Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (251)

Search Parameters:
Keywords = open-pit mine areas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 31572 KB  
Article
Polarimetric Time-Series InSAR for Surface Deformation Monitoring in Mining Area Using Dual-Polarization Data
by Xingjun Ju, Sihua Gao and Yongfeng Li
Sensors 2025, 25(19), 5968; https://doi.org/10.3390/s25195968 - 25 Sep 2025
Viewed by 381
Abstract
Timely and reliable surface deformation monitoring is critical for hazard prevention and resource management in mining areas. However, traditional Time-Series Interferometric (TSI) Synthetic Aperture Radar techniques often suffer from low coherent point density in mining environments, limiting their effectiveness. To overcome this limitation, [...] Read more.
Timely and reliable surface deformation monitoring is critical for hazard prevention and resource management in mining areas. However, traditional Time-Series Interferometric (TSI) Synthetic Aperture Radar techniques often suffer from low coherent point density in mining environments, limiting their effectiveness. To overcome this limitation, we propose an adaptive Polarimetric TSI (PolTSI) method that exploits dual-polarization Sentinel-1 data to achieve more reliable deformation monitoring in complex mining terrains. The method employs a dual-strategy optimization: amplitude dispersion–based optimization for Permanent Scatterer (PS) pixels and minimum mean square error (MMSE)-based polarimetric filtering followed by coherence maximization for Distributed Scatterer (DS) pixels. Experimental results from an open-pit mining area demonstrate that the proposed approach significantly improves phase quality and spatial coverage. In particular, the number of coherent monitoring points increased from 31,183 with conventional TSI to 465,328 using the proposed approach, corresponding to a 1392% improvement. This substantial enhancement confirms the method’s robustness in extracting deformation signals from low-coherence, heterogeneous mining surfaces. As one of the few studies to apply Polarimetric InSAR (Pol-InSAR) in active mining regions, our work demonstrates the underexplored potential of dual-pol SAR data for improving both the spatial density and reliability of time-series deformation mapping. The results provide a solid technical foundation for large-scale, high-precision surface monitoring in complex mining environments. Full article
(This article belongs to the Special Issue Application of SAR and Remote Sensing Technology in Earth Observation)
Show Figures

Figure 1

41 pages, 18706 KB  
Article
Multiscale Analysis and Preventive Measures for Slope Stability in Open-Pit Mines Using a Multimethod Coupling Approach
by Hengyu Chen, Baoliang Wang and Zhongsi Dou
Appl. Sci. 2025, 15(19), 10367; https://doi.org/10.3390/app151910367 - 24 Sep 2025
Viewed by 271
Abstract
This study investigates slope stability in an open-pit mining area by integrating engineering geological surveys, field investigations, and laboratory rock mechanics tests. A coordinated multimethod analysis was carried out using finite element-based numerical simulations from both two-dimensional and three-dimensional perspectives. The integrated approach [...] Read more.
This study investigates slope stability in an open-pit mining area by integrating engineering geological surveys, field investigations, and laboratory rock mechanics tests. A coordinated multimethod analysis was carried out using finite element-based numerical simulations from both two-dimensional and three-dimensional perspectives. The integrated approach revealed deformation patterns across the slopes and established a multiscale analytical framework. The results indicate that the slope failure modes primarily include circular and compound types, with existing step slopes showing a potential risk of wedge failure. While the designed slope meets safety requirements under three working conditions overall, the strongly weathered layer in profile XL3 requires a slope angle reduction from 38° to 37° to comply with standards. Three-dimensional simulations identify the main deformations in the middle-lower sections of the western area and zones B and C, with faults located at the core of the deformation zone. Rainfall and blasting vibrations significantly increase surface tensile stress, accelerating deformation. Although wedges in profiles XL1 and XL4 remain generally stable, coupled blasting–rainfall effects may still induce potential collapse in fractured areas, necessitating preventive measures such as concrete support and bolt support, along with real-time monitoring to dynamically optimize reinforcement strategies for precise risk control. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

15 pages, 12942 KB  
Article
Research on the Construction of Applicable Models for Temporary Land Use in Open-Pit Coal Mining and Implementation Models for Land Reclamation in China
by Jiaxin Guo, Jian Lin, Zhenqi Hu, Pengfei An, Junfeng Yin, Yifan Du and Peian Wang
Land 2025, 14(9), 1819; https://doi.org/10.3390/land14091819 - 6 Sep 2025
Viewed by 393
Abstract
China’s traditional approach to supplying land for mining operations hinders the sustainable use of land resources, resulting in extensive land degradation and idleness after mining activities conclude. Based on this, the competent national authorities have innovatively launched reforms to the temporary land supply [...] Read more.
China’s traditional approach to supplying land for mining operations hinders the sustainable use of land resources, resulting in extensive land degradation and idleness after mining activities conclude. Based on this, the competent national authorities have innovatively launched reforms to the temporary land supply model for open-pit coal mining operations. This study uses the Anjialing open-pit coal mine pilot project in Shanxi Province, China as a case example to construct a comprehensive lifecycle model for temporary mining land use in operational coal mines. It evaluates the land reclamation implementation at this mine and proposes a land management model for future pilot mines establishing new temporary mining sites. Research indicates that: (1) In pilot mining projects currently under construction, the larger the initial mining area, the lower the strip ratio and coal extraction rate, and the longer the overall duration of temporary land use. (2) Based on the overall land use cycle model for temporary mining sites, the land use cycle for the Anjialing open-pit coal mine is approximately 7 to 10 years, making it impossible to complete mining operations and return the land after reclamation within five years. (3) Based on historical image analysis using the GEE platform, by the end of 2020, the coal mine reclamation area barely reached the boundaries of the 2012 temporary land use plan. Consequently, the pilot project for temporary mining land use failed to pass the required acceptance inspection. Overall, the promotion of this new model not only upholds the critical mission of safeguarding national farmland and ensuring food security, but also holds significant implications for future resource extraction and sustainable land utilization. Full article
Show Figures

Figure 1

23 pages, 4980 KB  
Article
A Study on the Removal of Phosphate from Water Environments by Synthesizing New Sodium-Type Zeolite from Coal Gangue
by Yiou Wang, Qiang Li, Muyuan Ma, Zekun Xu and Tianhui Zhao
Water 2025, 17(17), 2628; https://doi.org/10.3390/w17172628 - 5 Sep 2025
Viewed by 1008
Abstract
Excessive phosphorus emissions are a significant driver of severe eutrophication in water bodies, and developing an efficient and cost-effective adsorbent for phosphorus removal is imperative. In this study, a Na-type zeolite was synthesized from coal gangue sourced from an open-pit mine in Xinjiang [...] Read more.
Excessive phosphorus emissions are a significant driver of severe eutrophication in water bodies, and developing an efficient and cost-effective adsorbent for phosphorus removal is imperative. In this study, a Na-type zeolite was synthesized from coal gangue sourced from an open-pit mine in Xinjiang province, China. The synthesis process involved drying, crushing, alkali activation, aging, hydrothermal crystallization, and Na+ ion exchange. Orthogonal design identified the optimal synthesis parameters: an alkali-to-ash ratio of 1:1, aging at 20 °C for 12 h, and crystallization at 130 °C for 12 h. Aging time exerted the greatest influence on the phosphate removal efficiency. The optimized zeolite exhibited excellent phosphate adsorption performance, achieving a removal efficiency of up to 96% and a capacity of 16 mg/g. The adsorption kinetics followed both pseudo-first-order and pseudo-second-order models, indicating processes governed by combined physical and chemical mechanisms. Isotherm data fitting with Freundlich and Langmuir models suggested the presence of both homogeneous and heterogeneous active sites. Thermodynamic studies confirmed a spontaneous and endothermic process, increasingly favorable at higher temperatures. Characterizations via scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy confirmed the formation of Na-type zeolite and revealed structural and compositional changes following phosphate adsorption. Aluminum and calcium binding played key roles in the chemical adsorption mechanisms. This work not only offers a high-efficiency, low-cost solution for phosphorus removal from wastewater but also provides a sustainable pathway for the valorization of coal gangue in the Zhundong area of Xinjiang, China. Full article
Show Figures

Figure 1

23 pages, 4541 KB  
Article
A Simulation-Based Risk Assessment Model for Comparative Analysis of Collisions in Autonomous and Non-Autonomous Haulage Trucks
by Malihe Goli, Amin Moniri-Morad, Mario Aguilar, Masoud S. Shishvan, Mahdi Shahsavar and Javad Sattarvand
Appl. Sci. 2025, 15(17), 9702; https://doi.org/10.3390/app15179702 - 3 Sep 2025
Viewed by 688
Abstract
The implementation of autonomous haulage trucks in open-pit mines represents a progressive advancement in the mining industry, but it poses potential safety risks that require thorough assessment. This study proposes an integrated model that combines discrete-event simulation (DES) with a risk matrix to [...] Read more.
The implementation of autonomous haulage trucks in open-pit mines represents a progressive advancement in the mining industry, but it poses potential safety risks that require thorough assessment. This study proposes an integrated model that combines discrete-event simulation (DES) with a risk matrix to assess collisions associated with three different operational scenarios, including non-autonomous, hybrid, and fully autonomous truck operations. To achieve these objectives, a comprehensive dataset was collected and analyzed using statistical models and natural language processing (NLP) techniques. Multiple scenarios were then developed and simulated to compare the risks of collision and evaluate the impact of eliminating human intervention in hauling operations. A risk matrix was designed to assess the collision likelihood and risk severity of collisions in each scenario, emphasizing the impact on both human safety and project operations. The results revealed an inverse relationship between the number of autonomous trucks and the frequency of collisions, underscoring the potential safety advantages of fully autonomous operations. The collision probabilities show an improvement of approximately 91.7% and 90.7% in the third scenario compared to the first and second scenarios, respectively. Furthermore, high-risk areas were identified at intersections with high traffic. These findings offer valuable insights into enhancing safety protocols and integrating advanced monitoring technologies in open-pit mining operations, particularly those utilizing autonomous haulage truck fleets. Full article
Show Figures

Figure 1

22 pages, 6216 KB  
Article
Drivers of Vegetation Cover and Carbon Sink Dynamics in Abandoned Shaoyang City Open-Pit Coal Mines
by Daxing Liu, Zexin He, Huading Shi, Yun Zhao, Jinbin Liu, Anfu Liu, Li Li and Ruifeng Zhu
Sustainability 2025, 17(17), 7816; https://doi.org/10.3390/su17177816 - 30 Aug 2025
Viewed by 495
Abstract
As an important coal-producing region in China, open-pit coal mining in Shaoyang, Hunan Province, has a significant impact on the ecological environment. This study focuses on the three major open-pit mining areas in the city, utilizing remote sensing data from 1998 to 2024. [...] Read more.
As an important coal-producing region in China, open-pit coal mining in Shaoyang, Hunan Province, has a significant impact on the ecological environment. This study focuses on the three major open-pit mining areas in the city, utilizing remote sensing data from 1998 to 2024. By calculating the normalized difference vegetation index (NDVI) and fractional vegetation cover (FVC), and combining climate factors such as temperature and precipitation with Net Primary Productivity (NPP), this study analyzes the spatiotemporal evolution characteristics of vegetation cover and carbon sinks, and explores the impact of climate and environmental policies on vegetation recovery. The study employed trend analysis and autoregressive integrated moving average (ARIMA) model predictions, which showed that vegetation cover in the mining areas decreased overall from 1998 to 2011, gradually recovered after 2011, and reached a relatively high level by 2024. Changes in carbon sinks were consistent with the trends in vegetation cover. Spatially, the north mining area experienced the most severe vegetation degradation in the early stages, the middle area recovered earliest, and the south area had the fastest vegetation cover recovery rate. Climate factors had a certain influence on vegetation recovery, but precipitation, temperature, and FVC showed no significant correlation. The study indicates that vegetation recovery in mining areas is jointly influenced by mining intensity, climate conditions, and policy interventions, with geological environment management policies in Hunan mining areas playing a key role in promoting vegetation recovery. Full article
Show Figures

Figure 1

21 pages, 12309 KB  
Article
Analysis of Surface Runoff and Ponding Infiltration Patterns Induced by Underground Block Caving Mining—A Case Study
by Shihui Jiao, Yong Zhao, Tianhong Yang, Xin Wen, Qingshan Ma, Qianbai Zhao and Honglei Liu
Appl. Sci. 2025, 15(17), 9516; https://doi.org/10.3390/app15179516 - 29 Aug 2025
Viewed by 407
Abstract
Surface subsidence induced by underground mining in mining areas significantly alters surface topography and hydrogeological conditions, forming depressions and fissures, thereby affecting regional runoff-ponding processes and groundwater infiltration patterns. Accurate assessment of infiltration volumes in subsidence zones under heavy rainfall is crucial for [...] Read more.
Surface subsidence induced by underground mining in mining areas significantly alters surface topography and hydrogeological conditions, forming depressions and fissures, thereby affecting regional runoff-ponding processes and groundwater infiltration patterns. Accurate assessment of infiltration volumes in subsidence zones under heavy rainfall is crucial for designing underground drainage systems and evaluating water-inrush risks in open-pit to underground transition mines. Taking the surface subsidence area of the Dahongshan Iron Mine as a case study, this paper proposes a rainfall infiltration calculation method based on the precise delineation of surface ponding-infiltration zones. By numerically simulating the subsidence range, the study divides the area into two distinct infiltration characteristic zones under different mining states: the caved zone and the water-conducting fracture zone. The rainfall infiltration volume under storm conditions was calculated separately for each zone. The results indicate that high-intensity mining-induced subsidence leads to a nonlinear surge in stormwater infiltration, primarily due to the significant expansion of the highly permeable caved zone. The core mechanism lies in the area expansion of the caved zone as a rapid infiltration channel, which dominates the overall infiltration capacity multiplication. These findings provide a scientific basis for the design of mine drainage systems and the prevention of water-inrush disasters. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

21 pages, 6437 KB  
Article
A Missing Data Imputation Method for Waste Dump Landslide Deformation Monitoring Based on a Seq2Seq LSTM–Posterior Correction Model
by Tie Jin, Chen Cao, Ming Li, Kuanxing Zhu, Yaxuan Jing, Chenyang Wu, Xiguan An and Ji Bai
Remote Sens. 2025, 17(17), 2962; https://doi.org/10.3390/rs17172962 - 26 Aug 2025
Viewed by 749
Abstract
Surface deformation monitoring is essential for controlling instability processes such as urban infrastructure deformation, mining-induced subsidence, and landslide deformation. However, missing data often disrupt the continuity of the various deformation time series and compromise the reliability of monitoring results. This issue is particularly [...] Read more.
Surface deformation monitoring is essential for controlling instability processes such as urban infrastructure deformation, mining-induced subsidence, and landslide deformation. However, missing data often disrupt the continuity of the various deformation time series and compromise the reliability of monitoring results. This issue is particularly critical in long-term landslide studies, where conventional missing data imputation methods often neglect the nonlinear characteristics of slope deformation and fail to account for external influences under complex environmental conditions. To address these limitations, this study proposes a deep learning-based imputation method that integrates multi-source monitoring data. A Seq2Seq LSTM (sequence-to-sequence long short-term memory) model is constructed to reconstruct missing deformation values, and a posterior correction module is integrated to optimize the preliminary outputs, thereby enhancing imputation accuracy. The proposed approach is validated using a case study of the southern dump slope landslide at the Hesigewula South Open-Pit Coal Mine in Inner Mongolia, China. Experimental results on the test set demonstrate that the Seq2Seq LSTM–Posterior Correction model significantly outperforms traditional methods such as linear regression and baseline LSTM models. This method offers an effective solution to data gaps in landslide deformation monitoring, demonstrating strong potential for accurate nonlinear imputation in complex environments and providing a practical approach for long-term InSAR-based landslide studies in areas affected by missing SAR data. Full article
(This article belongs to the Topic Remote Sensing and Geological Disasters)
Show Figures

Figure 1

29 pages, 9634 KB  
Review
Open-Pit Mine Reclamation Monitoring and Management for a Sustainable Future Using Drone Technology: A Review
by Kapoor Chand, Mohmmad Farooq Bhat, Radhakanta Koner, Yewuhalashet Fissha, N. Rao Cheepurupalli, Taoufik Saidani and Hajime Ikeda
Drones 2025, 9(9), 601; https://doi.org/10.3390/drones9090601 - 26 Aug 2025
Viewed by 977
Abstract
With the advancement of drone technology, the availability of different sensors has become more reliable and cost-effective for monitoring large open-pit mine project activities. Key advantages of drone technology, including low operational expenses, rapid revisit capabilities, deployment flexibility, and high precision, have established [...] Read more.
With the advancement of drone technology, the availability of different sensors has become more reliable and cost-effective for monitoring large open-pit mine project activities. Key advantages of drone technology, including low operational expenses, rapid revisit capabilities, deployment flexibility, and high precision, have established these systems as powerful instruments for monitoring open-pit mine areas. This paper aims to provide a comprehensive review of drone technology utilization in open-pit mine reclamation monitoring. Mining 4.0 has shown promise in open-pit mine monitoring for drone deployment for use in green mining practices. This review synthesizes current research on drone survey platforms, various sensor technologies, and their practical field applications within open-pit mines for mine reclamation monitoring. This review study aims to establish a robust framework for the monitoring and management of mine reclamation. This study will provide a technically reliable reference, advancing the knowledge and application of drone technology for reclamation monitoring and management. Full article
Show Figures

Figure 1

12 pages, 3515 KB  
Article
Development and Application of a Composite Water-Retaining Agent for Ecological Restoration in Arid Mining Areas
by Liugen Zhang, Zhanwen Cao, Zhaojun Yang, Yi Zhang and Jia Guo
Polymers 2025, 17(17), 2268; https://doi.org/10.3390/polym17172268 - 22 Aug 2025
Viewed by 635
Abstract
Ecological restoration in arid coal-mining regions faces extreme challenges due to soil infertility, salinization, and water scarcity. This study addresses these limitations in the Santanghu Shitoumei No. 1 open-pit mine (Xinjiang), where gypsum gray-brown desert soil, minimal rainfall (199 mm/yr), high evaporation (1716 [...] Read more.
Ecological restoration in arid coal-mining regions faces extreme challenges due to soil infertility, salinization, and water scarcity. This study addresses these limitations in the Santanghu Shitoumei No. 1 open-pit mine (Xinjiang), where gypsum gray-brown desert soil, minimal rainfall (199 mm/yr), high evaporation (1716 mm/yr), and persistent gale-force winds exacerbate revegetation efforts. To overcome the high cost, short lifespan, and poor practicality of commercial water-retaining agents, we developed a novel humic acid (HA) and sodium carboxymethyl cellulose (CMC) composite water-absorbing resin (HA-CMC). Optimal synthesis parameters—identified as acrylic acid (AA)–carboxymethyl cellulose (CMC)–humic acid (HA)–Acrylamide (AM)–N,N’-methylene diacrylamide (MBA)–Ammonium persulphate (APS) = 100%:15%:4.5%:25%:0.6%:0.8%—yielded effective crosslinking, confirmed via FTIR and SEM. Performance benchmarking against existing agents demonstrated superior attributes. Field application in the mine’s demonstration area significantly enhanced surface vegetation and soil fertility, confirming the resin’s potential for large-scale soil remediation and ecological restoration in arid mining environments. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

17 pages, 4589 KB  
Article
Evaluation of Slope Stability and Landslide Prevention in a Closed Open-Pit Mine Used for Water Storage
by Pengjiao Zhang, Yuan Gao, Yachao Liu and Tianhong Yang
Appl. Sci. 2025, 15(15), 8659; https://doi.org/10.3390/app15158659 - 5 Aug 2025
Viewed by 635
Abstract
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model [...] Read more.
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model to simulate the evolution of slope stability under different water storage levels and backfilling management conditions, and to quantitatively assess the risk of slope instability through the spatial distribution of stability coefficients. This study shows that during the impoundment process, the slope stability has a nonlinear decreasing trend due to the decrease in effective stress caused by the increase in pore water pressure. When the water storage was at 0 m, the instability range is the largest, and the surface range is nearly 200 m from the edge of the pit; when the water level continued to rise to 50 m, the hydrostatic pressure of the pit lake water on the slope support effect began to appear, and the stability was improved, but there is still a wide range of unstable areas at the bottom. In view of the unstable area of the steep slope with soft rock in the north slope during the process of water storage, the management scheme of backfilling the whole bottom to −150 m was proposed, and the slope protection and pressure footing were formed by discharging the soil to −40 m in steps to improve the anti-slip ability of the slope. Full article
(This article belongs to the Special Issue Advances in Slope Stability and Rock Fracture Mechanisms)
Show Figures

Figure 1

26 pages, 8845 KB  
Article
Occurrence State and Genesis of Large Particle Marcasite in a Thick Coal Seam of the Zhundong Coalfield in Xinjiang
by Xue Wu, Ning Lü, Shuo Feng, Wenfeng Wang, Jijun Tian, Xin Li and Hayerhan Xadethan
Minerals 2025, 15(8), 816; https://doi.org/10.3390/min15080816 - 31 Jul 2025
Viewed by 482
Abstract
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with [...] Read more.
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with coal seams in some mining areas. A series of economic and environmental problems caused by the combustion of large-grained Fe-sulphide minerals in coal have seriously affected the economic, clean and efficient utilization of coal. In this paper, the ultra-thick coal seam of the Xishanyao formation in the Yihua open-pit mine of the Zhundong coalfield is taken as the research object. Through the analysis of coal quality, X-ray fluorescence spectrometer test of major elements in coal, inductively coupled plasma mass spectrometry test of trace elements, SEM-Raman identification of Fe-sulphide minerals in coal and LA-MC-ICP-MS test of sulfur isotope of marcasite, the coal quality characteristics, main and trace element characteristics, macro and micro occurrence characteristics of Fe-sulphide minerals and sulfur isotope characteristics of marcasite in the ultra-thick coal seam of the Xishanyao formation are tested. On this basis, the occurrence state and genesis of large particle Fe-sulphide minerals in the ultra-thick coal seam of the Xishanyao formation are clarified. The main results and understandings are as follows: (1) the occurrence state of Fe-sulphide minerals in extremely thick coal seams is clarified. The Fe-sulphide minerals in the extremely thick coal seam are mainly marcasite, and concentrated in the YH-2, YH-3, YH-8, YH-9, YH-14, YH-15 and YH-16 horizons. Macroscopically, Fe-sulphide minerals mainly occur in three forms: thin film Fe-sulphide minerals, nodular Fe-sulphide minerals, and disseminated Fe-sulphide minerals. Microscopically, they mainly occur in four forms: flake, block, spearhead, and crack filling. (2) The difference in sulfur isotope of marcasite was discussed, and the formation period of marcasite was preliminarily divided. The overall variation range of the δ34S value of marcasite is wide, and the extreme values are quite different. The polyflake marcasite was formed in the early stage of diagenesis and the δ34S value was negative, while the fissure filling marcasite was formed in the late stage of diagenesis and the δ34S value was positive. (3) The coal quality characteristics of the thick coal seam were analyzed. The organic components in the thick coal seam are mainly inertinite, and the inorganic components are mainly clay minerals and marcasite. (4) The difference between the element content in the thick coal seam of the Zhundong coalfield and the average element content of Chinese coal was compared. The major element oxides in the thick coal seam are mainly CaO and MgO, followed by SiO2, Al2O3, Fe2O3 and Na2O. Li, Ga, Ba, U and Th are enriched in trace elements. (5) The coal-accumulating environment characteristics of the extremely thick coal seam are revealed. The whole thick coal seam is formed in an acidic oxidation environment, and the horizon with Fe-sulphide minerals is in an acidic reduction environment. The acidic reduction environment is conducive to the formation of marcasite and is not conducive to the formation of pyrite. (6) There are many matrix vitrinite, inertinite content, clay content, and terrigenous debris in the extremely thick coal seam. The good supply of peat swamp, suitable reduction environment and pH value, as well as groundwater leaching and infiltration, together cause the occurrence of large-grained Fe-sulphide minerals in the extremely thick coal seam of the Xishanyao formation in the Zhundong coalfield. Full article
Show Figures

Figure 1

15 pages, 3552 KB  
Article
Analysis of Uncertainty in Conveyor Belt Condition Assessment Using Time-Based Indicators
by Aleksandra Rzeszowska, Leszek Jurdziak, Ryszard Błażej and Paweł Lewandowicz
Appl. Sci. 2025, 15(14), 7939; https://doi.org/10.3390/app15147939 - 16 Jul 2025
Viewed by 726
Abstract
This study analyzes the impact of the type of transported material (overburden, lignite, mixture) on the rate of core damage accumulation in Type St conveyor belts in open-pit mines. The research was conducted using the DiagBelt+ diagnostic system, which enables the assessment of [...] Read more.
This study analyzes the impact of the type of transported material (overburden, lignite, mixture) on the rate of core damage accumulation in Type St conveyor belts in open-pit mines. The research was conducted using the DiagBelt+ diagnostic system, which enables the assessment of belt core condition without dismantling the belt. Data were collected from over 100 conveyor belt loops, covering segments of varying lengths, ages, and operational histories. Damage density and area were assessed, and differences were analyzed depending on the material type. The results indicate that belt age and damage density vary significantly with material type, while the Resurs indicator (percentage of expected operating time) shows no clear dependence on the material type. A multiple regression analysis was also performed to predict failure density based on operational variables, such as Age, Resurs results, Loop Length, and Segment Length. The regression model explains approximately 46% of the variability in damage density, indicating the need for further research to improve predictive accuracy. The study emphasizes the importance of using non-destructive diagnostic systems to optimize maintenance planning and enhance conveyor belt reliability. Full article
(This article belongs to the Special Issue Nondestructive Testing (NDT): Technologies and Applications)
Show Figures

Figure 1

18 pages, 2462 KB  
Article
Autonomous Drilling and the Idea of Next-Generation Deep Mineral Exploration
by George Nikolakopoulos, Anton Koval, Matteo Fumagalli, Martyna Konieczna-Fuławka, Laura Santas Moreu, Victor Vigara-Puche, Kashish Verma, Bob de Waard and René Deutsch
Sensors 2025, 25(13), 3953; https://doi.org/10.3390/s25133953 - 25 Jun 2025
Viewed by 1547
Abstract
Remote drilling technologies play a crucial role in automating both underground and open-pit hard rock mining operations. These technologies enhance efficiency and, most importantly, improve safety in the mining sector. Autonomous drilling rigs can navigate to pre-determined positions and utilize the appropriate parameters [...] Read more.
Remote drilling technologies play a crucial role in automating both underground and open-pit hard rock mining operations. These technologies enhance efficiency and, most importantly, improve safety in the mining sector. Autonomous drilling rigs can navigate to pre-determined positions and utilize the appropriate parameters to drill boreholes effectively. This article explores various aspects of automation, including the integration of advanced data collection methods that monitor the drilling parameters and facilitate the creation of 3D models of rock hardness. The shift toward machine automation involves transitioning from human-operated machines to systems powered by artificial intelligence, which are capable of making real-time decisions. Navigating underground environments presents unique challenges, as traditional RF-based localization systems often fail in these settings. New solutions, such as constant localization and mapping techniques like SLAM (simultaneous localization and mapping), provide innovative methods for navigating mines, particularly in uncharted territories. The development of robotic exploration rigs equipped with modules that can operate autonomously in hazardous areas has the potential to revolutionize mineral exploration in underground mines. This article also discusses solutions aimed at validating and improving existing methods by optimizing drilling strategies to ensure accuracy, enhance efficiency, and ensure safety. These topics are explored in the context of the Horizon Europe-funded PERSEPHONE project, which seeks to deliver fully autonomous, sensor-integrated robotic systems for deep mineral exploration in challenging underground environments. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

22 pages, 3312 KB  
Review
A Review of the Impact of Spontaneous Combustion on Slope Stability in Coal Mine Waste Dumps
by Phu Minh Vuong Nguyen
Appl. Sci. 2025, 15(13), 7138; https://doi.org/10.3390/app15137138 - 25 Jun 2025
Viewed by 881
Abstract
Mining waste from both underground and open-pit mines is typically placed in surface sites known as mine waste dumps. Over time, as large volumes of mining waste accumulate, these dumps become higher due to the limited surface area allocated to dumping. Ensuring the [...] Read more.
Mining waste from both underground and open-pit mines is typically placed in surface sites known as mine waste dumps. Over time, as large volumes of mining waste accumulate, these dumps become higher due to the limited surface area allocated to dumping. Ensuring the stability of mine waste dumps is a major concern for both mining operations and local governments due to safety risks to the dumps themselves and their surrounding environments. In some cases of mine waste dump, spontaneous combustion poses a significant challenge, affecting not only the environment but also the slope stability of mine waste dumps. This review synthesizes existing research on the mechanisms of spontaneous combustion, its thermal effects, and the implications for geomechanical stability in mine waste dumps. It also examines methods for monitoring and controlling these processes, identifies gaps in the current research, and suggests directions for future studies. The review also reveals that combustion-induced temperature changes, material degradation, and gas generation significantly impact the geotechnical properties of building material dumps, contributing to slope failure. This review is expected to provide valuable insights that help mining authorities assess risks, minimize impacts, and implement preventive measures to mitigate unexpected spontaneous combustion-induced slope failures in mine waste dumps. Full article
Show Figures

Figure 1

Back to TopTop