Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,449)

Search Parameters:
Keywords = optical band gaps

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1641 KB  
Article
A Novel Polyaniline Gadolinium Oxide Coated Reduced Graphene Oxide Nanocomposite: A Sustainable, Cost-Effective and High-Performance Counter Electrode for Dye-Sensitized Solar Cells
by Kiran Fouzia, Humaira Seema, Asma Abdulaziz AbalKhail, Sajid Khan, Asfandyar Shahab, Muhammad Owais Malik and Fahad Almutlaq
Catalysts 2026, 16(2), 127; https://doi.org/10.3390/catal16020127 - 29 Jan 2026
Abstract
A novel ternary nanocomposite, comprising reduced graphene oxide/polyaniline/gadolinium oxide (RGO-PANI-Gd2O3), was successfully synthesized using the Hummers method, followed by in situ emulsion polymerization of polyaniline. The final composite was produced by hydrothermally adding gadolinium nitrate. The composite was subjected [...] Read more.
A novel ternary nanocomposite, comprising reduced graphene oxide/polyaniline/gadolinium oxide (RGO-PANI-Gd2O3), was successfully synthesized using the Hummers method, followed by in situ emulsion polymerization of polyaniline. The final composite was produced by hydrothermally adding gadolinium nitrate. The composite was subjected to a systematic analysis that included optical, microstructural, physical, and Raman spectroscopic analysis, as well as current-voltage (J-V) measurements. The morphology of this composite material was investigated using scanning electron microscopy (SEM). The addition of Gd2O3 nanoparticles decreases the band gap energy from 3.5 eV (PANI) to 2.7 eV (RGO-PANI-Gd2O3). The UV–Vis spectra revealed a redshift in the π-π* transition peak from 318 nm (PANI) to 346 nm, indicating increased conjugation length and synergistic effects. This eco-friendly material has excellent catalytic activity for triiodide reduction. The manufactured counter-electrode (CE) demonstrated remarkable transparency and conversion efficiency comparable to platinum, with a current density of 11.7 mA·cm−2 versus 8.2 mA·cm−2 for platinum. Under simulated solar light (AM 1.5 G, 100 mW·cm−2), the RGO-PANI-Gd2O3 based nanocomposite CE achieved an excellent 4.3% photo conversion efficiency. These findings indicate that RGO-PANI-Gd2O3 nanocomposites have potential as efficient, platinum-free counter electrodes in dye-sensitized solar cells (DSSCs). Full article
(This article belongs to the Special Issue Electrochemical and Electrocatalysis with Porous Materials)
Show Figures

Figure 1

31 pages, 6980 KB  
Review
Piezochromic Nanomaterials: Fundamental Mechanisms, Advances, Applications, and Future Prospects in Solar Cell Engineering
by Xingqi Wu, Haoyuan Chen, Yang Luo, Jiang Yu, Yongan Wang, Kwang Leong Choy and Zhaodong Li
Nanomaterials 2026, 16(3), 175; https://doi.org/10.3390/nano16030175 - 28 Jan 2026
Abstract
Piezochromic nanomaterials, whose optical responses can be reversibly tuned by mechanical stimuli, have recently gained prominence as versatile platforms for strain-programmable light–matter interactions. Their mechanically responsive band structures, excitonic states, and defect energetics have enabled a wide range of optoelectronic demonstrations—including pressure-tunable emitters, [...] Read more.
Piezochromic nanomaterials, whose optical responses can be reversibly tuned by mechanical stimuli, have recently gained prominence as versatile platforms for strain-programmable light–matter interactions. Their mechanically responsive band structures, excitonic states, and defect energetics have enabled a wide range of optoelectronic demonstrations—including pressure-tunable emitters, reconfigurable photonic structures, and adaptive modulators—which collectively highlight the unique advantages of mechanical degrees of freedom for controlling optical functionality. These advances naturally suggest new opportunities in photovoltaic technologies, where experimentally validated phase stabilization and defect reorganization under low-strain thin-film conditions could address long-standing limitations in solar absorbers and device stability. Meanwhile, stress-mediated bandgap tuning—largely inferred from high-pressure laboratory studies—presents a conceptual blueprint for future adaptive spectral response and structural self-monitoring. However, the application of these mechanisms faces a major challenge in bridging the magnitude gap between GPa-level high-pressure phenomena and the low-strain regimes of realistic operational environments. Future development requires advances in low-threshold responsive materials, innovative strain-amplifying device architectures, and the pursuit of intelligent, multi-functional system integration. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

19 pages, 2369 KB  
Article
Anatase-Dominant TiO2 Nanoparticles Prepared by Sol–Gel and High-Temperature Calcination
by Y. J. Acosta-Silva, J. Ledesma-García, S. Rivas, A. Alvarez, L. Palma-Tirado, J. F. Pérez-Robles and A. Méndez-López
Appl. Sci. 2026, 16(3), 1258; https://doi.org/10.3390/app16031258 - 26 Jan 2026
Viewed by 234
Abstract
TiO2 nanoparticles were synthesized by a simple sol–gel route followed by high-temperature calcination at 800 °C, aiming to obtain an anatase-dominant reference photocatalyst with enhanced structural stability after severe thermal treatment. Raman spectroscopy and X-ray diffraction confirmed that anatase is the major [...] Read more.
TiO2 nanoparticles were synthesized by a simple sol–gel route followed by high-temperature calcination at 800 °C, aiming to obtain an anatase-dominant reference photocatalyst with enhanced structural stability after severe thermal treatment. Raman spectroscopy and X-ray diffraction confirmed that anatase is the major crystalline phase, with only a minor rutile contribution after calcination at 800 °C. Nitrogen adsorption–desorption measurements revealed a narrow mesoporous contribution arising from interparticle voids and a relatively high specific surface area (108 m2 g−1) despite the severe thermal treatment, while electron microscopy showed nanometric primary particles assembled into compact agglomerates. Surface hydroxyl groups were identified by Fourier-transform infrared spectroscopy, consistent with sol–gel-derived TiO2 systems. Diffuse reflectance UV–Vis spectroscopy combined with Kubelka–Munk and Tauc analysis yielded an optical band gap of 3.12 eV, typical of anatase TiO2. Methylene blue (MB) was used as a probe molecule to evaluate photocatalytic activity under ultraviolet and visible light irradiation. Under UV illumination, degradation kinetics were governed by band-gap excitation and reactive oxygen species generation, whereas a slower but reproducible reference behavior under visible light was predominantly associated with surface-related effects and dye sensitization rather than intrinsic visible-light absorption. Overall, the results establish this anatase-dominant TiO2 as a reliable high-temperature reference photocatalyst, retaining measurable activity after calcination at 800 °C and exhibiting UV-driven behavior as the dominant contribution. Full article
Show Figures

Figure 1

20 pages, 4393 KB  
Article
Biosynthesis, Characterisation, and Antimicrobial Activities of Nickel-Doped Silver Nanoparticles Using Caralluma umbellata Plant Root Extract
by Gundeti Bhagyalaxmi, Kothamasu Suresh Babu, Kannan Ramamurthy, Raju Vidap and Srinivas Ravella
Surfaces 2026, 9(1), 12; https://doi.org/10.3390/surfaces9010012 - 23 Jan 2026
Viewed by 213
Abstract
Greenly synthesised Ni-doped Ag nanoparticles utilising Caralluma umbellata root extracts, and an investigation into their optical properties, biological properties, and characterisation, is the focus of the study. Characterisation was performed using FTIR analysis, UV-Vis, X-ray diffraction, and field emission scanning electron microscopy. The [...] Read more.
Greenly synthesised Ni-doped Ag nanoparticles utilising Caralluma umbellata root extracts, and an investigation into their optical properties, biological properties, and characterisation, is the focus of the study. Characterisation was performed using FTIR analysis, UV-Vis, X-ray diffraction, and field emission scanning electron microscopy. The synthesis of Ni-doped Ag nanoparticles was confirmed through UV-Vis spectroscopy, revealing a peak at 396 nm and a band gap energy of 3.24 eV. XRD analysis revealed a face-centred cubic structure with a crystallite size of 55.22 nm (as-prepared) and 18.56 nm (annealed at 200 °C). Reduction and capping were demonstrated by FTIR, as evidenced by the presence of phytochemicals. The Ag NPs demonstrated potent antibacterial activity against both Gram-positive and Gram-negative bacteria, with a minimal inhibitory concentration of 1.25 μg/mL observed against Streptococcus mutans. Their vigorous anti-oxidant activity, as well as in vitro anti-diabetic potential through alpha-amylase and alpha-glucosidase inhibition, also proves suitable for biomedical applications. Full article
Show Figures

Figure 1

25 pages, 4582 KB  
Article
Assessing Radiance Contributions Above Near-Space over the Ocean Using Radiative Transfer Simulation
by Chunxia Li, Jia Liu, Qingying He, Ming Xu and Mengqi Li
Remote Sens. 2026, 18(2), 337; https://doi.org/10.3390/rs18020337 - 20 Jan 2026
Viewed by 142
Abstract
Using the near-space platform to conduct radiometric calibrations of ocean color sensors is a promising method for refining calibration precision, but there is knowledge gap about the radiance contributions above near-space over the open ocean. We used the radiative transfer (RT) model (PCOART) [...] Read more.
Using the near-space platform to conduct radiometric calibrations of ocean color sensors is a promising method for refining calibration precision, but there is knowledge gap about the radiance contributions above near-space over the open ocean. We used the radiative transfer (RT) model (PCOART) to assess the contributions (LR) of the upwelling radiance received at the near-space balloons to the total radiance (Lt) measured at the top of the atmosphere (TOA). The results indicated that the LR displayed distinct geometric dependencies with exceeding 2% across most observation geometries. Moreover, the LR increased with wavelengths under the various solar zenith angles, and the LR values fell below 1% only for the two near-infrared bands. Additionally, the influences of variations in oceanic constituents on LR were negligible across various azimuth angles and spectral bands, except in nonalgal particle (NAP)-dominated waters. Furthermore, the influences of aerosol optical thicknesses (AOTs) and atmospheric vertical distributions on LR were examined. Outside glint-contaminated areas, the atmosphere-associated LR variations could exceed 2% but declined substantially as AOTs increased under most observation geometries. The mean height of the vertically inhomogeneous layer (hm) significantly influenced LR, and the differences in Lt could exceed 5% when comparing atmospheric vertical distributions following homogeneous versus Gaussian-like distributions. Finally, the transformability from near-space radiance to Lt was examined based on a multiple layer perceptron (MLP) model, which exhibited high agreement with the RT simulations. The MAPD averaged 0.420% across the eight bands, ranging from 0.218% to 0.497%. Overall, the radiometric calibration utilizing near-space represents a significant innovation method for satellite-borne ocean color sensors. Full article
(This article belongs to the Special Issue Remote Sensing for Monitoring Water and Carbon Cycles)
Show Figures

Figure 1

16 pages, 2384 KB  
Article
Advanced Performance of Photoluminescent Organic Light-Emitting Diodes Enabled by Natural Dye Emitters Considering a Circular Economy Strategy
by Vasyl G. Kravets, Vasyl Petruk, Serhii Kvaterniuk and Roman Petruk
Optics 2026, 7(1), 8; https://doi.org/10.3390/opt7010008 - 15 Jan 2026
Viewed by 214
Abstract
Organic optoelectronic devices receive appreciable attention due to their low cost, ecology, mechanical flexibility, band-gap engineering, brightness, and solution process ability over a broad area. In this study, we designed and studied organic light-emitting diodes (OLEDs) consisting of an assembly of natural dyes, [...] Read more.
Organic optoelectronic devices receive appreciable attention due to their low cost, ecology, mechanical flexibility, band-gap engineering, brightness, and solution process ability over a broad area. In this study, we designed and studied organic light-emitting diodes (OLEDs) consisting of an assembly of natural dyes, extracted from noble fir leaves (evergreen) and blue hydrangea flowers mixed with poly-methyl methacrylate (PMMA) as light emitters. We experimentally demonstrate the effective conversion of blue light emitted by an inorganic laser/photodiode into longer-wavelength red and green tunable photoluminescence due to the excitation of natural dye–PMMA nanostructures. UV-visible absorption and photoluminescence spectroscopy, ellipsometry, and Fourier transform infrared methods, together with optical microscopy, were performed for confirming and characterizing the properties of light-emitting diodes based on natural dyes. We highlighted the optical and physical properties of two different natural dyes and demonstrated how such characteristics can be exploited to make efficient LED devices. A strong pure red emission with a narrow full-width at half maximum (FWHM) of 23 nm in the noble fir dye–PMMA layer and a green emission with a FWHM of 45 nm in blue hydrangea dye–PMMA layer were observed. It was revealed that adding monolayer MoS2 to the nanostructures can significantly enhance the photoluminescence of the natural dye due to a strong correlation between the emission bands of the inorganic–organic emitters and back mirror reflection of the excitation blue light from the monolayer. Based on the investigation of two natural dyes, we demonstrated viable pathways for scalable manufacturing of efficient hybrid OLEDs consisting of assembly of natural-dye polymers through low-cost, purely ecological, and convenient processes. Full article
(This article belongs to the Section Engineering Optics)
Show Figures

Figure 1

14 pages, 1962 KB  
Article
Impact of High Fe Doping on Structure, Optical, and Magnetic Properties of Zinc Oxide Nanostructures Synthesized by Hydrothermal Route
by Essam M. Abdel-Fattah and Salman M. Alshehri
Crystals 2026, 16(1), 55; https://doi.org/10.3390/cryst16010055 - 13 Jan 2026
Viewed by 224
Abstract
Zn1−xFexO nanocomposites (NCs) with varying Fe concentrations (x = 0, 0.1, 0.2, 0.3, and 0.4) were effectively prepared using the hydrothermal approach, and their morphology, structural, optical, and magnetic properties were systematically analyzed. XRD analysis confirmed Fe doping reduced [...] Read more.
Zn1−xFexO nanocomposites (NCs) with varying Fe concentrations (x = 0, 0.1, 0.2, 0.3, and 0.4) were effectively prepared using the hydrothermal approach, and their morphology, structural, optical, and magnetic properties were systematically analyzed. XRD analysis confirmed Fe doping reduced crystallinity and crystallite size. TEM images of Zn1−xFexO NCs exhibited smaller and more agglomerated nanostructures compared to the pure ZnO NPs. Raman and XPS analyses indicated increased lattice disorder, oxygen vacancies, and the coexistence of Fe2+/Fe3+ species. UV–Vis spectra showed enhanced visible light absorption and a tunable band gap, while PL results reflected defect-induced emission shifts and quenching, associated with zinc vacancies, interstitials, and oxygen-related defects. Magnetic measurements revealed a transition from diamagnetism to ferromagnetic-like behavior at room temperature for Fe content x ≥ 0.2, with magnetization strongly dependent on doping level. These results highlight Zn1−xFexO for advanced optoelectronic and spintronic applications. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

15 pages, 2248 KB  
Article
Bandgap Engineering of Ga2O3 by MOCVD Through Alloying with Indium
by Md Minhazul Islam, A. Hernandez, H. Appuhami, A. Banerjee, Blas Pedro Uberuaga and F. A. Selim
Nanomaterials 2026, 16(2), 93; https://doi.org/10.3390/nano16020093 - 12 Jan 2026
Viewed by 302
Abstract
Ga2O3 and In2O3 are vital semiconductors with current and future electronic device applications. Here, we study the alloying of In2O3 and Ga2O3 (IGO) and the associated changes in structure, morphology, band [...] Read more.
Ga2O3 and In2O3 are vital semiconductors with current and future electronic device applications. Here, we study the alloying of In2O3 and Ga2O3 (IGO) and the associated changes in structure, morphology, band gap, and electrical transport properties. Undoped films of IGO were deposited on sapphire substrates with varying indium (In) percentage from zero to 100% by metal-organic chemical vapor deposition (MOCVD). Some films were annealed in H2 to induce electrical conductivity. The measurements showed the optical band gap decreased by adding In; this was confirmed by density functional (DFT) calculations, which revealed that the nature of the valence band maximum and conduction band minimum strongly relate to the chemistry and that the band gap drops by adding In. The as-grown films were highly resistive except for pure In2O3, which possesses p-type conductivity, likely arising from In vacancy-related acceptor states. N-type conductivity was induced in all films after H-anneal. DFT calculations revealed that the presence of In decreases the electron effective mass, which is consistent with the electrical transport measurements that showed higher electron mobility for higher In percentage. The work revealed the successful band gap engineering of IGO and the modification of its band structure while maintaining high-quality films by MOCVD. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

18 pages, 4662 KB  
Article
Effect of Acetic Acid on Morphology, Structure, Optical Properties, and Photocatalytic Activity of TiO2 Obtained by Sol–Gel
by Sofía Estrada-Flores, Tirso E. Flores-Guia, Catalina M. Pérez-Berumen, Luis A. García-Cerda, Aurora Robledo-Cabrera, Elsa N. Aguilera-González and Antonia Martínez-Luévanos
Reactions 2026, 7(1), 5; https://doi.org/10.3390/reactions7010005 - 10 Jan 2026
Viewed by 186
Abstract
Titanium oxide (TiO2) is of great interest in solar cell manufacturing, hydrogen production, and organic compound photodegradation. The synthesis variables and methodology affect the morphology, texture, crystalline structure, and phase mixtures of TiO2, which, in turn, affect the optical [...] Read more.
Titanium oxide (TiO2) is of great interest in solar cell manufacturing, hydrogen production, and organic compound photodegradation. The synthesis variables and methodology affect the morphology, texture, crystalline structure, and phase mixtures of TiO2, which, in turn, affect the optical and catalytic properties of TiO2. In this work, the effect of acetic acid as a catalyst and chelating agent on the morphology, texture, crystal structure, optical properties, and photocatalytic activity of TiO2 samples obtained using the sol–gel method with sodium dodecyl sulfate (SDS) as a template was investigated. The results indicated that acetic acid not only catalyzes the hydrolysis of the TiO2 precursor but also acts as a chelating agent, causing a decrease in crystallite size from 18.643 nm (T7 sample, pH = 6.8, without addition of acetic acid) to 16.536 nm (T2 sample, pH = 2). At pH 2 and 3, only the anatase phase was formed (T2 and T3 samples), whereas at pH 5 and 6.8, in addition to the anatase phase, the brookite phase (11.4% and 15.61% for samples T5 and T7, respectively) was formed. The band-gap value of TiO2 decreased with decreasing pH during synthesis. Although the T2 sample had the highest specific surface area and pore volume (232.02 m2g−1 and 0.46 gcm−3, respectively), the T3 sample had better efficiency in methylene blue dye photodegradation because its bird-nest-like morphology improved photon absorption, promoting better photocatalytic performance. Full article
Show Figures

Figure 1

16 pages, 5352 KB  
Article
CIGS Electrodeposition from Diluted Electrolyte: Effect of Current Density and Pulse Timing on Deposition Quality and Film Properties
by Mahfouz Saeed
Chemistry 2026, 8(1), 6; https://doi.org/10.3390/chemistry8010006 - 8 Jan 2026
Viewed by 208
Abstract
Among the most promising alloys for photovoltaic applications is copper–indium–gallium–selenide (CIGS) because of its enhanced optical properties. This study examines the influence of current density and pulse timing on the electrodeposition of Cu(In, Ga)Se2 (CIGS) thin films from a dilute electrolyte. It [...] Read more.
Among the most promising alloys for photovoltaic applications is copper–indium–gallium–selenide (CIGS) because of its enhanced optical properties. This study examines the influence of current density and pulse timing on the electrodeposition of Cu(In, Ga)Se2 (CIGS) thin films from a dilute electrolyte. It assesses how these parameters affect deposition quality, film characteristics, and device performance. CIGS absorber layers were electrodeposited using a pulsed-current method, with systematic variations in current density and pulse on/off durations in a low-concentration solution. The deposited precursors were subsequently selenized and incorporated into fully assembled CIGS solar cell architectures. Structural characteristics were analyzed by X-ray diffraction (XRD), whereas composition and elemental distribution were assessed by energy-dispersive X-ray spectroscopy (EDS). Optical properties pertinent to photovoltaic performance were evaluated through transmittance and reflectance measurements. The results indicate that moderate current densities, when combined with brief off-times, produce dense, microcrack-free films exhibiting enhanced crystallinity and near-stoichiometric Cu/(In + Ga) and Ga/(In + Ga) ratios, in contrast to films deposited at higher current densities and extended off-times. These optimized pulse parameters also produce absorber layers with advantageous optical band gaps and improved device performance. Overall, the study demonstrates that regulating pulse parameters in attenuated electrolytes is an effective strategy to optimize CIGS film quality and to facilitate the advancement of economical, solution-based fabrication methods for high-performance CIGS solar cells. Full article
(This article belongs to the Section Electrochemistry and Photoredox Processes)
Show Figures

Figure 1

16 pages, 3351 KB  
Article
Intermediate Bandgap (IB) Cu3VSxSe4−x Nanocrystals as a New Class of Light Absorbing Semiconductors
by Jose J. Sanchez Rodriguez, Soubantika Palchoudhury, Jingsong Huang, Daniel Speed, Elizaveta Tiukalova, Godwin Mante, Jordan Hachtel and Arunava Gupta
Nanomaterials 2026, 16(2), 82; https://doi.org/10.3390/nano16020082 - 7 Jan 2026
Viewed by 321
Abstract
A new family of highly uniform, cubic-shaped Cu3VSxSe4−x (CVSSe; 0 ≤ x ≤ 4) nanocrystals based on earth-abundant materials with intermediate bandgaps (IB) in the visible range is reported, synthesized via a hot-injection method. The IB transitions and [...] Read more.
A new family of highly uniform, cubic-shaped Cu3VSxSe4−x (CVSSe; 0 ≤ x ≤ 4) nanocrystals based on earth-abundant materials with intermediate bandgaps (IB) in the visible range is reported, synthesized via a hot-injection method. The IB transitions and optical band gap of the novel CVSSe nanocrystals are investigated using ultraviolet-visible spectroscopy, revealing tunable band gaps that span the visible and near-infrared regimes. The composition-dependent relationships among the crystal phase, optical band gap, and photoluminescence properties of the novel IB semiconductors with progressive substitution of Se by S are examined in detail. High-resolution transmission electron microscopy and scanning electron microscopy characterization confirm the high crystallinity and uniform size (~19.7 nm × 17.2 nm for Cu3VS4) of the cubic-shaped nanocrystals. Density functional theory (DFT) calculations based on virtual crystal approximation support the experimental findings, showing good agreement in lattice parameters and band gaps across the CVSSe series and lending confidence that the targeted phases and compositions have been successfully realized. A current conversion efficiency, i.e., incident photon-to-current efficiency, of 14.7% was achieved with the p-type IB semiconductor Cu3VS4. These novel p-type IB semiconductor nanocrystals hold promise for enabling thin film solar cells with efficiencies beyond the Shockley–Queisser limit by allowing sub-band-gap photon absorption through intermediate-band transitions, in addition to the conventional direct-band-gap transition. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

11 pages, 1686 KB  
Article
Low-Temperature Hot-Water Treatment as a Green Strategy to Enhance the Self-Cleaning and Antibacterial Performance of Sputtered TiO2 Thin Films
by Manel Boukazzoula, Djamila Maghnia, Frank Neumann and Oualid Baghriche
Photochem 2026, 6(1), 4; https://doi.org/10.3390/photochem6010004 - 6 Jan 2026
Viewed by 197
Abstract
Titanium dioxide (TiO2) thin films were deposited by DC magnetron sputtering and subsequently treated in hot water at 50, 70, and 95 °C for 72 h to investigate the influence of low temperature on their structural optical and functional properties. XRD [...] Read more.
Titanium dioxide (TiO2) thin films were deposited by DC magnetron sputtering and subsequently treated in hot water at 50, 70, and 95 °C for 72 h to investigate the influence of low temperature on their structural optical and functional properties. XRD analysis revealed a progressive transformation from amorphous to anatase phase with increasing treatment temperature, accompanied by an increase in crystallite size from 5.2 to 15.1 nm. FT-IR spectroscopy confirmed enhanced surface hydroxylation and contact angle measurements showed a decrease from 77.4° to 19.7°, indicating a significant improvement in superior wettability. The transmittance spectroscopy revealed a slight narrowing of the optical band gap from 3.34 to 3.21 eV, consistent with improved visible-light absorption. Photocatalytic tests using the Resazurin indicator demonstrated that the film treated at 95 °C exhibited the highest activity, achieving a bleaching time of 245 s three times faster than treated at 50 °C and twice as fast as treated at 70 °C. Under low-intensity solar irradiation, the same sample achieved complete E. coli inactivation within 90 min. These improvements are attributed to increased crystallinity, surface hydroxyl density, and enhanced ROS generation. Overall, this study demonstrates that mild hot-water treatment is an effective, substrate-friendly route to enhance TiO2 film wettability and multifunctional performance, enabling the fabrication of self-cleaning and antibacterial coatings on fragile materials such as plastics and textiles. Full article
Show Figures

Figure 1

18 pages, 1464 KB  
Article
Effects of 147 MeV Kr Ions on the Structural, Optical and Luminescent Properties of Gd3Ga5O12
by Zhakyp T. Karipbayev, Gulnara M. Aralbayeva, Kuat K. Kumarbekov, Askhat B. Kakimov, Amangeldy M. Zhunusbekov, Abdirash Akilbekov, Mikhail G. Brik, Marina Konuhova, Sergii Ubizskii, Yevheniia Smortsova, Yana Suchikova, Snežana Djurković, Sergei Piskunov and Anatoli I. Popov
Crystals 2026, 16(1), 40; https://doi.org/10.3390/cryst16010040 - 3 Jan 2026
Viewed by 357
Abstract
The optical and vibrational responses of Gd3Ga5O12 (GGG) single crystals to 147 MeV Kr-ion irradiations were systematically investigated to clarify defect formation pathways and their influence on luminescence mechanisms. Absorption spectra measured at room temperature reveal a stepwise [...] Read more.
The optical and vibrational responses of Gd3Ga5O12 (GGG) single crystals to 147 MeV Kr-ion irradiations were systematically investigated to clarify defect formation pathways and their influence on luminescence mechanisms. Absorption spectra measured at room temperature reveal a stepwise redshift of the fundamental edge and the progressive development of a broad sub-band-gap tail between 4.4 and 5.3 eV, indicating the accumulation of F- and F+-type oxygen-vacancy centers and increasing structural disorder. Raman spectroscopy shows that, despite substantial track overlap at fluences up to 1014 ions/cm2, the crystal preserves its phonon frequencies and linewidths, while peak intensities decrease due to a growing disordered volume fraction. Low-temperature (13 K) photoluminescence demonstrates the persistence of a dominant broad band near 2.4 eV and the emergence of an additional irradiation-induced band at ~2.75 eV whose width increases with fluence, reflecting the formation of vacancy-related defect complexes. Excitation spectra transform from band-edge-dominated behavior in the pristine crystal to defect-tail-mediated excitation in heavily irradiated samples. These results provide a consistent spectroscopic picture of ion-track-induced disorder in GGG and identify the defect states governing its luminescence under extreme irradiation conditions. Full article
(This article belongs to the Special Issue Research Progress of Photoluminescent Materials)
Show Figures

Figure 1

17 pages, 2367 KB  
Article
Metals Oxides-Reinforced Epoxy Nanocomposites for Energy Applications: A First Comparative Study of the Structural and Optical Properties of SnO2 and ZnO Oxides
by Noura El Ghoubali, Adnane El Hamidi, Amine El Haimeur, Khalid Nouneh and Abdelkrim Maaroufi
Appl. Nano 2026, 7(1), 2; https://doi.org/10.3390/applnano7010002 - 31 Dec 2025
Viewed by 366
Abstract
This study aims to address a major challenge and find solutions for developing less expensive, lighter, and more efficient energy storage materials while remaining environmentally friendly. This work combines the study of the structural, morphological, and optical properties of epoxy nanocomposites containing ZnO [...] Read more.
This study aims to address a major challenge and find solutions for developing less expensive, lighter, and more efficient energy storage materials while remaining environmentally friendly. This work combines the study of the structural, morphological, and optical properties of epoxy nanocomposites containing ZnO and SnO2 and highlights the influence of oxide filler content on their energy storage performance. To this end, epoxy nanocomposites filled with metal oxides (ZnO and SnO2) prepared by extrusion, a simple, economical, and reliable industrial method, were studied and compared. The materials obtained are inexpensive, lightweight, and highly efficient, and can replace traditional glass-based systems in the energy sector. The results of XRD, SEM, and FTIR analyses show the absence of impurities, the stability of the structures in humid environments, and the homogeneity of the prepared films. They also indicate that the nature and charge content of the oxide integrated into the polymer matrix play a significant role in the properties of the nanocomposites. Optical measurements were used to determine the film thickness, the type of electronic transition, the band gap energy, and the Urbach energy. Based on the results obtained, the prepared nanocomposite films appear to be promising materials for energy-based optical applications. Full article
Show Figures

Figure 1

19 pages, 3156 KB  
Article
Effect of Mn Rate on Structural, Optical and Electrical Properties in LiCo1−xMnxO2 (x = 0.5; 0.7) Compounds
by Miftah Ali Bin Yazeed, Moufida Krimi, Abdulrahman Alsawi, Mohamed Houcine Dhaou, Abdelfattah Mahmoud and Abdallah Ben Rhaiem
Inorganics 2026, 14(1), 19; https://doi.org/10.3390/inorganics14010019 - 30 Dec 2025
Viewed by 334
Abstract
The compounds LiCo1−xMnxO2 (x = 0.5, 0.7) were synthesized via the solid-state method and exhibited crystallization in the cubic spinel structure (space group Fd-3m). UV–Vis spectroscopy reveals strong visible-light absorption and a reduction in the indirect optical band [...] Read more.
The compounds LiCo1−xMnxO2 (x = 0.5, 0.7) were synthesized via the solid-state method and exhibited crystallization in the cubic spinel structure (space group Fd-3m). UV–Vis spectroscopy reveals strong visible-light absorption and a reduction in the indirect optical band gap from 1.85 eV (x = 0.5) to 1.60 eV (x = 0.7) with increasing Mn content, which is consistent with semiconducting behavior. This narrowing arises from Mn3+/Mn4+ mixed valence, which introduces mid-gap states and enhances Co/Mn 3d–O 2p orbital hybridization within the spinel framework. In contrast, the Urbach energy increases from 0.55 eV to 0.65 eV, indicating greater structural and energetic disorder in the Mn-rich composition which is attributed to the Jahn–Teller distortions and valence heterogeneity associated with Mn3+. Impedance and dielectric modulus analyses confirm two distinct non-Debye relaxation processes related to grains and grain boundaries. AC conductivity is governed by the Correlated Barrier Hopping (CBH) model, with bipolaron hopping identified as the dominant conduction mechanism. The x = 0.7 sample displays significantly enhanced conductivity due to increased Mn3+/Mn4+ mixed valence, lattice expansion, efficient 3D electronic connectivity of the spinel lattice, and reduced interfacial resistance. These findings highlight the potential of these two spinels compounds as narrow-gap semiconductors for optoelectronic applications including visible-light photodetectors, photocatalysts, and solar absorber layers extending their utility beyond conventional battery cathodes. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 4th Edition)
Show Figures

Figure 1

Back to TopTop