Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,843)

Search Parameters:
Keywords = operating voltage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3615 KB  
Article
Adaptive Hybrid Grid-Following and Grid-Forming Control with Hybrid Coefficient Transition Regulation for Transient Current Suppression
by Wujie Chao, Liyu Dai, Yichen Feng, Junwei Huang, Jinke Wang, Xinyi Lin and Chunpeng Zhang
Energies 2026, 19(2), 549; https://doi.org/10.3390/en19020549 (registering DOI) - 21 Jan 2026
Abstract
With the increasing integration of renewable energy into power grids, voltage source converter-based high-voltage direct current (VSC-HVDC) stations often adopt hybrid grid-following (GFL) and grid-forming (GFM) control strategies to improve adaptability to varying grid strengths. In many existing schemes, the hybrid coefficient changes [...] Read more.
With the increasing integration of renewable energy into power grids, voltage source converter-based high-voltage direct current (VSC-HVDC) stations often adopt hybrid grid-following (GFL) and grid-forming (GFM) control strategies to improve adaptability to varying grid strengths. In many existing schemes, the hybrid coefficient changes abruptly, which may produce large transient current overshoots and compromise the safe and stable operation of converters. An adaptive hybrid GFL-GFM control framework equipped with a hybrid coefficient transition regulation is proposed. Small-signal state–space models are established and eigenvalue analysis confirms stability over the considered short-circuit ratio (SCR) range. The regulating method is activated only during coefficient transitions and is inactive in steady-state, thereby preserving the operating-point eigenvalue properties. Dynamic equations of the converter current change rate are derived to reveal the key role of the hybrid-coefficient change rate in driving transient current overshoots, based on which a real-time hybrid coefficient regulating method is developed to shape coefficient transitions. Simulations on a 500 kV/2100 MW VSC-HVDC project demonstrate reduced transient current overshoot and power oscillations during SCR variations, with robustness under moderate parameter deviations as well as representative SCR assessment error and update delay. Full article
Show Figures

Figure 1

22 pages, 5687 KB  
Article
A Cascade Process for CO2 to Methanol Driven by Non-Thermal Plasma: A Techno-Economic Assessment
by Shiwei Qin, Xiangbo Zou, Yunfei Ma, Yunfeng Ma, Zirong Shen, Angjian Wu and Xiaoqing Lin
Catalysts 2026, 16(1), 104; https://doi.org/10.3390/catal16010104 - 21 Jan 2026
Abstract
The non-thermal plasma-driven cascade process for CO2-to-methanol conversion shows significant potential in the field of green methanol synthesis. This process innovatively couples a plasma activation module with a catalytic synthesis module via a multi-stage pressurization device, establishing an efficient two-step pathway [...] Read more.
The non-thermal plasma-driven cascade process for CO2-to-methanol conversion shows significant potential in the field of green methanol synthesis. This process innovatively couples a plasma activation module with a catalytic synthesis module via a multi-stage pressurization device, establishing an efficient two-step pathway that converts CO2 into methanol via a CO intermediate. Such an arrangement establishes an energy conversion system characterized by both low carbon emissions and high efficiency. This work involved an initial technical evaluation employing a custom-built, lab-scale apparatus. The optimum parameters determined through this assessment were a plasma input voltage of 40 V combined with a subsequent reaction temperature of 240 °C. Operation at these specified parameters yielded a CO2 conversion of 48%, with the methanol selectivity and production rate reaching 40% and 502 gMeOH·kg−1 cat·h−1, respectively. Furthermore, industrial-scale process design and scale-up were performed, accompanied by process simulation using Aspen Plus and a subsequent techno-economic evaluation. The results indicate that, compared to the conventional direct CO2 hydrogenation process, the proposed cascade route can reduce the capital investment by approximately 17%. Full article
(This article belongs to the Special Issue Catalysts for CO2 Conversions)
17 pages, 3043 KB  
Article
Loss-Driven Design Methodology for MHz-Class GaN QSW Buck Converters with a PCB Air-Core Inductor in SWaP-Constrained Aerospace Applications
by Jinshu Lin, Hui Li, Shan Yin, Xi Liu, Chen Song, Honglang Zhang and Minghai Dong
Aerospace 2026, 13(1), 105; https://doi.org/10.3390/aerospace13010105 - 21 Jan 2026
Abstract
Aerospace power systems, including satellites in low earth orbit (LEO) and geostationary earth orbit (GEO), face stringent thermal constraints to minimize size, weight, and power (SWaP). Gallium nitride (GaN) devices offer superior radiation hardness—critical for the harsh space environment—and MHz-level switching capabilities. This [...] Read more.
Aerospace power systems, including satellites in low earth orbit (LEO) and geostationary earth orbit (GEO), face stringent thermal constraints to minimize size, weight, and power (SWaP). Gallium nitride (GaN) devices offer superior radiation hardness—critical for the harsh space environment—and MHz-level switching capabilities. This high-frequency operation minimizes passive components, particularly magnetics, thereby reducing the overall volume. However, above 10 MHz, magnetic cores become impractical due to material limitations. To address these issues, this article proposes a design methodology for a GaN-based quasi-square-wave (QSW) buck converter integrated with a PCB air-core inductor. First, the impact of the switching frequency and dead time on the zero-voltage switching (ZVS) condition is elaborated. Then, a power loss model accounting for various loss mechanisms is presented. To overcome high GaN body diode reverse conduction loss, an auxiliary diode is employed. Based on the model, a design procedure is developed to optimize the inductor for 10 MHz operation while maximizing efficiency. To validate the design, a 28 V/12 V, 18 W prototype was built and tested. Experimental results demonstrate a peak efficiency of 86.5% at 10 MHz. The auxiliary diode improves efficiency by 4%, verifying reverse conduction loss mitigation. Thermal analysis confirms a full-load case temperature of 62.2 C, providing a 47.8 C safety margin compliant with aerospace derating standards. These findings validate the solution for high-frequency, space-constrained aerospace applications. Full article
29 pages, 7573 KB  
Article
C-HILS-Based Evaluation of Control Performance, Losses, and Thermal Lifetime of a Marine Propulsion Inverter
by Seohee Jang, Hyeongyo Chae and Chan Roh
J. Mar. Sci. Eng. 2026, 14(2), 221; https://doi.org/10.3390/jmse14020221 - 21 Jan 2026
Abstract
This paper presents a controller-hardware-in-the-loop simulation (C-HILS) framework for validating models, evaluating control performance, and assessing the thermal lifetime of a tens-of-kilowatt inverter. The real inverter and the C-HILS platform were operated in parallel, and accuracy was quantified using phase-current root mean square [...] Read more.
This paper presents a controller-hardware-in-the-loop simulation (C-HILS) framework for validating models, evaluating control performance, and assessing the thermal lifetime of a tens-of-kilowatt inverter. The real inverter and the C-HILS platform were operated in parallel, and accuracy was quantified using phase-current root mean square error, voltage spectral analysis, and total harmonic distortion (THD). Across a wide range of SVPWM and DPWM cases, deviations remained within 2–5%, confirming close agreement between experiment and simulation. Using the validated C-HILS system, sampling frequency and output power were swept while comparing current tracking, THD, average switching frequency, semiconductor losses, and efficiency. SVPWM achieved lower THD, whereas DPWM reduced average switching frequency and switching losses, improving efficiency. C-HILS waveforms were then applied to a Foster thermal network to reconstruct the junction–temperature trajectory; Tj(t), and ΔTj and Tj,min were mapped to lifetime using the Bayerer model. For a representative cyclic mission, ΔTj decreased from approximately 25.6 °C with SVPWM to about 17.5 °C with DPWM, increasing the estimated lifetime from approximately 1.36 years to 9.14 years. These results demonstrate that the proposed C-HILS framework provides a unified pre-prototype tool for model verification, control strategy comparison, and quantitative thermal reliability assessment of shipboard propulsion inverters. Full article
(This article belongs to the Special Issue Green Energy with Advanced Propulsion Systems for Net-Zero Shipping)
16 pages, 2137 KB  
Article
Autonomous Voltage and Reactive Power Control of Grid-Forming Inverters Using Physics-Guided ANN-Based Virtual Impedance
by Ali Echresh, Mohammad H. Moradi and Mohsen Eskandari
Appl. Sci. 2026, 16(2), 1099; https://doi.org/10.3390/app16021099 - 21 Jan 2026
Abstract
Voltage control is problematic in an islanded microgrid, as small and mismatched feeder impedances lead to inaccurate reactive power sharing among grid-forming inverters and potential instability under conventional droop control. Existing adaptive virtual impedance solutions often depend on communication links, creating a system [...] Read more.
Voltage control is problematic in an islanded microgrid, as small and mismatched feeder impedances lead to inaccurate reactive power sharing among grid-forming inverters and potential instability under conventional droop control. Existing adaptive virtual impedance solutions often depend on communication links, creating a system vulnerability. This study introduces an autonomous control strategy to enhance reactive power sharing without requiring communication. The proposed method utilizes an artificial neural network (ANN) consisting of an offline and online phase to determine the optimal virtual impedance locally at each grid-forming inverter. During an offline phase, a physics-aware recursive least-squares (RLS) algorithm is used to generate a training data set. In online operation, the trained ANN is a lightweight model that uses only local measurements to calculate the required voltage compensation. This ANN-based virtual impedance is a practical and adaptable solution for autonomous voltage and reactive power control. By eliminating communication dependency, this strategy enhances microgrid stability, reliability, and scalability, offering a significant improvement over communication-based methods in terms of cybersecurity. MATLAB/SIMULINK simulations validate the approach, showing that the controller achieves precise reactive power sharing under varying loads and eliminates steady-state errors. Significantly, it maintains robust performance during communication failures and seamlessly adapts to the grid changes. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
19 pages, 1516 KB  
Article
Energy-Dynamics Sensing for Health-Responsive Virtual Synchronous Generator in Battery Energy Storage Systems
by Yingying Chen, Xinghu Liu and Yongfeng Fu
Batteries 2026, 12(1), 36; https://doi.org/10.3390/batteries12010036 - 21 Jan 2026
Abstract
Battery energy storage systems (BESSs) are increasingly required to provide grid-support services under weak-grid conditions, where the stability of virtual synchronous generator (VSG) control largely depends on the health status and dynamic characteristics of the battery unit. However, existing VSG strategies typically assume [...] Read more.
Battery energy storage systems (BESSs) are increasingly required to provide grid-support services under weak-grid conditions, where the stability of virtual synchronous generator (VSG) control largely depends on the health status and dynamic characteristics of the battery unit. However, existing VSG strategies typically assume fixed parameters and neglect the intrinsic coupling between battery aging, DC-link energy variations, and converter dynamic performance, resulting in reduced damping, degraded transient regulation, and accelerated lifetime degradation. This paper proposes a health-responsive VSG control strategy enabled by real-time energy-dynamics sensing. By reconstructing the DC-link energy state from voltage and current measurements, an intrinsic indicator of battery health and instantaneous power capability is established. This energy-dynamics indicator is then embedded into the VSG inertia and damping loops, allowing the control parameters to adapt to battery health evolution and operating conditions. The proposed method achieves coordinated enhancement of transient stability, weak-grid robustness, and lifetime management. Simulation studies on a multi-unit BESS demonstrate that the proposed strategy effectively suppresses low-frequency oscillations, accelerates transient convergence, and maintains stability across different aging stages. Full article
Show Figures

Figure 1

24 pages, 396 KB  
Article
Multi-Objective Optimization for the Location and Sizing of Capacitor Banks in Distribution Grids: An Approach Based on the Sine and Cosine Algorithm
by Laura Camila Garzón-Perdomo, Brayan David Duque-Chavarro, Carlos Andrés Torres-Pinzón and Oscar Danilo Montoya
Appl. Syst. Innov. 2026, 9(1), 24; https://doi.org/10.3390/asi9010024 - 21 Jan 2026
Abstract
This article presents a hybrid optimization model designed to determine the optimal location and operation of capacitor banks in medium-voltage distribution networks, aiming to reduce energy losses and enhance the system’s economic efficiency. The use of reactive power compensation through fixed-step capacitor banks [...] Read more.
This article presents a hybrid optimization model designed to determine the optimal location and operation of capacitor banks in medium-voltage distribution networks, aiming to reduce energy losses and enhance the system’s economic efficiency. The use of reactive power compensation through fixed-step capacitor banks is highlighted as an effective and cost-efficient solution; however, their optimal placement and sizing pose a mixed-integer nonlinear programming optimization challenge of a combinatorial nature. To address this issue, a multi-objective optimization methodology based on the Sine Cosine Algorithm (SCA) is proposed to identify the ideal location and capacity of capacitor banks within distribution networks. This model simultaneously focuses on minimizing technical losses while reducing both investment and operational costs, thereby producing a Pareto front that facilitates the analysis of trade-offs between technical performance and economic viability. The methodology is validated through comprehensive testing on the 33- and 69-bus reference systems. The results demonstrate that the proposed SCA-based approach is computationally efficient, easy to implement, and capable of effectively exploring the search space to identify high-quality Pareto-optimal solutions. These characteristics render the approach a valuable tool for the planning and operation of efficient and resilient distribution networks. Full article
Show Figures

Figure 1

20 pages, 9489 KB  
Article
Design and Implementation of a High-Speed Storage System Based on SATA Interface
by Junwei Lu, Jie Bai and Sanmin Shen
Electronics 2026, 15(2), 452; https://doi.org/10.3390/electronics15020452 - 20 Jan 2026
Abstract
In flight tests, to meet the requirements of consistent acquisition and storage of multiple targets, multiple systems, and multiple data types, various data types are processed into Pulse Code Modulation (PCM) data streams using PCM encoding for storage. Aiming at the requirement of [...] Read more.
In flight tests, to meet the requirements of consistent acquisition and storage of multiple targets, multiple systems, and multiple data types, various data types are processed into Pulse Code Modulation (PCM) data streams using PCM encoding for storage. Aiming at the requirement of real-time storage of high-bit-rate PCM data streams, a large-capacity storage system based on Serial Advanced Technology Attachment 3.0 (SATA3.0) is designed. The system uses the Kintex 7 series Field-Programmable Gate Array (FPGA) as the control core, receives PCM data streams through the Low-Voltage Differential Signaling (LVDS) low-voltage differential interface, stores the received PCM data streams into the mSATA disk via the SATA3.0 transmission bus, and transmits the stored data back to the host computer through the USB3.0 interface for analysis. Meanwhile, to solve the problem of complex data export, the storage system constructs a FAT32 file system through the MicroBlaze soft core to optimize the management and operation of the large-capacity storage system. Test results show that the storage system can perform stable high-rate storage at −40 °C~80 °C. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

20 pages, 985 KB  
Article
A Novel Approach to Automating Overcurrent Protection Settings Using an Optimized Genetic Algorithm
by Mario A. Londoño Villegas, Eduardo Gómez-Luna, Luis A. Gallego Pareja and Juan C. Vasquez
Energies 2026, 19(2), 529; https://doi.org/10.3390/en19020529 - 20 Jan 2026
Abstract
In electrical networks, the coordination and selectivity of protective devices are key to improving reliability and ensuring operational safety. Protections play a fundamental role in maintaining system stability and detecting faults within the power system. This study presents an optimized genetic algorithm (OGA) [...] Read more.
In electrical networks, the coordination and selectivity of protective devices are key to improving reliability and ensuring operational safety. Protections play a fundamental role in maintaining system stability and detecting faults within the power system. This study presents an optimized genetic algorithm (OGA) as a method to optimize the configurations of overcurrent protections in high voltage distribution systems. The OGA obtained the best results in all tested systems, demonstrating its effectiveness in coordinating protections according to IEC 60255-151:2009. In addition, simulations performed with the integration of Python and PowerFactory DigSILENT software validated the correct coordination of the protections, showing that the OGA not only optimizes response times, but also guarantees greater selectivity and reliability in the protection of the electrical system in an efficient way. Full article
(This article belongs to the Special Issue Advances in the Protection and Control of Modern Power Systems)
Show Figures

Figure 1

35 pages, 2347 KB  
Article
Probabilistic Load Forecasting for Green Marine Shore Power Systems: Enabling Efficient Port Energy Utilization Through Monte Carlo Analysis
by Bingchu Zhao, Fenghui Han, Yu Luo, Shuhang Lu, Yulong Ji and Zhe Wang
J. Mar. Sci. Eng. 2026, 14(2), 213; https://doi.org/10.3390/jmse14020213 - 20 Jan 2026
Abstract
The global shipping industry is surging ahead, and with it, a quiet revolution is taking place on the water: marine lithium-ion batteries have emerged as a crucial clean energy carrier, powering everything from ferries to container ships. When these vessels dock, they increasingly [...] Read more.
The global shipping industry is surging ahead, and with it, a quiet revolution is taking place on the water: marine lithium-ion batteries have emerged as a crucial clean energy carrier, powering everything from ferries to container ships. When these vessels dock, they increasingly rely on shore power charging systems to refuel—essentially, plugging in instead of idling on diesel. But predicting how much power they will need is not straightforward. Think about it: different ships, varying battery sizes, mixed charging technologies, and unpredictable port stays all come into play, creating a load profile that is random, uneven, and often concentrated—a real headache for grid planners. So how do you forecast something so inherently variable? This study turned to the Monte Carlo method, a probabilistic technique that thrives on uncertainty. Instead of seeking a single fixed answer, the model embraces randomness, feeding in real-world data on supply modes, vessel types, battery capacity, and operational hours. Through repeated random sampling and load simulation, it builds up a realistic picture of potential charging demand. We ran the numbers for a simulated fleet of 400 vessels, and the results speak for themselves: load factors landed at 0.35 for conventional AC shore power, 0.39 for high-voltage DC, 0.33 for renewable-based systems, 0.64 for smart microgrids, and 0.76 when energy storage joined the mix. Notice how storage and microgrids really smooth things out? What does this mean in practice? Well, it turns out that Monte Carlo is not just academically elegant, it is practically useful. By quantifying uncertainty and delivering load factors within confidence intervals, the method offers port operators something precious: a data-backed foundation for decision-making. Whether it is sizing infrastructure, designing tariff incentives, or weighing the grid impact of different shore power setups, this approach adds clarity. In the bigger picture, that kind of insight matters. As ports worldwide strive to support cleaner shipping and align with climate goals—China’s “dual carbon” ambition being a case in point—achieving a reliable handle on charging demand is not just technical; it is strategic. Here, probabilistic modeling shifts from a simulation exercise to a tangible tool for greener, more resilient port energy management. Full article
22 pages, 5492 KB  
Article
High-Performance Multilevel Inverter Integrated DVR for Comprehensive Power Quality Improvement in Power Systems
by Samuel Nii Tackie, Ebrahim Babaei, Şenol Bektaş, Özgür Cemal Özerdem and Murat Fahrioglu
Energies 2026, 19(2), 519; https://doi.org/10.3390/en19020519 - 20 Jan 2026
Abstract
This paper proposes a dynamic voltage restorer (DVR) based on a new three-phase multilevel inverter (MLI). An integral component of DVRs is the power electronic converter. At medium-to-high voltage levels, MLIs are the ideal converters for DVR applications because lower voltage-rated switches are [...] Read more.
This paper proposes a dynamic voltage restorer (DVR) based on a new three-phase multilevel inverter (MLI). An integral component of DVRs is the power electronic converter. At medium-to-high voltage levels, MLIs are the ideal converters for DVR applications because lower voltage-rated switches are used to generate high voltages, thus minimizing power losses. The proposed three-phase MLI generates 15 levels of load voltage per phase, using a reduced component count: eight lower-rated semiconductor power switches, four primary DC voltage sources, two auxiliary DC sources, and eight driver circuits per phase. Additionally, each phase features a low-frequency transformer with voltage-boosting and galvanic isolation capabilities. The switching sequence of the proposed MLI is simpler to execute using fundamental frequency control; this methodology provides reduced switching stress and reduced switching losses as merits. Structurally, the proposed MLI is less complex and thus scalable. The proposed DVR, based on three-phase MLI, efficiently offsets power quality problems such as voltage swell, voltage sags, and harmonics for balanced and unbalanced loads. The operational performance of the proposed DVR-MLI is verified by a simulation, using PSCAD software and an experimental prototype. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

21 pages, 30776 KB  
Article
A Control Strategy for a Vienna Rectifier Under Phase-Lack Faults
by Song Zhang, Yongxiang Cai, Xinyu You, Mingjun He, Ke Fan, Zhuoyue Wang and Zhaohui Liao
Electronics 2026, 15(2), 444; https://doi.org/10.3390/electronics15020444 - 20 Jan 2026
Abstract
Aviation power systems require extremely high reliability. As a result, rectifiers must be capable of continuing operation during phase-lack faults, where the input voltage of one phase drops to zero. However, traditional fault-tolerant strategies often struggle to maintain effective control under these conditions. [...] Read more.
Aviation power systems require extremely high reliability. As a result, rectifiers must be capable of continuing operation during phase-lack faults, where the input voltage of one phase drops to zero. However, traditional fault-tolerant strategies often struggle to maintain effective control under these conditions. To address this issue, this paper proposes a single-phase control strategy specifically designed for the Vienna rectifier, a commonly used component in aerospace power systems. This strategy ensures a stable DC output during phase-lack faults while maintaining low total harmonic distortion and a near-unity power factor. Simulation results confirm the effectiveness of the proposed control method. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

36 pages, 3358 KB  
Review
A Comprehensive Review of Reliability Analysis for Pulsed Power Supplies
by Xiaozhen Zhao, Haolin Tong, Haodong Wu, Ahmed Abu-Siada, Kui Li and Chenguo Yao
Energies 2026, 19(2), 518; https://doi.org/10.3390/en19020518 - 20 Jan 2026
Abstract
Achieving high reliability remains the critical challenge for pulsed power supplies (PPS), whose core components are susceptible to severe degradation and catastrophic failure due to long-term operation under electrical, thermal and magnetic stresses, particularly those associated with high voltage and high current. This [...] Read more.
Achieving high reliability remains the critical challenge for pulsed power supplies (PPS), whose core components are susceptible to severe degradation and catastrophic failure due to long-term operation under electrical, thermal and magnetic stresses, particularly those associated with high voltage and high current. This reliability challenge fundamentally limits the widespread deployment of PPSs in defense and industrial applications. This article provides a comprehensive and systematic review of the reliability challenges and recent technological progress concerning PPSs, focusing on three hierarchical levels: component, system integration, and extreme operating environments. The review investigates the underlying failure mechanisms, degradation characteristics, and structural optimization of key components, such as energy storage capacitors and power switches. Furthermore, it elaborates on advanced system-level techniques, including novel thermal management topologies, jitter control methods for multi-module synchronization, and electromagnetic interference (EMI) source suppression and coupling path optimization. The primary conclusion is that achieving long-term, high-frequency operation depends on multi-physics field modeling and robust, integrated design approaches at all three levels. In summary, this review outlines important research directions for future advancements and offers technical guidance to help speed up the development of next-generation PPS systems characterized by high power density, frequent repetition, and outstanding reliability. Full article
Show Figures

Figure 1

39 pages, 26287 KB  
Article
Role of Grid Topology in Power Quality Improvement of Solar-Powered Electric Vehicle Charging Station
by Anum Mehmood and Fan Yang
Energies 2026, 19(2), 515; https://doi.org/10.3390/en19020515 - 20 Jan 2026
Abstract
Conventional approaches for designing and integrating charging stations into the grid are time-consuming and computationally expensive. For the purpose of power quality enhancement of EVCS, more focus has been paid on charging station design infrastructure, hence neglecting the need for the technical design [...] Read more.
Conventional approaches for designing and integrating charging stations into the grid are time-consuming and computationally expensive. For the purpose of power quality enhancement of EVCS, more focus has been paid on charging station design infrastructure, hence neglecting the need for the technical design of grid topology. Therefore, this paper focuses on the design and development of multiple distribution grid topologies for topology-aware characterization of power quality in grid-tied solar-powered EV charging stations. The control and energy management strategy is implemented solely to enable consistent grid-PV-EV interaction. The models have been successfully developed and tested for four modes of operations, PV to EV, PV to Grid, V2G and G2V, in MATLAB/Simulink 2022b. From the results, it is clear that the grid voltage THD during V2G remains at 0.01%, 0.08% and 0.01% and the grid-connected current THD remains at 0.19%, 1.88% and 0.19% for three different grid topologies, GT1, GT2 and GT3, respectively, while, during G2V, the voltage THD are valued at 0.02%, 0.05% and 0.03% and the grid-connected current THD at 0.45%, 1.28% and 0.75% for grid topologies GT1, GT2 and GT3 respectively. The results demonstrate that grid topology-aware analysis is required for consistent harmonic characterization of PV-integrated EV charging stations under V2G, G2V and PV-assisted operating modes. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

10 pages, 1511 KB  
Article
Improvements of Both Anode Catalyst Layer and Porous Transport Layer for the Efficient Proton-Exchange Membrane Water Electrolysis
by Zehao Tan, Ruofan Yu, Baoduo Jin, Chen Deng, Zhidong Huang and Liuxuan Luo
Catalysts 2026, 16(1), 101; https://doi.org/10.3390/catal16010101 - 20 Jan 2026
Abstract
In recent years, green hydrogen production via water electrolysis driven by renewable energy sources has garnered increasingly significant attention. Among the various water electrolysis technologies, proton-exchange membrane water electrolysis (PEMWE) distinguishes itself owing to the unique advantages, including the compact architecture, high efficiency, [...] Read more.
In recent years, green hydrogen production via water electrolysis driven by renewable energy sources has garnered increasingly significant attention. Among the various water electrolysis technologies, proton-exchange membrane water electrolysis (PEMWE) distinguishes itself owing to the unique advantages, including the compact architecture, high efficiency, rapid dynamic response, and high purity of the generated hydrogen. The membrane electrode assembly (MEA) serves as the core component of a PEM electrolyzer. And only a high-performance and stable MEA can provide a reliable platform for investigating the mass transport behavior within the porous transport layer (PTL). In this study, the MEA fabrication method was optimized by varying the ionomer-to-carbon (I/C) ratio, coating strategy, and anode Ir mass loading. As a result, the cell voltage was reduced from 1.679 V to 1.645 V at 1.0 A cm−2, with a small degradation of 1.3% over 70 h of operation. Based on the optimized MEA, the effects of the structure and porosity of PTL on the mass transport behavior were further analyzed. After the PTL parameter optimization, the cell voltage was further reduced to 1.630 V at 1.0 A cm−2, while a high-speed camera captured bubble dynamics in real time, showing the fast detachment of small oxygen bubbles. The integrated electrochemical and visualization results provide a useful guideline to designing both MEA and PTL for efficient PEMWE. Full article
(This article belongs to the Special Issue Advanced Catalysts for Water Electrolysis)
Show Figures

Graphical abstract

Back to TopTop