Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = optical–electronic skin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6040 KiB  
Article
Estimation of Respiratory Signals from Remote Photoplethysmography of RGB Facial Videos
by Hyunsoo Seo, Seunghyun Kim and Eui Chul Lee
Electronics 2025, 14(11), 2152; https://doi.org/10.3390/electronics14112152 - 26 May 2025
Viewed by 566
Abstract
Recently, technologies monitoring users’ physiological signals in consumer electronics such as smartphones or kiosks with cameras and displays are gaining attention for their potential role in diverse services. While many of these technologies focus on photoplethysmography for the measurement of blood flow changes, [...] Read more.
Recently, technologies monitoring users’ physiological signals in consumer electronics such as smartphones or kiosks with cameras and displays are gaining attention for their potential role in diverse services. While many of these technologies focus on photoplethysmography for the measurement of blood flow changes, respiratory measurement is also essential for assessing an individual’s health status. Previous studies have proposed thermal camera-based and body movement-based respiratory measurement methods. In this paper, we adopt an approach to extract respiratory signals from RGB face videos using photoplethysmography. Prior research shows that photoplethysmography can measure respiratory signals, due to its correlation with cardiac activity, by setting arterial vessel regions as areas of interest for respiratory measurement. However, this correlation does not directly reflect real-time respiratory components in photoplethysmography. Our new approach measures the respiratory rate by capturing changes in skin brightness from motion artifacts. We utilize these brightness factors, including facial movement, for respiratory signal measurement. We applied the wavelet transform and smoothing filters to remove other unrelated motion artifacts. In order to validate our method, we built a dataset of respiratory rate measurements from 20 individuals using an RGB camera in a facial movement-aware environment. Our approach demonstrated a similar performance level to the reference signal obtained with a contact-based respiratory belt, with a correlation above 0.9 and an MAE within 1 bpm. Moreover, our approach offers advantages for real-time measurements, excluding complex computational processes for measuring optical flow caused by the movement of the chest due to respiration. Full article
Show Figures

Figure 1

33 pages, 9324 KiB  
Review
Hydrogels for Translucent Wearable Electronics: Innovations in Materials, Integration, and Applications
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Gels 2025, 11(5), 372; https://doi.org/10.3390/gels11050372 - 20 May 2025
Viewed by 1057
Abstract
Recent advancements in wearable electronics have significantly enhanced human–device interaction, enabling applications such as continuous health monitoring, advanced diagnostics, and augmented reality. While progress in material science has improved the flexibility, softness, and elasticity of these devices for better skin conformity, their optical [...] Read more.
Recent advancements in wearable electronics have significantly enhanced human–device interaction, enabling applications such as continuous health monitoring, advanced diagnostics, and augmented reality. While progress in material science has improved the flexibility, softness, and elasticity of these devices for better skin conformity, their optical properties, particularly transparency, remain relatively unexplored. Transparent wearable electronics offer distinct advantages: they allow for non-invasive health monitoring by enabling a clear view of biological systems and improve aesthetics by minimizing the visual presence of electronics on the skin, thereby increasing user acceptance. Hydrogels have emerged as a key material for transparent wearable electronics due to their high water content, excellent biocompatibility, and tunable mechanical and optical properties. Their inherent softness and stretchability allow intimate, stable contact with dynamic biological surfaces. Furthermore, their ability to support ion-based conductivity is advantageous for bioelectronic interfaces and physiological sensors. Current research is focused on advancing hydrogel design to improve transparency, mechanical resilience, conductivity, and adhesion. The core components of transparent wearable systems include physiological sensors, energy storage devices, actuators, and real-time displays. These must collectively balance efficiency, functionality, and long-term durability. Practical applications span continuous health tracking and medical imaging to next-generation interactive displays. Despite progress, challenges such as material durability, scalable manufacturing, and prolonged usability remain. Addressing these limitations will be crucial for the future development of transparent, functional, and user-friendly wearable electronics. Full article
Show Figures

Figure 1

14 pages, 3914 KiB  
Article
Optical–Electronic Skin Based on Tea Polyphenol for Dual Signal Wearable Sensing
by Jia-Li Xu, Guangyao Zhao, Jiachen Wang, An Tang, Jun-Tao Liu, Zhijie Zhu, Qiang Zhang and Yu Tian
Biosensors 2025, 15(5), 281; https://doi.org/10.3390/bios15050281 - 29 Apr 2025
Viewed by 638
Abstract
The rapid development of smart electronic skin has led researchers to design a variety of flexible and stretchable devices that can be used to monitor physiological and environmental signals. In this work, we successfully demonstrate a color-adjustable and conductive wearable optical–electronic skin (OE-skin) [...] Read more.
The rapid development of smart electronic skin has led researchers to design a variety of flexible and stretchable devices that can be used to monitor physiological and environmental signals. In this work, we successfully demonstrate a color-adjustable and conductive wearable optical–electronic skin (OE-skin) based on photonic crystal hydrogel that is capable of delivering both optical and electrical signal responses synchronously. The OE-skin is fabricated by incorporating a structural colored layer, composed of periodically aligned magnetic nanoparticles, into a polyacrylamide hydrogel matrix that contains tea polyphenols and borax. The dynamic boronate ester bonds formed between borax and the catechol groups of tea polyphenols are able to enhance the mechanical properties of the OE-skin, while also conferring excellent electrical conductivity, high sensitivity, and a rapid electrical response. Additionally, the tea polyphenols, which are natural active compounds derived from tea, possess diverse bioactive properties, thereby endowing the OE-skin with excellent antibacterial and biocompatibility characteristics. In addition, the developed electronic skin successfully demonstrates its capability in synergistic electronic and optical sensing during human motion monitoring, indicating broad application prospects in the field of smart wearable sensors. Full article
Show Figures

Figure 1

15 pages, 3832 KiB  
Article
Zinc Oxide Nanoparticle Loaded L-Carnosine Biofunctionalized Polyacrylonitrile Nanofibrous Wound Dressing for Post-Surgical Treatment of Melanoma
by Shahin Homaeigohar, Danial Kordbacheh, Sourav Banerjee, Jiacheng Gu, Yilong Zhang and Zhihong Huang
Polymers 2025, 17(2), 173; https://doi.org/10.3390/polym17020173 - 12 Jan 2025
Cited by 2 | Viewed by 1622
Abstract
Nanofibrous dressing materials with an antitumor function can potentially inhibit recurrence of melanoma following the surgical excision of skin tumors. In this study, hydrolyzed polyacrylonitrile (hPAN) nanofibers biofunctionalized with L-carnosine (CAR) and loaded with bio (CAR)-synthesized zinc oxide (ZnO) nanoparticles, ZnO/CAR-hPAN (hereafter called [...] Read more.
Nanofibrous dressing materials with an antitumor function can potentially inhibit recurrence of melanoma following the surgical excision of skin tumors. In this study, hydrolyzed polyacrylonitrile (hPAN) nanofibers biofunctionalized with L-carnosine (CAR) and loaded with bio (CAR)-synthesized zinc oxide (ZnO) nanoparticles, ZnO/CAR-hPAN (hereafter called ZCPAN), were employed to develop an antimelanoma wound dressing. Inspired by the formulation of the commercial wound healing Zn-CAR complex, i.e., polaprezinc (PLZ), for the first time, we benefitted from the synergy of zinc and CAR to create an antimelanoma nanofibrous wound dressing. According to scanning electron microscopy (SEM) images, ultrafine ZnO nanoparticles were homogenously distributed throughout the nanofibrous dressing. The ZCPAN nanofiber mat showed a significantly higher toughness (18.7 MJ.m−3 vs. 1.4 MJ.m−3) and an enhanced elongation at break (stretchability) compared to the neat PAN nanofiber mat (12% vs. 9.5%). Additionally, optical coherence elastography (OCE) measurements indicated that the ZCPAN nanofibrous dressing was as stiff as 50.57 ± 8.17 kPa which is notably larger than that of the PAN nanofibrous dressing, i.e., 24.49 ± 6.83 kPa. The optimum mechanical performance of the ZCPAN nanofibers originates from physicochemical interaction of CAR ligands, hPAN nanofibers, and ZnO nanoparticles through hydrogen bonding, electrostatic bonding, and esterification, as verified using ATR-FTIR. An in vitro cell viability assay using human skin melanoma cells implied that the cells are notably killed in the presence of the ZCPAN nanofibers compared to the PAN nanofibers. Thanks to ROS generating ZnO nanoparticles, this behavior originates from the high reactive oxygen species (ROS)-induced oxidative damage of melanoma cells, as verified through a CellROX assay. In this regard, an apoptotic cell response to the ZCPAN nanofibers was recorded through an apoptosis assay. Taken together, the ZCPAN nanofibers induce an antimelanoma effect through oxidative stress and thus are a high potential wound dressing material to suppress melanoma regrowth after surgical excision of skin tumors. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

26 pages, 7186 KiB  
Article
Biomedical Application Prospects of Gadolinium Oxide Nanoparticles for Regenerative Medicine
by Ekaterina V. Silina, Natalia E. Manturova, Elena L. Chuvilina, Akhmedali A. Gasanov, Olga I. Andreeva, Maksim A. Pugachevskii, Aleksey V. Kochura, Alexey A. Kryukov, Yulia G. Suzdaltseva and Victor A. Stupin
Pharmaceutics 2024, 16(12), 1627; https://doi.org/10.3390/pharmaceutics16121627 - 23 Dec 2024
Cited by 3 | Viewed by 1332
Abstract
Background/Objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (Gd2O3 NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines. Methods: The powder [...] Read more.
Background/Objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (Gd2O3 NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines. Methods: The powder of Gd2O3 NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of Gd2O3 NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source. Biological activity was studied on different human cell lines (keratinocytes, fibroblasts, mesenchymal stem cells (MSCs)) with evaluation of the effect of a wide range of Gd2O3 NP concentrations on metabolic and proliferative cellular activity (MTT test, direct cell counting, dead cell assessment, and visual assessment of cytoarchitectonics). The test of migration activity assessment on a model wound was performed on MSC culture. Results: According to TEM data, the size of the NPs was in the range of 2–43 nm, with an average of 20 nm. XRD analysis revealed that the f Gd2O3 nanoparticles had a cubic structure (C-form) of Gd2O3 (Ia3)¯ with lattice parameter a = 10.79(9) Å. Raman spectroscopy showed that the f Gd2O3 nanoparticles had a high degree of crystallinity. By investigating the photooxidative degradation of methylene blue dye in the presence of f Gd2O3 NPs under red light irradiation, it was found that f Gd2O3 nanoparticles showed weak antioxidant activity, which depended on the particle content in the solution. At a concentration of 10−3 M, the highest antioxidant activity of f Gd2O3 nanoparticles was observed when the reaction rate constant of dye photodegradation decreased by 5.5% to 9.4 × 10−3 min−1. When the concentration of f Gd2O3 NPs in solution was increased to 10−2 M upon irradiation with a red light source, their antioxidant activity changed to pro-oxidant activity, accompanied by a 15% increase in the reaction rate of methylene blue degradation. Studies on cell lines showed a high level of safety and regenerative potential of Gd2O3 NPs, which stimulated fibroblast metabolism at a concentration of 10−3 M (27% enhancement), stimulated keratinocyte metabolism at concentrations of 10−3 M–10−5 M, and enhanced keratinocyte proliferation by an average of 35% at concentrations of 10−4 M. Furthermore, it accelerated the migration of MSCs, enhancing their proliferation, and promoting the healing of the model wound. Conclusions: The results of the study demonstrated the safety and regenerative potential of redox-active Gd2O3 NPs towards different cell lines. This may be the basis for further research to develop nanomaterials based on Gd2O3 NPs for skin wound healing and in regenerative medicine generally. Full article
Show Figures

Figure 1

19 pages, 7699 KiB  
Article
Development of New Chitosan-Based Complex with Bioactive Molecules for Regenerative Medicine
by Natasha Maurmann, Gabriela Moraes Machado, Rafaela Hartmann Kasper, Marcos do Couto, Luan Paz, Luiza Oliveira, Juliana Girón Bastidas, Paola Arosi Bottezini, Lucas Machado Notargiacomo, Carlos Arthur Ferreira, Luciano Pighinelli, Caren Serra Bavaresco, Patricia Pranke and Myrian Brew
Future Pharmacol. 2024, 4(4), 873-891; https://doi.org/10.3390/futurepharmacol4040046 - 16 Dec 2024
Cited by 2 | Viewed by 4748
Abstract
Background/Objectives: The development of new materials incorporating bioactive molecules for tissue regeneration is a growing area of interest. The objective of this study was to develop a new complex specifically designed for bone and skin tissue engineering, combining chitosan, ascorbic acid-2-magnesium phosphate (ASAP), [...] Read more.
Background/Objectives: The development of new materials incorporating bioactive molecules for tissue regeneration is a growing area of interest. The objective of this study was to develop a new complex specifically designed for bone and skin tissue engineering, combining chitosan, ascorbic acid-2-magnesium phosphate (ASAP), and β-tricalcium phosphate (β-TCP). Methods: Chitosan and the complexes chitosan/ASAP and chitosan/ASAP/β-TCP were prepared in membrane form, macerated to a particulate format, and then subjected to characterization through Fourier transform infrared (FTIR) spectroscopy, optical and scanning electron microscopy (SEM), zeta potential, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Cell viability was evaluated through a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and with fluorescein diacetate (FDA) and propidium iodide (PI) staining in stem cells obtained from deciduous teeth. Statistical analyses were performed using analysis of variance (ANOVA), followed by Tukey’s test. Results: The FTIR results indicated the characteristic bands in the chitosan group and the complexation between chitosan, ASAP, and β-TCP. Microscopic characterization revealed a polydisperse distribution of micrometric particles. Zeta potential measurements demonstrated a reduction in surface charge upon the addition of ASAP and β-TCP to the chitosan matrix. TGA and DSC analyses further indicated complexation between the three components and the successful formation of a cross-linked structure in the chitosan matrix. Stem cells cultured with the particulate biomaterials demonstrated their biocompatibility. Statistical analysis revealed a significant increase in cell viability for the chitosan/ASAP and chitosan/ASAP/β-TCP groups compared to the chitosan control. Conclusions: Therefore, the chitosan/ASAP complex demonstrated potential for skin regeneration, while the chitosan/ASAP/β-TCP formulation showed promise as a biomaterial for bone regeneration due to the presence of β-tricalcium phosphate. Full article
Show Figures

Graphical abstract

24 pages, 5048 KiB  
Review
Humidity Sensing Using Polymers: A Critical Review of Current Technologies and Emerging Trends
by Jintian Qian, Ruiqin Tan, Mingxia Feng, Wenfeng Shen, Dawu Lv and Weijie Song
Chemosensors 2024, 12(11), 230; https://doi.org/10.3390/chemosensors12110230 - 2 Nov 2024
Cited by 7 | Viewed by 6068
Abstract
In the post-pandemic era, human demand for a healthy lifestyle and a smart society has surged, leading to vibrant growth in the field of flexible electronic sensor technology for health monitoring. Flexible polymer humidity sensors are not only capable of the real-time monitoring [...] Read more.
In the post-pandemic era, human demand for a healthy lifestyle and a smart society has surged, leading to vibrant growth in the field of flexible electronic sensor technology for health monitoring. Flexible polymer humidity sensors are not only capable of the real-time monitoring of human respiration and skin moisture information but also serve as a non-contact human–machine interaction method. In addition, the development of moist-electric generation technology is expected to break free from the traditional reliance of flexible electronic devices on power equipment, which is of significant importance for the miniaturization, reliability, and environmentally friendly development of flexible devices. Currently, flexible polymer humidity sensors are playing a significant role in the field of wearable electronic devices and thus have attracted considerable attention. This review begins by introducing the structural types and working principles of various humidity sensors, including the types of capacitive, impedance/resistive, frequency-based, fiber optic, and voltage-based sensors. It mainly focuses on the latest research advancements in flexible polymer humidity sensors, particularly in the modification of humidity-sensitive materials, sensor fabrication, and hygrosensitivity mechanisms. Studies on material composites including different types of polymers, polymers combined with porous nanostructured materials, polymers combined with metal oxides, and two-dimensional materials are reviewed, along with a comparative summary of the fabrication and performance mechanisms of related devices. This paper concludes with a discussion on the current challenges and opportunities faced by flexible polymer humidity sensors, providing new research perspectives for their future development. Full article
Show Figures

Figure 1

14 pages, 7832 KiB  
Article
MnO2 Nanoparticles Decorated PEDOT:PSS for High Performance Stretchable and Transparent Supercapacitors
by Guiming Liu, Zhao Huang, Jiujie Xu, Tiesong Lin, Bowen Zhang and Peng He
Nanomaterials 2024, 14(13), 1080; https://doi.org/10.3390/nano14131080 - 24 Jun 2024
Cited by 5 | Viewed by 2103
Abstract
With the swift advancement of wearable electronics and artificial intelligence, the integration of electronic devices with the human body has advanced significantly, leading to enhanced real-time health monitoring and remote disease diagnosis. Despite progress in developing stretchable materials with skin-like mechanical properties, there [...] Read more.
With the swift advancement of wearable electronics and artificial intelligence, the integration of electronic devices with the human body has advanced significantly, leading to enhanced real-time health monitoring and remote disease diagnosis. Despite progress in developing stretchable materials with skin-like mechanical properties, there remains a need for materials that also exhibit high optical transparency. Supercapacitors, as promising energy storage devices, offer advantages such as portability, long cycle life, and rapid charge/discharge rates, but achieving high capacity, stretchability, and transparency simultaneously remains challenging. This study combines the stretchable, transparent polymer PEDOT:PSS with MnO2 nanoparticles to develop high-performance, stretchable, and transparent supercapacitors. PEDOT:PSS films were deposited on a PDMS substrate using a spin-coating method, followed by electrochemical deposition of MnO2 nanoparticles. This method ensured that the nanosized MnO2 particles were uniformly distributed, maintaining the transparency and stretchability of PEDOT:PSS. The resulting PEDOT:PSS/MnO2 nanoparticle electrodes were gathered into a symmetric device using a LiCl/PVA gel electrolyte, achieving an areal capacitance of 1.14 mF cm−2 at 71.2% transparency and maintaining 89.92% capacitance after 5000 cycles of 20% strain. This work presents a scalable and economical technique to manufacturing supercapacitors that combine high capacity, transparency, and mechanical stretchability, suggesting potential applications in wearable electronics. Full article
(This article belongs to the Special Issue High-Capacity Supercapacitors: Nanotechnologies and Nanomaterials)
Show Figures

Figure 1

18 pages, 7010 KiB  
Article
Keratin/Copper Complex Electrospun Nanofibers for Antibacterial Treatments: Property Investigation and In Vitro Response
by Maria Laura Tummino, Iriczalli Cruz-Maya, Alessio Varesano, Claudia Vineis and Vincenzo Guarino
Materials 2024, 17(10), 2435; https://doi.org/10.3390/ma17102435 - 18 May 2024
Cited by 3 | Viewed by 2010
Abstract
The frontiers of antibacterial materials in the biomedical field are constantly evolving since infectious diseases are a continuous threat to human health. In this work, waste-wool-derived keratin electrospun nanofibers were blended with copper by an optimized impregnation procedure to fabricate antibacterial membranes with [...] Read more.
The frontiers of antibacterial materials in the biomedical field are constantly evolving since infectious diseases are a continuous threat to human health. In this work, waste-wool-derived keratin electrospun nanofibers were blended with copper by an optimized impregnation procedure to fabricate antibacterial membranes with intrinsic biological activity, excellent degradability and good cytocompatibility. The keratin/copper complex electrospun nanofibers were multi-analytically characterized and the main differences in their physical–chemical features were related to the crosslinking effect caused by Cu2+. Indeed, copper ions modified the thermal profiles, improving the thermal stability (evaluated by differential scanning calorimetry and thermogravimetry), and changed the infrared vibrational features (determined by infrared spectroscopy) and the chemical composition (studied by an X-ray energy-dispersive spectroscopy probe and optical emission spectrometry). The copper impregnation process also affected the morphology, leading to partial nanofiber swelling, as evidenced by scanning electron microscopy analyses. Then, the membranes were successfully tested as antibacterial materials against gram-negative bacteria, Escherichia coli. Regarding cytocompatibility, in vitro assays performed with L929 cells showed good levels of cell adhesion and proliferation (XTT assay), and no significant cytotoxic effect, in comparison to bare keratin nanofibers. Given these results, the material described in this work can be suitable for use as antibiotic-free fibers for skin wound dressing or membranes for guided tissue regeneration. Full article
(This article belongs to the Special Issue Nanoarchitectonics in Materials Science)
Show Figures

Figure 1

17 pages, 1760 KiB  
Article
DEMA: A Deep Learning-Enabled Model for Non-Invasive Human Vital Signs Monitoring Based on Optical Fiber Sensing
by Qichang Zhang, Qing Wang, Weimin Lyu and Changyuan Yu
Sensors 2024, 24(9), 2672; https://doi.org/10.3390/s24092672 - 23 Apr 2024
Viewed by 1874
Abstract
Optical fiber sensors are extensively employed for their unique merits, such as small size, being lightweight, and having strong robustness to electronic interference. The above-mentioned sensors apply to more applications, especially the detection and monitoring of vital signs in medical or clinical. However, [...] Read more.
Optical fiber sensors are extensively employed for their unique merits, such as small size, being lightweight, and having strong robustness to electronic interference. The above-mentioned sensors apply to more applications, especially the detection and monitoring of vital signs in medical or clinical. However, it is inconvenient for daily long-term human vital sign monitoring with conventional monitoring methods under the uncomfortable feelings generated since the skin and devices come into direct contact. This study introduces a non-invasive surveillance system that employs an optical fiber sensor and advanced deep-learning methodologies for precise vital sign readings. This system integrates a monitor based on the MZI (Mach–Zehnder interferometer) with LSTM networks, surpassing conventional approaches and providing potential uses in medical diagnostics. This could be potentially utilized in non-invasive health surveillance, evaluation, and intelligent health care. Full article
Show Figures

Figure 1

15 pages, 1960 KiB  
Article
Analysis of Essential Features and Optimal Operational Parameters of an RF-ICP Torch for Waste Treatment Applications
by Mustafa A. Aldeeb, Sharif Abu Darda, Vahid Damideh, Isaac Hassen and Hossam A. Gabbar
Recycling 2024, 9(1), 20; https://doi.org/10.3390/recycling9010020 - 15 Feb 2024
Cited by 2 | Viewed by 3167
Abstract
Recently, plasma-based pyrolysis has gained increasing prominence as a technology in response to the growing challenges in waste disposal and the recognition of opportunities to generate valuable by-products. The efficiency of the pyrolysis process is intricately tied to the characteristics of the plasma [...] Read more.
Recently, plasma-based pyrolysis has gained increasing prominence as a technology in response to the growing challenges in waste disposal and the recognition of opportunities to generate valuable by-products. The efficiency of the pyrolysis process is intricately tied to the characteristics of the plasma involved, particularly the effective electron temperature (Teff) and plasma density (ne). This study aimed to conduct a comprehensive examination of the essential features and optimal operational parameters of a developed RF-ICP torch specifically designed for small-scale municipal solid waste (MSW) pyrolysis (mixture of paper and polypropylene) with the goal of controlling both the torch and the overall process. Using optical emission spectroscopy (OES), we measured plasma parameters, specifically (Teff) and (ne), while varying argon gas flow rates and RF powers. The (Teff) and (ne)were determined using the Boltzmann plot and Stark broadening, respectively. The RF torch was found to generate (ne) up to approximately 2.8×1020 cm3 and (Teff) up to around 8200 K, with both parameters being controlled by the discharge power and gas flow rate. Additionally, a power-losing mechanism, namely the anomalous skin effect, was detected during the study, which is uncommon in atmospheric plasma discharge. Full article
Show Figures

Figure 1

16 pages, 13973 KiB  
Article
3D Printing of Biodegradable Polymeric Microneedles for Transdermal Drug Delivery Applications
by Faisal Khaled Aldawood, Santosh Kumar Parupelli, Abhay Andar and Salil Desai
Pharmaceutics 2024, 16(2), 237; https://doi.org/10.3390/pharmaceutics16020237 - 6 Feb 2024
Cited by 15 | Viewed by 4345
Abstract
Microneedle (MN) technology is an optimal choice for the delivery of drugs via the transdermal route, with a minimally invasive procedure. MN applications are varied from drug delivery, cosmetics, tissue engineering, vaccine delivery, and disease diagnostics. The MN is a biomedical device that [...] Read more.
Microneedle (MN) technology is an optimal choice for the delivery of drugs via the transdermal route, with a minimally invasive procedure. MN applications are varied from drug delivery, cosmetics, tissue engineering, vaccine delivery, and disease diagnostics. The MN is a biomedical device that offers many advantages including but not limited to a painless experience, being time-effective, and real-time sensing. This research implements additive manufacturing (AM) technology to fabricate MN arrays for advanced therapeutic applications. Stereolithography (SLA) was used to fabricate six MN designs with three aspect ratios. The MN array included conical-shaped 100 needles (10 × 10 needle) in each array. The microneedles were characterized using optical and scanning electron microscopy to evaluate the dimensional accuracy. Further, mechanical and insertion tests were performed to analyze the mechanical strength and skin penetration capabilities of the polymeric MN. MNs with higher aspect ratios had higher deformation characteristics suitable for penetration to deeper levels beyond the stratum corneum. MNs with both 0.3 mm and 0.4 mm base diameters displayed consistent force–displacement behavior during a skin-equivalent penetration test. This research establishes guidelines for fabricating polymeric MN for high-accuracy and low-cost 3D printing. Full article
(This article belongs to the Special Issue 3D Printing Technology for Pharmaceutical and Biomedical Application)
Show Figures

Figure 1

31 pages, 11320 KiB  
Article
Microneedle-Assisted Transfersomes as a Transdermal Delivery System for Aspirin
by Raha Rahbari, Lewis Francis, Owen J. Guy, Sanjiv Sharma, Christopher Von Ruhland and Zhidao Xia
Pharmaceutics 2024, 16(1), 57; https://doi.org/10.3390/pharmaceutics16010057 - 29 Dec 2023
Cited by 5 | Viewed by 3075
Abstract
Transdermal drug delivery systems offer several advantages over conventional oral or hypodermic administration due to the avoidance of first-pass drug metabolism and gastrointestinal degradation as well as patients’ convenience due to a minimally invasive and painless approach. A novel transdermal drug delivery system, [...] Read more.
Transdermal drug delivery systems offer several advantages over conventional oral or hypodermic administration due to the avoidance of first-pass drug metabolism and gastrointestinal degradation as well as patients’ convenience due to a minimally invasive and painless approach. A novel transdermal drug delivery system, comprising a combination of transfersomes with either solid silicon or solid polycarbonate microneedles has been developed for the transdermal delivery of aspirin. Aspirin was encapsulated inside transfersomes using a “thin-film hydration sonication” technique, yielding an encapsulation efficiency of approximately 67.5%. The fabricated transfersomes have been optimised and fully characterised in terms of average size distribution and uniformity, surface charge and stability (shelf-life). Transdermal delivery, enhanced by microneedle penetration, allows the superior permeation of transfersomes into perforated porcine skin and has been extensively characterised using optical coherence tomography (OCT) and transmission electron microscopy (TEM). In vitro permeation studies revealed that transfersomes enhanced the permeability of aspirin by more than four times in comparison to the delivery of unencapsulated “free” aspirin. The microneedle-assisted delivery of transfersomes encapsulating aspirin yielded 13-fold and 10-fold increases in permeation using silicon and polycarbonate microneedles, respectively, in comparison with delivery using only transfersomes. The cytotoxicity of different dose regimens of transfersomes encapsulating aspirin showed that encapsulated aspirin became cytotoxic at concentrations of ≥100 μg/mL. The results presented demonstrate that the transfersomes could resolve the solubility issues of low-water-soluble drugs and enable their slow and controlled release. Microneedles enhance the delivery of transfersomes into deeper skin layers, providing a very effective system for the systemic delivery of drugs. This combined drug delivery system can potentially be utilised for numerous drug treatments. Full article
Show Figures

Figure 1

20 pages, 2441 KiB  
Article
Soft Epidermal Paperfluidics for Sweat Analysis by Ratiometric Raman Spectroscopy
by Ata Golparvar, Lucie Thenot, Assim Boukhayma and Sandro Carrara
Biosensors 2024, 14(1), 12; https://doi.org/10.3390/bios14010012 - 25 Dec 2023
Cited by 6 | Viewed by 5192
Abstract
The expanding interest in digital biomarker analysis focused on non-invasive human bodily fluids, such as sweat, highlights the pressing need for easily manufactured and highly efficient soft lab-on-skin solutions. Here, we report, for the first time, the integration of microfluidic paper-based devices (μPAD) [...] Read more.
The expanding interest in digital biomarker analysis focused on non-invasive human bodily fluids, such as sweat, highlights the pressing need for easily manufactured and highly efficient soft lab-on-skin solutions. Here, we report, for the first time, the integration of microfluidic paper-based devices (μPAD) and non-enhanced Raman-scattering-enabled optical biochemical sensing (Raman biosensing). Their integration merges the enormous benefits of μPAD, with high potential for commercialization and use in resource-limited settings, with biorecognition-element-free (but highly selective) optical Raman biosensing. The introduced thin (0.36 mm), ultra-lightweight (0.19 g), and compact footprint (3 cm2) opto-paperfluidic sweat patch is flexible, stretchable, and conforms, irritation-free, to hairless or minimally haired body regions to enable swift sweat collection. As a great advantage, this new bio-chemical sensory system excels through its absence of onboard biorecognition elements (bioreceptor-free) and omission of plasmonic nanomaterials. The proposed easy fabrication process is adaptable to mass production by following a fully sustainable and cost-effective process utilizing only basic tools by avoiding typically employed printing or laser patterning. Furthermore, efficient collection and transportation of precise sweat volumes, driven exclusively by the wicking properties of porous materials, shows high efficiency in liquid transportation and reduces biosensing latency by a factor of 5 compared to state-of-the-art epidermal microfluidics. The proposed unit enables electronic chip-free and imaging-less visual sweat loss quantification as well as optical biochemical analysis when coupled with Raman spectroscopy. We investigated the multimodal quantification of sweat urea and lactate levels ex vivo (with syntactic sweat including +30 sweat analytes on porcine skin) and achieved a linear dynamic range from 0 to 100 mmol/L during fully dynamic continuous flow characterization. Full article
(This article belongs to the Special Issue SERS-Based Biosensors: Design and Biomedical Applications)
Show Figures

Figure 1

10 pages, 28181 KiB  
Article
Morphological and Optical Modification of Melanosomes in Fish Integuments upon Oxidation
by Sébastien R. Mouchet, Fabio Cortesi, Bojana Bokic, Vladimir Lazovic, Pete Vukusic, N. Justin Marshall and Branko Kolaric
Optics 2023, 4(4), 563-572; https://doi.org/10.3390/opt4040041 - 1 Nov 2023
Cited by 1 | Viewed by 2389
Abstract
Reactive oxygen species (ROS) such as superoxide radicals O2−, hydroxyl radicals OH−, and hydrogen peroxide H2O2 may have detrimental effects on marine organisms, including their integuments and visual appearances. Although some studies have described the impact of ROS [...] Read more.
Reactive oxygen species (ROS) such as superoxide radicals O2−, hydroxyl radicals OH−, and hydrogen peroxide H2O2 may have detrimental effects on marine organisms, including their integuments and visual appearances. Although some studies have described the impact of ROS on marine ecosystems and species ecology, the influence on the optical response of the integuments of marine species and on their visual appearances remains unknown. In this article, we used histology and optical characterisation to show, for the first time, that skin melanophores (melanin-containing chromophores) of the coral reef fish, Stegastes apicalis, change their shapes and fluorescent proprieties upon oxidation with H2O2 radicals. Our observations also suggest that pheomelanosomes may occur in fish integuments, where, previously, it was thought that fish melanosomes only contain eumelanin. This investigation relied on light and electron microscopy and steady-state fluorimetry, as well as time-resolved streak imaging systems. We suggest that the changes in the morphological and spectral characteristics of melanophores can be used as a marker of physiological stress induced by environmental factors such as ROS. Moreover, S. apicalis may be used as a potential model for studying the interaction between the surrounding environment and natural organisms in biologically diverse ecosystems, such as the Great Barrier Reef in Australia. Full article
Show Figures

Figure 1

Back to TopTop