS mainly acts as an electron acceptor to suppress electron–hole recombination. Overall, the FeOCl/Ce photocatalytic system demonstrates high efficiency, good stability, and visible light responsiveness in CAF degradation, with potential applications for removing CAF and other emerging organic pollutants from aquatic environments. Full article
Show Figures

Figure 1

24 pages, 3398 KB  
Article
Curvature-Adoptive CNC Machining of Freeform Optics via Dynamic Tangential Toolpath Optimization
by Ravi Pratap Singh and Yaolong Chen
Materials 2025, 18(22), 5153; https://doi.org/10.3390/ma18225153 - 13 Nov 2025
Abstract
The manufacturing of freeform optical lenses, essential for advanced applications such as Earth observation and laser fusion, demands exceptional surface accuracy and lightweight designs. However, their complex, non-symmetrical geometries present significant manufacturing challenges. Conventional CNC machining strategies, which rely on fixed Cartesian step [...] Read more.
The manufacturing of freeform optical lenses, essential for advanced applications such as Earth observation and laser fusion, demands exceptional surface accuracy and lightweight designs. However, their complex, non-symmetrical geometries present significant manufacturing challenges. Conventional CNC machining strategies, which rely on fixed Cartesian step sizes, are inherently inefficient for surfaces with rapidly varying curvature. This inadequacy results in non-uniform material removal, prolonged machining times, and substandard surface quality. This study presents a novel curvature-adaptive machining strategy based on dynamic tangential toolpath optimization. The method continuously aligns the toolpath with the local surface geometry to maintain uniform cutting conditions. A dedicated computer-aided manufacturing (CAM) software environment was developed to generate the optimized toolpaths and corresponding G-code. Experimental validation on representative freeform optics demonstrated a substantial improvement in precision: a single error-compensation iteration achieved a reduction in peak-to-valley form error of up to 48.4%. The results confirm that the proposed strategy significantly outperforms conventional fixed-step methods, delivering superior surface finish, reduced machining time, and enhanced process flexibility without requiring specialized hardware. This work establishes a practical and high-precision advancement for the manufacture of high-performance freeform optical systems. Full article
(This article belongs to the Special Issue Recent Advances in Precision Manufacturing Technology)
Show Figures

Graphical abstract

15 pages, 4474 KB  
Article
Spectroscopic Study of Electrolytic-Plasma Discharge During Hardening of 20GL Steel and Its Effect on Microstructure and Mechanical Properties
by Bauyrzhan Rakhadilov, Rinat Kurmangaliyev, Nurlat Kadyrbolat, Rinat Kussainov, Zarina Satbayeva, Almasbek Maulit and Yerzhan Shayakhmetov
Crystals 2025, 15(11), 976; https://doi.org/10.3390/cryst15110976 (registering DOI) - 13 Nov 2025
Abstract
This study investigated the electrolytic-plasma hardening (EPH) of cast 20GL steel, used for railway spring beams. The main objective was to analyze the spectral characteristics of the cathodic discharge and establish correlations between the plasma parameters, processing regimes, and resulting surface properties. Optical [...] Read more.
This study investigated the electrolytic-plasma hardening (EPH) of cast 20GL steel, used for railway spring beams. The main objective was to analyze the spectral characteristics of the cathodic discharge and establish correlations between the plasma parameters, processing regimes, and resulting surface properties. Optical emission spectroscopy revealed that the plasma at 260 V exhibited a high-energy state with an electron density of ~5.3 × 1016 cm−3 and an electron temperature of 10,031 K. Using these parameters, the heat flux from the plasma to the steel surface was estimated at ~1.5 × 107 W/m2, confirming that the discharge provides sufficient energy for surface austenitization. Microstructural analysis demonstrated that the electrolyte flow rate, which determines the cooling rate, is the key parameter controlling phase transformations. At low flow rates, ferrite–pearlite and bainitic structures formed, while a fully martensitic structure and maximum hardness (1046 HV) were achieved at 10 L/min. Tribological tests confirmed the superior wear resistance of the martensitic layers, showing a friction coefficient of 0.454 and a wear volume 3.4 times lower than in the as-cast state. These findings verify that EPH offers an energy-efficient, low-cost method for improving the surface performance and service life of 20GL steel components in heavy-duty railway applications. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

30 pages, 3727 KB  
Article
A Novel Model Chain for Analysing the Performance of Vehicle Integrated Photovoltaic (VIPV) Systems
by Hamid Samadi, Guido Ala, Miguel Centeno Brito, Marzia Traverso, Silvia Licciardi, Pietro Romano and Fabio Viola
World Electr. Veh. J. 2025, 16(11), 619; https://doi.org/10.3390/wevj16110619 (registering DOI) - 13 Nov 2025
Abstract
This study proposes a novel framework for analyzing Vehicle-Integrated Photovoltaic (VIPV) systems, integrating optical, thermal, and electrical models. The model modifies existing fixed PV methodologies for VIPV applications to assess received irradiance, PV module temperature, and energy production, and is available as an [...] Read more.
This study proposes a novel framework for analyzing Vehicle-Integrated Photovoltaic (VIPV) systems, integrating optical, thermal, and electrical models. The model modifies existing fixed PV methodologies for VIPV applications to assess received irradiance, PV module temperature, and energy production, and is available as an open-source MATLAB tool (VIPVLIB) enabling simulations via a smartphone. A key innovation is the integration of meteorological data and real-time driving, dynamically updating vehicle position and orientation every second. Different time resolutions were explored to balance accuracy and computational efficiency for optical model, while the thermal model, enhanced by vehicle speed, wind effects, and thermal inertia, improved temperature and power predictions. Validation on a minibus operating within the University of Palermo campus confirmed the applicability of the proposed framework. The roof received 45–47% of total annual irradiation, and the total yearly energy yield reached about 4.3 MWh/Year for crystalline-silicon, 3.7 MWh/Year for CdTe, and 3.1 MWh/Year for CIGS, with the roof alone producing up to 2.1 MWh/Year (c-Si). Under hourly operation, the generated solar energy was sufficient to fully meet daily demand from April to August, while during continuous operation it supplied up to 60% of total consumption. The corresponding CO2-emission reduction ranged from about 3.5 ton/Year for internal-combustion vehicles to around 2 ton/Year for electric ones. The framework provides a structured, data-driven approach for VIPV analysis, capable of simulating dynamic optical, thermal, and electrical behaviors under actual driving conditions. Its modular architecture ensures both immediate applicability and long-term adaptability, serving as a solid foundation for advanced VIPV design, fleet-scale optimization, and sustainability-oriented policy assessment. Full article
(This article belongs to the Section Energy Supply and Sustainability)
Show Figures

Figure 1

Back to TopTop