Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = opsins proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2236 KB  
Article
Role and Impact of the brsk2 Gene in Zebrafish Retinal Development and Visual Function Characterized by Behavioral, Histological, and Transcriptomic Analyses
by Jingxin Deng, Yue Li, Meixin Hu, Chunchun Hu, Jia Lin, Qiang Li, Xiu Xu and Chunxue Liu
Int. J. Mol. Sci. 2026, 27(2), 858; https://doi.org/10.3390/ijms27020858 - 15 Jan 2026
Viewed by 62
Abstract
Vision is fundamental to the acquisition of motor, cognitive, and social skills, playing a crucial role in typical development. Early visual impairments are associated with various neurodevelopmental conditions, including Autism Spectrum Disorder (ASD). The (Brain-specific serine/threonine-protein kinase 2, BRSK2) gene has been [...] Read more.
Vision is fundamental to the acquisition of motor, cognitive, and social skills, playing a crucial role in typical development. Early visual impairments are associated with various neurodevelopmental conditions, including Autism Spectrum Disorder (ASD). The (Brain-specific serine/threonine-protein kinase 2, BRSK2) gene has been identified as a high-risk gene for ASD. This study aims to investigate the role of brsk2 in retinal photoreceptor development and visual function in zebrafish. Using behavioral assays, histological analysis, and transcriptomic profiling, we assessed the impact of brsk2 deletion on retinal structure and function. The results showed that brsk2ab−/− zebrafish larvae exhibited significantly enhanced light perception compared to wild-type (WT) controls. Structural analysis of the retina revealed disruptions in the layered organization, along with up-regulated rhodopsin expression in retinal cells. Additionally, transcriptomic analysis indicated that key opsins and genes involved in visual development and phototransduction pathways were markedly up-regulated following brsk2 deletion. This research highlights the importance of brsk2 in early retinal circuit development and its potential implications for understanding sensory processing deficits in neurodevelopmental disorders. By linking BRSK2 to specific sensory phenotypes, this study addresses a critical gap in knowledge regarding the mechanisms underlying sensory abnormalities in ASD and related conditions. Full article
(This article belongs to the Special Issue Aquatic Organisms Models Dedicated to Disease)
Show Figures

Figure 1

18 pages, 5508 KB  
Article
Opn3 Drives Blue-Light-Induced Reduction in Lipid Droplets and Antiviral Defense
by Qifan Wu, Huiping Liu, Hongcui Liang, Xinyi Jiang, Yingqiao Qin, Shaomei Liang, Jingjing Wang and Kunpeng Liu
Biomolecules 2026, 16(1), 109; https://doi.org/10.3390/biom16010109 - 8 Jan 2026
Viewed by 206
Abstract
Abnormal lipid metabolism is a key feature of many diseases. Therefore, investigating its underlying mechanisms is of great importance. Recently, blue light has shown promise as a drug-free way to influence energy metabolism, relying on the light-sensitive protein Opsin 3 (Opn3). This study [...] Read more.
Abnormal lipid metabolism is a key feature of many diseases. Therefore, investigating its underlying mechanisms is of great importance. Recently, blue light has shown promise as a drug-free way to influence energy metabolism, relying on the light-sensitive protein Opsin 3 (Opn3). This study aimed to investigate the effects of blue light irradiation on lipid droplet degradation in cells and its molecular mechanism, while also evaluating its potential antiviral effects. The results demonstrate that exposure to 470–480 nm blue light significantly reduced oleic-acid-induced intracellular lipid droplet accumulation and decreased triglyceride and total cholesterol levels, an effect dependent on the Opn3. It was found that blue light affects the Pparα signaling pathway through Opn3, and, at the same time, blue light and Opn3 promote autophagy mediated by p62 protein, thereby cooperatively regulating lipid droplet degradation. In Opn3 knockout cells, blue-light-induced lipid droplet degradation, nuclear accumulation of Pparα, and autophagic effects were all suppressed. Additionally, the study unexpectedly observed that blue light, via Opn3, significantly suppressed the replication of VSV, H1N1 and EMCV and alleviated virus-induced cell death and inflammatory responses. This study reveals the critical role of the blue light–Opn3-Pparα/p62 axis in regulating lipid droplet degradation in hepatocytes and identifies a novel antiviral function of Opn3-mediated blue light exposure. These findings provide a new theoretical basis and potential targets for innovative therapeutic strategies against metabolic diseases and viral infections. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

10 pages, 265 KB  
Review
Optogenetics as a Novel Therapeutic Approach for Ocular Disease
by Enzo Maria Vingolo, Simona Mascolo, Mattia Calabro, Filippo Miccichè and Mirko Barresi
J. Clin. Transl. Ophthalmol. 2025, 3(4), 21; https://doi.org/10.3390/jcto3040021 - 20 Oct 2025
Viewed by 2786
Abstract
Optogenetics is a field that emerged with the goal of studying the physiology of nerve cells by selectively expressing opsins—channel proteins that can be activated by light exposure. Once the methodology was established, several research groups sought to express these proteins in damaged [...] Read more.
Optogenetics is a field that emerged with the goal of studying the physiology of nerve cells by selectively expressing opsins—channel proteins that can be activated by light exposure. Once the methodology was established, several research groups sought to express these proteins in damaged nerve tissue to restore proper signal transmission. Over the years, numerous efforts have been made to restore vision in patients with chronic degenerative diseases, particularly retinitis pigmentosa, with clinical trials yielding encouraging results. However, significant challenges remain, such as the difficulty of delivering the signal to specific retinal cells and the complexity of replicating the physiological activation of the target cells. As research continues, optogenetics remains a promising yet evolving field. This review aims to highlight the therapeutic advantages of optogenetics over currently available strategies and to promote further scientific exploration of this emerging discipline. Full article
18 pages, 1009 KB  
Review
Optogenetics: A Novel Therapeutic Avenue for Age-Related Macular Degeneration
by Pier Luigi Grenga, Chiara Ciancimino, Alessandro Meduri and Serena Fragiotta
Biomolecules 2025, 15(9), 1286; https://doi.org/10.3390/biom15091286 - 5 Sep 2025
Cited by 1 | Viewed by 2185
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in the elderly, characterized by progressive degeneration of the retinal pigment epithelium (RPE) and photoreceptors in the macula. Current treatment options primarily focus on slowing disease progression in neovascular AMD, while [...] Read more.
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in the elderly, characterized by progressive degeneration of the retinal pigment epithelium (RPE) and photoreceptors in the macula. Current treatment options primarily focus on slowing disease progression in neovascular AMD, while effective therapies for dry AMD remain limited. Optogenetics, a revolutionary technique utilizing light-sensitive proteins (opsins) to control the activity of genetically targeted cells, has emerged as a promising therapeutic strategy for restoring vision in retinal degenerative diseases. In retinal disease models, adeno-associated viruses (AAVs) serve as delivery vectors via intravitreal or subretinal injections. This review explores the principles of optogenetics, its application in preclinical AMD models, and the potential for clinical translation of this approach. We discuss the various optogenetic tools, delivery methods, and the challenges and future directions in harnessing this technology to combat AMD-related vision loss. Full article
Show Figures

Figure 1

15 pages, 6537 KB  
Article
Txnip/Trx Is a Potential Element in Regulating O-GlcNAc Modification in Photoreceptors to Alleviate Diabetic Retinopathy
by Laraib Imdad, Shengnan Xu, Yulang Meng, Kaimin Bao, Wenkang Dong, Xuanya Yin, Yujie Tong, Wei Zhang, Xiang Ren and Li Kong
Int. J. Mol. Sci. 2025, 26(11), 5369; https://doi.org/10.3390/ijms26115369 - 4 Jun 2025
Cited by 1 | Viewed by 1405
Abstract
Hyperglycemia is a key factor in diabetic retinopathy which leads to blindness. O-linked-N-acetylglucosamine (O-GlcNAc) modification changes are linked to various diseases, including diabetic retinopathy. This research aims to study the roles of Txnip and Trx in influencing O-GlcNAc in photoreceptor cells during diabetic [...] Read more.
Hyperglycemia is a key factor in diabetic retinopathy which leads to blindness. O-linked-N-acetylglucosamine (O-GlcNAc) modification changes are linked to various diseases, including diabetic retinopathy. This research aims to study the roles of Txnip and Trx in influencing O-GlcNAc in photoreceptor cells during diabetic retinopathy. A diabetic mouse model and 661w cells, after exposure to high glucose, were employed as models. H&E staining and ERG were used to evaluate the morphology and function of the retina, respectively. Western blotting was used to analyze protein expression, a TUNEL assay was used to measure apoptosis, and a co-immunoprecipitation (CO-IP) assay was used to detect the interactions of protein. In diabetic mice, electroretinogram (ERG) amplitude wave, retinal thickness, and body weight decreased. Glial fibrillary acidic protein (GFAP), Iba1 expression, and blood glucose level increased. In vitro, the percentage of apoptotic cell, Bax, and caspase3 levels increased, and Bcl2 decreased in 661w cells under high-glucose conditions. Moreover, Txnip expression was upregulated, while Trx was downregulated. Additionally, a Western blot analysis revealed that high-glucose exposure led to increased O-GlcNAc modification both in vivo and in vitro. The CO-IP results show that Txnip interacted with O-GlcNAc modifications. S-opsin expression was significantly downregulated in vitro under high-glucose conditions. Knockdown Txnip or upregulation Trx could reverse or delay apoptosis in 661w cells under hyperglycemic conditions. Txnip/Trx is a potential element in regulating photoreceptor apoptosis in diabetic retinopathy. The underlying mechanism is linked to regulation of O-GlcNAc modification in photoreceptor cells in DR. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

12 pages, 2136 KB  
Article
Identification of a Non-Retinoid Opsin Ligand Through Pharmacophore-Guided Virtual Screening—A Novel Potential Rhodopsin-Stabilizing Compound
by Miriana Di Stefano, Maria Ghilardi, Clarissa Poles, Lisa Piazza, Gian Carlo Demontis, Giulio Poli, Tiziano Tuccinardi and Marco Macchia
Molecules 2025, 30(11), 2328; https://doi.org/10.3390/molecules30112328 - 26 May 2025
Viewed by 1193
Abstract
Rhodopsin, a G-protein-coupled receptor (GPCR) comprising the protein opsin covalently linked to the chromophore 11-cis retinal, is pivotal in visual phototransduction. Mutations in the gene encoding rhodopsin (RHO) can cause opsin misfolding or reduce its stability, resulting in retinal degenerative disorders such as [...] Read more.
Rhodopsin, a G-protein-coupled receptor (GPCR) comprising the protein opsin covalently linked to the chromophore 11-cis retinal, is pivotal in visual phototransduction. Mutations in the gene encoding rhodopsin (RHO) can cause opsin misfolding or reduce its stability, resulting in retinal degenerative disorders such as retinitis pigmentosa (RP). Current therapeutic strategies employing retinoid-based chaperones partially rescue the folding and trafficking of mutant rhodopsin, but are limited by inherent toxicity and instability due to photoinduced isomerization. In the present work, a pharmacophore-based virtual screening protocol combined with molecular docking and molecular dynamics simulations was employed, leading to the identification of a novel non-retinoid opsin ligand that can potentially act as a pharmacological chaperone. Biological validation confirmed that the compound VS1 binds opsin effectively, representing a valuable starting point for structure-based optimization studies aimed at identifying new opsin stabilizers. Full article
(This article belongs to the Special Issue Exploring Bioactive Organic Compounds for Drug Discovery, 2nd Edition)
Show Figures

Figure 1

13 pages, 3592 KB  
Article
The Beneficial Role of the Thyroid Hormone Receptor Beta 2 (thrb2) in Facilitating the First Feeding and Subsequent Growth in Medaka as Fish Larval Model
by Jiaqi Wu, Ke Lu, Ruipeng Xie, Chenyuan Zhu, Qiyao Luo and Xu-Fang Liang
Cells 2025, 14(5), 386; https://doi.org/10.3390/cells14050386 - 6 Mar 2025
Cited by 1 | Viewed by 1413
Abstract
During the early growth stages of fish larvae, there are significant challenges to their viability, so improving their visual environment is essential to promoting their growth and survival. Following the successful knockout of thyroid hormone receptor beta 2 (thrb2) using Clustered [...] Read more.
During the early growth stages of fish larvae, there are significant challenges to their viability, so improving their visual environment is essential to promoting their growth and survival. Following the successful knockout of thyroid hormone receptor beta 2 (thrb2) using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology, there was an increase in the expression of UV opsin (short-wave-sensitive 1, sws1), while the expression of other cone opsins was significantly decreased. Further analysis of the retinal structure demonstrated that the thrb2 knockout resulted in an increased lens thickness and a decreased thickness of the ganglion cell layer (GCL), outer plexiform layer (OPL), and outer nuclear layer (ONL) in the retina. The slowing down of swimming speed under light conditions in thrb2−/− may be related to the decreased expression of phototransduction-related genes such as G protein-coupled receptor kinase 7a (grk7a), G protein-coupled receptor kinase 7b (grk7b), and phosphodiesterase 6c (pde6c). Notably, thrb2−/− larvae exhibited a significant increase in the amount and proportion of first feeding, and their growth rate significantly exceeded that of wild-type controls during the week after feeding. This observation suggests that although the development of the retina may be somewhat affected, thrb2−/− larvae show positive changes in feeding behaviour and growth rate, which may be related to their enhanced ability to adapt to their environment. These results provide novel insights into the function of the thrb2 gene in the visual system and behaviour and may have implications in areas such as fish farming and genetic improvement. Full article
Show Figures

Graphical abstract

12 pages, 3141 KB  
Article
Transcriptomic Characterization of Phototransduction Genes of the Asian Citrus Psyllid Diaphorina citri Kuwayama
by Shao-Ping Chen, Xue-Mei Chu, Mei-Xiang Chi, Jian Zhao and Rong-Zhou Qiu
Insects 2024, 15(12), 966; https://doi.org/10.3390/insects15120966 - 4 Dec 2024
Cited by 1 | Viewed by 1679
Abstract
Opsin plays a regulatory role in phototaxis of Diaphorina citri, functioning as the initial station in the phototransduction cascade. Our study aimed to explore the D. citri phototransduction pathway to identify elicitors that may enhance D. citri phototaxis in the future. The [...] Read more.
Opsin plays a regulatory role in phototaxis of Diaphorina citri, functioning as the initial station in the phototransduction cascade. Our study aimed to explore the D. citri phototransduction pathway to identify elicitors that may enhance D. citri phototaxis in the future. The RNAi technique was employed to inhibit LW-opsin gene expression, followed by RNA-Seq analysis to identify phototransduction genes. Finally, RT-qPCR was performed to validate whether genes in the phototransduction pathway were affected by the inhibition of LW-opsin expression. A total of 87 genes were identified within the transcriptome as involved in phototransduction based on KEGG functional annotation. Of these, 71 genes were identified as enriched in the phototransduction-fly pathway. These genes encode key proteins in this process, including Gqα, Gqβ, Gqγ, phospholipase C β (PLCβ), the cation channel transient receptor potential (TRP), and TRP-like (TRPL), among others. Moreover, the LOC103513214 (Gqβ) and LOC103518375 (ninaC) genes exhibited reduced expression when LW-opsin gene expression was suppressed. Our results provide a basis for further investigation of phototransduction in D. citri. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

34 pages, 1932 KB  
Review
Optogenetics and Targeted Gene Therapy for Retinal Diseases: Unravelling the Fundamentals, Applications, and Future Perspectives
by Merve Kulbay, Nicolas Tuli, Arjin Akdag, Shigufa Kahn Ali and Cynthia X. Qian
J. Clin. Med. 2024, 13(14), 4224; https://doi.org/10.3390/jcm13144224 - 19 Jul 2024
Cited by 5 | Viewed by 9658
Abstract
With a common aim of restoring physiological function of defective cells, optogenetics and targeted gene therapies have shown great clinical potential and novelty in the branch of personalized medicine and inherited retinal diseases (IRDs). The basis of optogenetics aims to bypass defective photoreceptors [...] Read more.
With a common aim of restoring physiological function of defective cells, optogenetics and targeted gene therapies have shown great clinical potential and novelty in the branch of personalized medicine and inherited retinal diseases (IRDs). The basis of optogenetics aims to bypass defective photoreceptors by introducing opsins with light-sensing capabilities. In contrast, targeted gene therapies, such as methods based on CRISPR-Cas9 and RNA interference with noncoding RNAs (i.e., microRNA, small interfering RNA, short hairpin RNA), consists of inducing normal gene or protein expression into affected cells. Having partially leveraged the challenges limiting their prompt introduction into the clinical practice (i.e., engineering, cell or tissue delivery capabilities), it is crucial to deepen the fields of knowledge applied to optogenetics and targeted gene therapy. The aim of this in-depth and novel literature review is to explain the fundamentals and applications of optogenetics and targeted gene therapies, while providing decision-making arguments for ophthalmologists. First, we review the biomolecular principles and engineering steps involved in optogenetics and the targeted gene therapies mentioned above by bringing a focus on the specific vectors and molecules for cell signalization. The importance of vector choice and engineering methods are discussed. Second, we summarize the ongoing clinical trials and most recent discoveries for optogenetics and targeted gene therapies for IRDs. Finally, we then discuss the limits and current challenges of each novel therapy. We aim to provide for the first time scientific-based explanations for clinicians to justify the specificity of each therapy for one disease, which can help improve clinical decision-making tasks. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

15 pages, 7752 KB  
Article
Sws2 Gene Positively Regulates Melanin Production in Plectropomus leopardus Skin via Direct Regulation of the Synthesis of Retinoic Acid
by Haoran Yu, Huapeng Chen, Xinxin Wang, Yichun Zhang, Yafang Tan, Lei Wang, Junlong Sun, Jian Luo and Feibiao Song
Int. J. Mol. Sci. 2024, 25(14), 7513; https://doi.org/10.3390/ijms25147513 - 9 Jul 2024
Cited by 4 | Viewed by 2145
Abstract
Opsins are a class of transmembrane proteins encoded by opsin genes, and they play a variety of functional roles. Short wavelength-sensitive opsin 2 (sws2), one of the five classes of visual opsin genes, mainly senses blue light. Previous research has indicated [...] Read more.
Opsins are a class of transmembrane proteins encoded by opsin genes, and they play a variety of functional roles. Short wavelength-sensitive opsin 2 (sws2), one of the five classes of visual opsin genes, mainly senses blue light. Previous research has indicated that sws2 is essential for melanocyte formation in fish; however, its specific role in skin color differentiation remains to be elucidated. Here, we identified the sws2 gene in a prized reef-dwelling fish, Plectropomus leopardus. The full-length P. leopardus sws2 gene encodes a protein consisting of 351 amino acids, and exhibits substantial homology with other fish species. The expression of the sws2 gene was widespread across P. leopardus tissues, with high expression in eye and skin tissues. Through immunohistochemistry and in situ hybridization analyses, we discovered that the sws2 gene was primarily localized in the rod and cone cells of the retina, and epidermal cells of the skin. Furthermore, dsRNA interference was used for sws2 gene knockdown in living P. leopardus to elucidate its function in skin color differentiation. Black-color-related genes, melanin contents, and tyrosinase activity in the skin significantly decreased after sws2 knockdown (p < 0.05), but red-color-related genes and carotenoid and lutein contents significantly increased (p < 0.05). Retinoic acid injection produced the opposite results. Our results suggested that the sws2 gene influences P. leopardus skin color regulation by affecting vitamin synthesis and melanin-related gene expression levels. This study establishes a foundation for elucidating the molecular mechanisms by which sws2 regulates melanocyte formation in fish skin. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 4499 KB  
Article
Investigating the Influence of Varied Light-Emitting Diode (LED) Wavelengths on Phototactic Behavior and Opsin Genes in Vespinae
by Xiaojuan Huang, Tong Zhou, Hasin Ullah, Danyang Zhu, Yan Tang, Hongli Xu, Hang Wang and Jiangli Tan
Animals 2024, 14(11), 1543; https://doi.org/10.3390/ani14111543 - 23 May 2024
Cited by 1 | Viewed by 1824
Abstract
The phototactic behavior of insects is commonly used to manage pest populations in practical production. However, this elusive behavior is not yet fully understood. Investigating whether the opsin genes play a crucial role in phototaxis is an intriguing topic. Vespinae (Hymenoptera: Vespidae) are [...] Read more.
The phototactic behavior of insects is commonly used to manage pest populations in practical production. However, this elusive behavior is not yet fully understood. Investigating whether the opsin genes play a crucial role in phototaxis is an intriguing topic. Vespinae (Hymenoptera: Vespidae) are a common group of social wasps that are closely associated with human activities. Efficiently controlling wasp populations while maintaining ecological balance is a pressing global challenge that still has to be resolved. This research aims to explore the phototactic behavior and key opsin genes associated with Vespinae. We found significant differences in the photophilic rates of Vespula germanica and Vespa analis under 14 different light conditions, indicating that their phototactic behavior is rhythmic. The results also showed that the two species exhibited varying photophilic rates under different wavelengths of light, suggesting that light wavelength significantly affects their phototactic behavior. Additionally, the opsin genes of the most aggressive hornet, Vespa basalis, have been sequenced. There are only two opsin genes, one for UV light and the other for blue light, and Vespa basalis lacks long-wavelength visual proteins. However, they exhibit peak phototaxis for long-wavelength light and instead have the lowest phototaxis for UV light. This suggests that the visual protein genes have a complex regulatory mechanism for phototactic behavior in Vespinae. Additionally, visual protein sequences have a high degree of homology among Hymenoptera. Despite the hypotheses put forward by some scholars regarding phototaxis, a clear and complete explanation of insect phototaxis is still lacking to date. Our findings provide a strong theoretical basis for further investigation of visual expression patterns and phototactic mechanisms in Vespinae. Full article
(This article belongs to the Section Human-Animal Interactions, Animal Behaviour and Emotion)
Show Figures

Figure 1

34 pages, 2951 KB  
Perspective
Retinoid Synthesis Regulation by Retinal Cells in Health and Disease
by Massimiliano Andreazzoli, Biancamaria Longoni, Debora Angeloni and Gian Carlo Demontis
Cells 2024, 13(10), 871; https://doi.org/10.3390/cells13100871 - 18 May 2024
Cited by 4 | Viewed by 4319
Abstract
Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis [...] Read more.
Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

18 pages, 2454 KB  
Article
Dendrobium nobile Polysaccharide Attenuates Blue Light-Induced Injury in Retinal Cells and In Vivo in Drosophila
by Wei-Hsiang Hsu, Chanikan Sangkhathat, Mei-Kuang Lu, Wei-Yong Lin, Hsin-Ping Liu and Yun-Lian Lin
Antioxidants 2024, 13(5), 603; https://doi.org/10.3390/antiox13050603 - 14 May 2024
Cited by 7 | Viewed by 3342
Abstract
Blue light is the higher-energy region of the visible spectrum. Excessive exposure to blue light is known to induce oxidative stress and is harmful to the eyes. The stems of Dendrobium nobile Lindl. (Orchidaceae), named Jinchaishihu, have long been used in traditional Chinese [...] Read more.
Blue light is the higher-energy region of the visible spectrum. Excessive exposure to blue light is known to induce oxidative stress and is harmful to the eyes. The stems of Dendrobium nobile Lindl. (Orchidaceae), named Jinchaishihu, have long been used in traditional Chinese medicine (TCM) for nourishing yin, clearing heat, and brightening the eyes. The polysaccharide is one of the major components in D. nobile. However, the effect on ocular cells remains unclear. This study aimed to investigate whether the polysaccharide from D. nobile can protect the eyes from blue light-induced injury. A crude (DN-P) and a partially purified polysaccharide (DN-PP) from D. nobile were evaluated for their protective effects on blue light-induced damage in ARPE-19 and 661W cells. The in vivo study investigated the electroretinographic response and the expression of phototransduction-related genes in the retinas of a Drosophila model. The results showed that DN-P and DN-PP could improve blue light-induced damage in ARPE-19 and 661W cells, including cell viability, antioxidant activity, reactive oxygen species (ROS)/superoxide production, and reverse opsin 3 protein expression in a concentration-dependent manner. The in vivo study indicated that DN-P could alleviate eye damage and reverse the expression of phototransduction-related genes, including ninaE, norpA, Gαq, Gβ76C, Gγ30A, TRP, and TRPL, in a dose-dependent manner in blue light-exposed Drosophila. In conclusion, this is the first report demonstrating that D. nobile polysaccharide pretreatment can protect retinal cells and retinal photoreceptors from blue light-induced damage. These results provide supporting evidence for the beneficial potential of D. nobile in preventing blue light-induced eye damage and improving eyesight. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

12 pages, 1876 KB  
Article
Differential Photosensitivity of Fibroblasts Obtained from Normal Skin and Hypertrophic Scar Tissues
by Junya Kusumoto, Masaya Akashi, Hiroto Terashi and Shunsuke Sakakibara
Int. J. Mol. Sci. 2024, 25(4), 2126; https://doi.org/10.3390/ijms25042126 - 9 Feb 2024
Cited by 4 | Viewed by 2474
Abstract
It is unclear whether normal human skin tissue or abnormal scarring are photoreceptive. Therefore, this study investigated photosensitivity in normal skin tissue and hypertrophic scars. The expression of opsins, which are photoreceptor proteins, in normal dermal fibroblasts (NDFs) and hypertrophic scar fibroblasts (HSFs) [...] Read more.
It is unclear whether normal human skin tissue or abnormal scarring are photoreceptive. Therefore, this study investigated photosensitivity in normal skin tissue and hypertrophic scars. The expression of opsins, which are photoreceptor proteins, in normal dermal fibroblasts (NDFs) and hypertrophic scar fibroblasts (HSFs) was examined. After exposure to blue light (BL), changes in the expression levels of αSMA and clock-related genes, specifically PER2 and BMAL1, were examined in both fibroblast types. Opsins were expressed in both fibroblast types, with OPN3 exhibiting the highest expression levels. After peripheral circadian rhythm disruption, BL induced rhythm formation in NDFs. In contrast, although HSFs showed changes in clock-related gene expression levels, no distinct rhythm formation was observed. The expression level of αSMA was significantly higher in HSFs and decreased to the same level as that in NDFs upon BL exposure. When OPN3 knocked-down HSFs were exposed to BL, the reduction in αSMA expression was inhibited. This study showed that BL exposure directly triggers peripheral circadian synchronization in NDFs but not in HSFs. OPN3-mediated BL exposure inhibited HSFs. Although the current results did not elucidate the relationship between peripheral circadian rhythms and hypertrophic scars, they show that BL can be applied for the prevention and treatment of hypertrophic scars and keloids. Full article
(This article belongs to the Special Issue Molecular Advances in Skin Diseases 2.0)
Show Figures

Figure 1

21 pages, 5473 KB  
Review
Fluorescence of the Retinal Chromophore in Microbial and Animal Rhodopsins
by Dmitrii M. Nikolaev, Andrey A. Shtyrov, Sergey Yu. Vyazmin, Andrey V. Vasin, Maxim S. Panov and Mikhail N. Ryazantsev
Int. J. Mol. Sci. 2023, 24(24), 17269; https://doi.org/10.3390/ijms242417269 - 8 Dec 2023
Cited by 5 | Viewed by 2651
Abstract
Fluorescence of the vast majority of natural opsin-based photoactive proteins is extremely low, in accordance with their functions that depend on efficient transduction of absorbed light energy. However, several recently proposed classes of engineered rhodopsins with enhanced fluorescence, along with the discovery of [...] Read more.
Fluorescence of the vast majority of natural opsin-based photoactive proteins is extremely low, in accordance with their functions that depend on efficient transduction of absorbed light energy. However, several recently proposed classes of engineered rhodopsins with enhanced fluorescence, along with the discovery of a new natural highly fluorescent rhodopsin, NeoR, opened a way to exploit these transmembrane proteins as fluorescent sensors and draw more attention to studies on this untypical rhodopsin property. Here, we review the available data on the fluorescence of the retinal chromophore in microbial and animal rhodopsins and their photocycle intermediates, as well as different isomers of the protonated retinal Schiff base in various solvents and the gas phase. Full article
Show Figures

Figure 1

Back to TopTop