Dendrobium nobile Polysaccharide Attenuates Blue Light-Induced Injury in Retinal Cells and In Vivo in Drosophila
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Herbal Materials
2.3. Preparation of Crude Polysaccharide
2.4. Determination of Homogeneity of DN-P via Size-Exclusion Chromatography
2.5. Purification of DN-P through Gel Filtration Column Chromatography
2.6. Determination of the Monosaccharide Composition of Purified Polysaccharides
2.7. Cell Culture
2.8. Time Course Study of Blue Light Exposure in ARPE-19 and 661W Cells
2.9. DN-P and DN-PP Protective Assay
2.10. Cell Viability Assay
2.11. Measurements of ROS and Superoxide Generations, Antioxidant Activity, and Inflammatory Cytokines
2.12. Western Blotting Analysis
2.13. Drosophila Model and Eye-Protective Experiments
2.13.1. Fly Strain and Maintenance
2.13.2. ERG Assay
2.14. Quantitative Polymerase Chain Reaction (qPCR)
2.15. Statistical Analysis
3. Results
3.1. Characterization of Crude (DN-P) and Purified (DN-PP) Polysaccharides
3.2. Blue Light-Induced ARPE-19 and 661W Cell Damage
3.3. DN-P and DN-PP on Blue Light-Induced ARPE-19 and 661W Cell Damage
3.4. DN-P and DN-PP on Blue Light-Induced Antioxidant Activity in ARPE-19 and 661W Cells
3.5. DN-P and DN-PP on Blue Light-Induced Opsin Expression in 661W Cells
3.6. DN-P Pretreatment on Blue Light-Induced Retinal Damage in Fly Eyes, Evaluated via ERG Analysis
3.7. DN-P on Phototransduction-Related Gene Expression in Drosophila Retina
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Full Name | Abbreviation |
Age-related macular degeneration | AMD |
Average molecular weight | Mn |
Catalase | CAT |
Dendrobium | D. |
Dulbecco’s modified Eagle’s medium | DMEM |
Crude polysaccharide of D. nobile | DN-P |
Purified polysaccharide of D. nobile | DN-PP |
Electroretinogram | ERG |
Fetal bovine serum | FBS |
G-protein-coupled receptor | GPCR |
neither inactivation nor afterpotential E | ninaE |
Reactive oxygen species | ROS |
Superoxide dismutase | SOD |
Retinal pigment epithelial | RPE |
Size-exclusion chromatography | SEC |
Traditional Chinese medicine | TCM |
High-performance anion exchange column chromatography | HPAEC |
Transient receptor potential | Trp |
Transient receptor potential-like protein | Trpl |
References
- Organisciak, D.T.; Vaughan, D.K. Retinal light damage: Mechanisms and protection. Prog. Retin. Eye Res. 2010, 29, 113–134. [Google Scholar] [CrossRef] [PubMed]
- Tosini, G.; Ferguson, I.; Tsubota, K. Effects of blue light on the circadian system and eye physiology. Mol. Vis. 2016, 22, 61–72. [Google Scholar] [PubMed]
- Ouyang, X.; Yang, J.; Hong, Z.; Wu, Y.; Xie, Y.; Wang, G. Mechanisms of blue light-induced eye hazard and protective measures: A review. Biomed. Pharmacother. 2020, 130, 110577. [Google Scholar] [CrossRef] [PubMed]
- Cougnard-Gregoire, A.; Merle, B.M.J.; Aslam, T.; Seddon, J.M.; Aknin, I.; Klaver, C.C.; Garhöfer, G.; Layana, A.G.; Minnella, A.M.; Silva, R.; et al. Blue light exposure: Ocular hazards and prevention—A narrative review. Ophthalmol. Ther. 2023, 12, 755–788. [Google Scholar] [CrossRef]
- Klapper, S.D.; Swiersy, A.; Bamberg, E.; Busskamp, V. Biophysical properties of optogenetic tools and their application for vision restoration approaches. Front. Syst. Neurosci. 2016, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H. Simple Anatomy of the Retina. 2005. Available online: https://www.ncbi.nlm.nih.gov/books/NBK11533/ (accessed on 1 January 2022). [PubMed]
- Brown, E.E.; DeWeerd, A.J.; Ildefonso, C.J.; Lewin, A.S.; Ash, J.D. Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors. Redox Biol. 2019, 24, 101201. [Google Scholar] [CrossRef]
- Athanasiou, D.; Aguila, M.; Bellingham, J.; Li, W.; McCulley, C.; Reeves, P.J.; Cheetham, M.E. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog. Retin. Eye Res. 2018, 62, 1–23. [Google Scholar] [CrossRef]
- Grimm, C.; Wenzel, A.; Williams, T.P.; Rol, P.O.; Hafezi, F.; Remé, C.E. Rhodopsin-mediated blue-light damage to the rat retina: Effect of photoreversal of bleaching. Investig. Ophthalmol. Vis. Sci. 2001, 42, 497–505. [Google Scholar]
- Chen, W.J.; Wu, C.; Xu, Z.; Kuse, Y.; Hara, H.; Duh, E.J. Nrf2 protects photoreceptor cells from photo-oxidative stress induced by blue light. Exp. Eye Res. 2017, 154, 151–158. [Google Scholar] [CrossRef]
- Cheng, K.C.; Hsu, Y.T.; Liu, W.; Huang, H.L.; Chen, L.Y.; He, C.X.; Sheu, S.J.; Chen, K.J.; Lee, P.Y.; Lin, Y.H.; et al. The role of oxidative stress and autophagy in blue-light-induced damage to the retinal pigment epithelium in zebrafish in vitro and in vivo. Int. J. Mol. Sci. 2021, 22, 1338. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Gu, X.; Jeong, K.W. Photoactivation of N-retinylidene-N-retinyl-ethanolamine compromises autophagy in retinal pigmented epithelial cells. Food Chem. Toxicol. 2019, 131, 110555. [Google Scholar] [CrossRef] [PubMed]
- Otsu, W.; Ishida, K.; Nakamura, S.; Shimazawa, M.; Tsusaki, H.; Hara, H. Blue light-emitting diode irradiation promotes transcription factor EB-mediated lysosome biogenesis and lysosomal cell death in murine photoreceptor-derived cells. Biochem. Biophys. Res. Commun. 2020, 526, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Seregard, S.; Algvere, P.V. Photochemical damage of the retina. Surv. Ophthalmol. 2006, 51, 461–481. [Google Scholar] [CrossRef] [PubMed]
- Pharmacopoedia Commission of PRC. Pharmacopoeia of the P.V. People’s Republic of China; China Medical Science Press: Beijing, China, 2020; Volume 1, pp. 85–87. [Google Scholar]
- Nie, X.; Chen, Y.; Li, W.; Lu, Y. Anti-aging properties of Dendrobium nobile Lindl.: From molecular mechanisms to potential treatments. J. Ethnophrmacol. 2021, 257, 112839. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Lin, Y.; Farag, M.A.; Li, Z.; Shao, P. Dendrobium as a new natural source of bioactive for the prevention and treatment of digestive tract diseases: A comprehensive review with future perspectives. Phytomedicine 2023, 114, 154784. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Han, Q.B.; Li, S.L.; Chen, X.J.; Wang, X.N.; Zhao, Z.Z.; Chen, H.B. Chemistry, bioactivity and quality control of Dendrobium, a commonly used tonic herb in traditional Chinese medicine. Phytochem. Rev. 2013, 12, 341–367. [Google Scholar] [CrossRef]
- Fan, C.; Sun, X.; Wang, X.; Yu, H. Therapeutic potential of the chemical composition of Dendrobium nobile Lindl. Front. Pharmacol. 2023, 14, 1163830. [Google Scholar] [CrossRef]
- Li, P.Y.; Li, L.; Wang, Y.Z. Traditional uses, chemical compositions and pharmacological activities of Dendrobium: A review. J. Ethnopharmacol. 2023, 310, 116382. [Google Scholar] [CrossRef] [PubMed]
- Mou, Z.; Zhao, Y.; Ye, F.; Shi, Y.; Kennelly, E.J.; Chen, S.; Zhao, D. Identification, biological activities and biosynthetic pathway of Dendrobium alkaloids. Front. Pharmacol. 2021, 12, 605994. [Google Scholar] [CrossRef]
- Xu, X.; Li, Q.; Li, B. Review of research on polysaccharides and dendrobine of Dendrobium nobile Lindl. Res. Rev. J. Bot. Sci. 2017, 6, 54–56. [Google Scholar]
- Zhang, J.H.; Cao, J.X.; Zhu, G.F.; Ye, Q.S.; Li, J.; Wang, Z.H. Polysaccharide and total alkaloid content of Nobile-type Dendrobium. Chin. J. Trop. Crops 2013, 34, 727–731. [Google Scholar]
- Meng, C.W.; He, Y.L.; Peng, C.; Ding, X.J.; Guo, L.; Xiong, L. Picrotoxane sesquiterpenoids from the stems of Dendrobium nobile and their absolute configurations and angiogenesis effect. Fitoterapia 2017, 121, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.H.; Chung, C.P.; Wang, Y.Y.; Kuo, Y.H.; Yeh, C.H.; Lee, I.J.; Lin, Y.L. Dendrobium nobile protects retinal cells from UV-induced oxidative stress damage via Nrf2/HO-1 and MAPK pathways. J. Ethnopharmacol. 2022, 288, 114886. [Google Scholar] [CrossRef]
- Zhang, X.; Tu, F.J.; Yu, H.Y.; Wang, N.L.; Wang, Z.; Yao, X.S. Copacamphane, picrotoxane and cyclocopacamphane sesquiterpenes from Dendrobium nobile. Chem. Pharm. Bull. 2008, 56, 854–857. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.J.; Liu, Z.; Zhang, M.S.; Chen, Y.Z.; Nie, X.Q.; Zhang, J.Y.; He, Y.Q.; Shi, J.S. A new bibenzyl compound from Dendrobium nobile. Acta Pharm. Sin. 2016, 51, 1117–1120. [Google Scholar]
- Chen, H.; Shi, X.; Zhang, L.; Yao, L.; Cen, L.; Li, L.; Lv, Y.; Wei, C. Ultrasonic extraction process of polysaccharides from Dendrobium nobile Lindl.: Optimization, physicochemical properties and anti-inflammatory activity. Foods 2022, 11, 2957. [Google Scholar] [CrossRef]
- Duan, F.P.; Li, Y.S.; Hu, T.Y.; Pan, X.Q.; Ma, F.; Feng, Y.; Qiu, S.Q.; Zheng, Y.Q. Dendrobium nobile protects against ovalbumin-induced allergic rhinitis by regulating intestinal flora and suppressing lung inflammation. Chin. J. Nat. Med. 2022, 20, 443–445. [Google Scholar] [CrossRef] [PubMed]
- Luo, A.; He, X.; Zhou, S.; Fan, Y.; He, T.; Chun, Z. In vitro antioxidant activities of a 614 water-soluble polysaccharide derived from Dendrobium nobile Lindl. extracts. Int. J. Biol. Macromol. 2009, 45, 359–363. [Google Scholar] [CrossRef]
- Luo, A.; He, X.; Zhou, S.; Fan, Y.; Chun, Z. Purification, composition analysis and antioxidant activity of the polysaccharides from Dendrobium nobile Lindl. Carbohydr. Polym. 2010, 79, 1014–1019. [Google Scholar] [CrossRef]
- Pan, L.H.; Li, X.F.; Wang, M.N.; Zha, X.Q.; Yang, X.F.; Liu, Z.J.; Luo, Y.B.; Luo, J.P. Comparison of hypoglycemic and antioxidative effects of polysaccharides from four 621 different Dendrobium species. Int. J. Biol. Macromol. 2014, 64, 420–427. [Google Scholar] [CrossRef]
- Ye, Q.; Qin, G.; Zhao, W. Immunomodulatory sesquiterpene glycosides from Dendrobium nobile. Phytochemistry 2002, 61, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, H.; Mei, N.; Ma, C.; Lou, Z.; Lv, W.; He, G. Protective effects of polysaccharide from Dendrobium nobile against ethanol-induced gastric damage in rats. Int. J. Biol. Macromol. 2018, 107, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.Z.; Cao, L.; Luo, D.; Ju, L.S.; Yang, J.J.; Xu, X.Y.; Yu, Y.P. Dendrobium polysaccharides attenuate cognitive impairment in senescence accelerated mouse prone 8 mice via modulation of microglial activation. Brain Res. 2019, 1704, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cakova, V.; Bonte, F.; Lobstein, A. Dendrobium: Sources of active ingredients to treat age-related pathologies. Aging Dis. 2017, 8, 827–849. [Google Scholar] [CrossRef]
- Wang, J.H.; Luo, J.P.; Zha, X.Q.; Feng, B.J. Comparison of antitumor activities of 30 different polysaccharide fractions from the stems of Dendrobium nobile Lindl. Carbohydr. Polym. 2010, 79, 114–118. [Google Scholar] [CrossRef]
- Ugur, B.; Chen, K.; Bellen, H.J. Drosophila tools and assays for the study of human diseases. Dis. Models Mech. 2016, 9, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Stavenga, D.G.; Arikawa, K. One rhodopsin per photoreceptor: Iro-C genes break the rule. PLoS Biol. 2008, 6, e115. [Google Scholar] [CrossRef] [PubMed]
- Hardie, R.C.; Juusola, M. Phototransduction in Drosophila. Curr. Opin. Neurobiol. 2015, 34, 37–45. [Google Scholar] [CrossRef]
- Montell, C. Visual transduction in Drosophila. Annu. Rev. Cell Dev. Biol. 1999, 15, 231–268. [Google Scholar] [CrossRef]
- Ziegler, A.B.; Ménagé, C.; Grégoire, S.; Garcia, T.; Ferveur, J.F.; Bretillon, L.; Grosjean, Y. Lack of dietary polyunsaturated fatty acids causes synapse dysfunction in the drosophila visual system. PLoS ONE 2015, 10, e0135353. [Google Scholar] [CrossRef]
- Chen, X.; Hall, H.; Simpson, J.P.; Leon-Salas, W.D.; Ready, D.F.; Weake, V.M. Cytochrome b5 protects photoreceptors from light stress-induced lipid peroxidation and retinal degeneration. NPJ Aging Mech. Dis. 2017, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.J.; Morgan, J.I.; Merigan, W.H.; Sliney, D.H.; Sparrow, J.R.; Williams, D.R. The susceptibility of the retina to photochemical damage from visible light. Prog. Retin. Eye Res. 2012, 31, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.K.; Chang, C.C.; Chao, C.H.; Hsu, Y.C. Structural changes, and anti-inflammatory, anti-cancer potential of polysaccharides from multiple processing of Rehmannia glutinosa. Int. J. Biol. Macromol. 2022, 206, 621–632. [Google Scholar] [CrossRef]
- Kuse, Y.; Ogawa, K.; Tsuruma, K.; Shimazawa, M.; Hara, H. Damage of photoreceptor derived cells in culture induced by light emitting diode-derived blue light. Sci. Rep. 2014, 4, 5223. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.L.; Yu, Y.Z.; Yu, H.H.; Wang, G.F.; Pi, R.B.; Xu, Z.; Zhang, C.; Zhou, W.J.; Li, D.D.; Chen, X.G.; et al. Protective effects of lipoic acid-niacin dimers against blue light-induced oxidative damage to retinal pigment epithelium cells. Int. J. Ophthalmol. 2019, 12, 1262–1271. [Google Scholar] [CrossRef]
- Liu, H.P.; Cheng, J.; Chen, M.Y.; Chuang, T.N.; Dong, J.C.; Liu, C.H.; Lin, W.Y. Neuromuscular, retinal, and reproductive impact of low-dose polystyrene microplastic on Drosophila. Environ. Pollut. 2022, 292, 118455. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.Y.; Liu, C.H.; Cheng, J.; Liu, H.P. Alterations of RNA-binding protein found in neurons in Drosophila neurons and glia influence synaptic transmission and lifespan. Front. Mol. Neurosci. 2022, 15, 1006455. [Google Scholar] [CrossRef] [PubMed]
- Narimatsu, T.; Ozawa, Y.; Miyake, S.; Kubota, M.; Hirasawa, N.; Nagai, N.; Shimmura, S.; Tsubota, K. Disruption of cell-cell junctions and induction of pathological cytokines in the retinal pigment epithelium of light-exposed mice. Retin. Cell Biol. 2013, 54, 4555–4562. [Google Scholar] [CrossRef] [PubMed]
- Shichida, Y.; Matsuyama, T. Evolution of opsins and phototransduction. Philos. Trans. R. Soc. B 2009, 364, 2881–2895. [Google Scholar] [CrossRef]
- Ratnayake, K.; Payton, J.L.; Lakmal, O.H.; Karunarathne, A. Blue light excited retinal intercepts cellular signaling. Sci. Rep. 2018, 8, 10207. [Google Scholar] [CrossRef]
- Tian, Y.; Hu, W.; Tong, H.; Han, J. Phototransduction in Drosophila. Sci. China Life Sci. 2012, 55, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Zuo, S.R.; Luo, J.P. Structural analysis and immuno-stimulating activity of an acidic polysaccharide from the stems of Dendrobium nobile Lindl. Molecules 2017, 22, 611. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.C.; Xiang, J.; Hong, K.; Yi, Y.; Wang, Y.Z.; Lin, J.Q. Accumulation of alkaloids and water-soluble polysaccharides in Dendrobium nobile. Lishizhen. Med. Mater. Medica Res. 2010, 21, 2864–2865. [Google Scholar]
- Yan, S.; Zhao, T.M.; Zhao, X.O.; Xing, J.Y.; Hu, Y.D.; Chun, Z. Comparison of polysaccharide and dendrobine content in Hejiang Dendrobium nobile at different harvesting time. China Pharm. 2018, 29, 73–77. [Google Scholar]
- Li, M.; Trapika, I.G.S.C.; Tang, S.Y.S.; Cho, J.L.; Qi, Y.; Li, C.G.; Li, Y.; Yao, M.; Yang, D.; Liu, B.; et al. Mechanisms and active compounds polysaccharides and bibenzyls of medicinal Dendrobiums for diabetes management. Front. Nutr. 2022, 8, 811870. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Mu, X.; Wu, X.; He, W.; Liu, Y.; Liu, Y.; Deng, J.; Nie, X. Dendrobium nobile Lindl. Polysaccharides protect fibroblasts against UVA-induced photoaging via JNK/c-Jun/MMPs pathway. J. Ethnopharmacol. 2022, 298, 115590. [Google Scholar] [CrossRef] [PubMed]
- Mendrok-Edinger, C.; Campiche, R.; Gadsinski, K.; Schuetz, R. Into the blue: Novel test reveals blue light damage, protection strategies. Cosmet. Toilet. 2018, 133, 12–29. [Google Scholar]
- Wenzel, A.; Grimm, C.; Samardzija, M.; Remé, C.E. Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog. Retin. Eye Res. 2005, 24, 275–306. [Google Scholar] [CrossRef] [PubMed]
- Narimatsu, T.; Negishi, K.; Miyake, S.; Hirasawa, M.; Osada, H.; Kurihara, T.; Tsubota, K.; Ozawa, Y. Blue light-induced inflammatory marker expression in the retinal pigment epithelium-choroid of mice and the protective effect of a yellow intraocular lens material in vivo. Exp. Eye Res. 2015, 132, 48–51. [Google Scholar] [CrossRef]
- Wang, T.; Cheng, J.; Wang, S.; Wang, X.; Jiang, H.; Yang, Y.; Wang, Y.; Zhang, C.; Liang, W.; Feng, H. α-Lipoic acid attenuates oxidative stress and neurotoxicity via the ERK/Akt-dependent pathway in the mutant hSOD1 related Drosophila model and the NSC34 cell line of amyotrophic lateral sclerosis. Brain Res. Bull. 2018, 140, 299–310. [Google Scholar] [CrossRef]
- Tan, F.H.P.; Ting, A.C.J.; Leow, B.G.; Najimudin, N.; Watanabe, N.; Azzam, G. Alleviatory effects of Danshen, Salvianolic acid A and Salvianolic acid B on PC12 neuronal cells and Drosophila melanogaster model of Alzheimer’s disease. J. Ethnopharmacol. 2021, 279, 114389. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Chen, M.Y.; Kuo, Y.H.; Cheng, J.; Chang, L.Z.; Chang, M.S.; Chuang, T.N.; Hsieh, W.T.; Xiao, Y.R.; Wu, B.T.; et al. Osthole antagonizes microglial activation in an NRF2-dependent manner. Molecules 2023, 28, 507. [Google Scholar] [CrossRef] [PubMed]
- Nériec, N.; Desplan, C. From the eye to the brain: Development of the Drosophila visual system. Curr. Top. Dev. Biol. 2016, 116, 247–271. [Google Scholar] [PubMed]
- Casey, P.J.; Gilman, A.G. G protein involvement in receptor-effector coupling. J. Biol. Chem. 1988, 263, 2577–2580. [Google Scholar] [CrossRef]
- Damulewicz, M.; Świątek, M.; Łoboda, A.; Dulak, J.; Bilska, B.; Przewłocki, R.; Pyza, E. Daily regulation of phototransduction, circadian clock, DNA repair, and immune gene expression by heme oxygenase in the retina of Drosophila. Genes 2019, 10, 6. [Google Scholar] [CrossRef]
Monosaccharides (μmol/g Polysaccharide) | ||||
---|---|---|---|---|
Crude | F1 | F2 | F3 | |
sorbitol | 33.76 ± 2.92 | 30.08 ± 0.01 | 27.52 ± 0.26 | 26.30 ± 0.01 |
mannitol | 213.60 ± 2.09 | 155.05 ± 0.45 | 201.23 ± 1.52 | 178.29 ± 0.37 |
arabinose | 12.27 ± 0.62 | 27.72 ± 0.13 | 24.55 ± 0.28 | 12.86 ± 0.10 |
galactose | 21.09 ± 0.10 | 37.73 ± 0.06 | 34.32 ± 0.07 | 18.04 ± 0.01 |
glucose | 738.08 ± 2.25 | 275.67 ± 0.36 | 578.02 ± 0.93 | 441.72 ± 0.60 |
mannose | 748.15 ± 1.65 | 721.11 ± 1.49 | 819.35 ± 1.72 | 645.28 ± 1.40 |
fructose | - | 11.44 ± 0.05 | 5.72 ± 0.05 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, W.-H.; Sangkhathat, C.; Lu, M.-K.; Lin, W.-Y.; Liu, H.-P.; Lin, Y.-L. Dendrobium nobile Polysaccharide Attenuates Blue Light-Induced Injury in Retinal Cells and In Vivo in Drosophila. Antioxidants 2024, 13, 603. https://doi.org/10.3390/antiox13050603
Hsu W-H, Sangkhathat C, Lu M-K, Lin W-Y, Liu H-P, Lin Y-L. Dendrobium nobile Polysaccharide Attenuates Blue Light-Induced Injury in Retinal Cells and In Vivo in Drosophila. Antioxidants. 2024; 13(5):603. https://doi.org/10.3390/antiox13050603
Chicago/Turabian StyleHsu, Wei-Hsiang, Chanikan Sangkhathat, Mei-Kuang Lu, Wei-Yong Lin, Hsin-Ping Liu, and Yun-Lian Lin. 2024. "Dendrobium nobile Polysaccharide Attenuates Blue Light-Induced Injury in Retinal Cells and In Vivo in Drosophila" Antioxidants 13, no. 5: 603. https://doi.org/10.3390/antiox13050603
APA StyleHsu, W.-H., Sangkhathat, C., Lu, M.-K., Lin, W.-Y., Liu, H.-P., & Lin, Y.-L. (2024). Dendrobium nobile Polysaccharide Attenuates Blue Light-Induced Injury in Retinal Cells and In Vivo in Drosophila. Antioxidants, 13(5), 603. https://doi.org/10.3390/antiox13050603