Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = oncofetal protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3018 KiB  
Article
Uncovering a Novel Role of ROR1 in the Epigenetic Regulation of Tumor Suppressor Gene CREB3L1 in Triple-Negative Breast Cancer Cells
by Victoria L. Reed, Eric Lalu, Leena Yoon, Norman Fultang and Bela Peethambaran
Biomolecules 2025, 15(5), 734; https://doi.org/10.3390/biom15050734 - 16 May 2025
Viewed by 690
Abstract
A characteristic of triple-negative breast cancer (TNBC) is the epigenetic regulation of tumor suppressor genes, leading to TNBC heterogeneity and treatment resistance in patients. TNBC exhibits high methylation rates, leading to the silencing of numerous tumor suppressor genes. DNA methyltransferase inhibitors (DNMTis) have [...] Read more.
A characteristic of triple-negative breast cancer (TNBC) is the epigenetic regulation of tumor suppressor genes, leading to TNBC heterogeneity and treatment resistance in patients. TNBC exhibits high methylation rates, leading to the silencing of numerous tumor suppressor genes. DNA methyltransferase inhibitors (DNMTis) have shown limited clinical efficacy in TNBC treatment. This study aims to uncover a target that could be used to reverse the epigenetic silencing of tumor suppressor genes in TNBC. The Western blot analysis demonstrated that ROR1 knockdown, an oncofetal gene, reduced DNMT3A and DNMT3B protein expression in the TNBC cell lines MDA-MB-231 and HCC1806, as well as a non-malignant breast cell line, MCF10A. The reduced representation bisulfite sequencing (RRBS) analysis identified differential methylation of CREB3L1 when ROR1 is knocked down in TNBC cell lines. CREB3L1 is a transcription factor that plays tumor-suppressive roles in TNBC and is commonly epigenetically silenced in patients. This study shows that ROR1 requires pSTAT3 activation to upregulate DNMT3A and DNMT3B expression to induce CREB3L1 epigenetic silencing in TNBC. ROR1 knockdown resulted in the re-expression of CREB3L1 in TNBC cells. The data provide evidence that ROR1 inhibition, in combination with DNMTis, could enhance patient outcomes as a therapeutic approach for TNBC. Full article
(This article belongs to the Special Issue Tumour Suppressor Genes: The Guardians of Cell Integrity)
Show Figures

Graphical abstract

21 pages, 2734 KiB  
Article
The Chimeric Antigen Receptor T Cell Target Claudin 6 Is a Marker for Early Organ-Specific Epithelial Progenitors and Is Expressed in Some Pediatric Solid Tumor Entities
by Larissa Seidmann, Arthur Wingerter, Marie Oliver Metzig, Angelina Bornas, Khalifa El Malki, Arsenij Ustjanzew, Franziska Ortmüller, Yevgeniy Kamyshanskiy, Thomas Kindler, Mark Laible, Xenia Mohr, Nicole Henninger, Alexandra Russo, Olaf Beck, Francesca Alt, Pia Wehling, Wilfried Roth, Claudia Paret and Jörg Faber
Cancers 2025, 17(6), 920; https://doi.org/10.3390/cancers17060920 - 7 Mar 2025
Viewed by 1917
Abstract
Background/Objectives: The oncofetal membrane protein Claudin 6 (CLDN6) is an attractive target for T cell-based therapies. There is a lack of detailed analyses on the age-dependent expression of CLDN6 in normal tissues is lacking, which limits the expansion of CLDN6 CAR-T cell [...] Read more.
Background/Objectives: The oncofetal membrane protein Claudin 6 (CLDN6) is an attractive target for T cell-based therapies. There is a lack of detailed analyses on the age-dependent expression of CLDN6 in normal tissues is lacking, which limits the expansion of CLDN6 CAR-T cell clinical trials to pediatric populations. Methods: We analyzed CLDN6 expression in extracranial solid tumors and normal tissues of children using RNA-sequencing data from over 500 pediatric solid tumor samples, qRT-PCR and immunohistochemistry (IHC) in more than 100 fresh-frozen tumor samples and, approximately, 250 formalin-fixed paraffin-embedded (FFPE) samples. We examined normal tissue expression via qRT-PCR in 32 different infant tissues and via IHC in roughly 290 tissues from donors across four age groups, as well as in fetal autopsy samples. Results: In fetal tissues, we detected CLDN6 expression primarily in the epithelial cells of several organs, including the skin, lungs, kidneys, intestinal tract, and pancreas, but not in undifferentiated blastemal cells. Postnatally, we found CLDN6-positive epithelial progenitors only during the first few weeks of life. In older-age groups, isolated clusters of CLDN6-positive progenitors were present, but in scarce quantities. In tumor tissues, we found strong and homogeneous CLDN6 expression in desmoplastic small round cell tumors and germ cell tumors. Wilms tumors demonstrated heterogeneous CLDN6 expression, notably absent in the blastemal component. Conclusions: These findings highlight an organ-specific presence of CLDN6-positive epithelial precursors that largely disappear in terminally differentiated epithelia within weeks after birth. Therefore, our data support CLDN6 as a viable therapeutic target in pediatric patients and justify their inclusion in basket studies for anti-CLDN6-based therapies. Full article
(This article belongs to the Special Issue Targeted Therapies for Pediatric Solid Tumors (2nd Edition))
Show Figures

Figure 1

23 pages, 6081 KiB  
Article
Exploring the Therapeutic Potential of the DOT1L Inhibitor EPZ004777 Using Bioinformatics and Molecular Docking Approaches in Acute Myeloid Leukemia
by Mehmet Kivrak, Ihsan Nalkiran and Hatice Sevim Nalkiran
Curr. Issues Mol. Biol. 2025, 47(3), 173; https://doi.org/10.3390/cimb47030173 - 4 Mar 2025
Cited by 1 | Viewed by 1166
Abstract
Background: Acute myeloid leukemia (AML) is a malignancy characterized by the clonal expansion of hematopoietic stem and progenitor cells, often associated with mutations such as NPM1. DOT1L inhibitors have shown potential as new therapeutic opportunities for NPM1-mutant AML. The aim of this study [...] Read more.
Background: Acute myeloid leukemia (AML) is a malignancy characterized by the clonal expansion of hematopoietic stem and progenitor cells, often associated with mutations such as NPM1. DOT1L inhibitors have shown potential as new therapeutic opportunities for NPM1-mutant AML. The aim of this study was to investigate potential alternative targets of the small-molecule inhibitor EPZ004777, in addition to its primary target, DOT1L, using RNA sequencing data from the NCBI-GEO database (GSE85107). Methods: Differentially expressed genes (DEGs) were identified through bioinformatic analysis, followed by pathway enrichment analysis to uncover the relevant biological pathways. Additionally, molecular docking analysis was conducted to assess the binding affinity of EPZ004777 with the proteins CT45A3, HOXA4, SNX19, TPBG, and ZNF185, which were identified as significantly DEGs. The protein structures were obtained from AlphaFold and the Protein Data Bank. Results: EPZ004777 significantly altered gene expression. Oncofetal genes (CT45A3, TPBG) and genes associated with oncogenic pathways (HOXA4, ZNF185, SNX19) were downregulated, while the pro-apoptotic gene BEX3 was upregulated. Pathway enrichment analysis revealed the suppression of the Rap1 signaling pathway and cell adhesion molecules, which may reduce the invasiveness of AML cells. Additionally, upregulation of immune-related pathways suggests enhanced anti-tumor immune responses. Molecular docking analysis demonstrated that EPZ004777 has strong binding potential with SNX19, TPBG, and ZNF185 proteins. Conclusions: EPZ004777 has been identified as a potent modulator of SNX19, TPBG, and ZNF185 associated with apoptosis and tumor progression in AML. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

23 pages, 9143 KiB  
Article
Human Cripto-1 and Cripto-3 Protein Expression in Normal and Malignant Settings That Conflicts with Established Conventions
by Frank Cuttitta, Josune García-Sanmartín, Yang Feng, Mary Elizabeth Sunday, Young S. Kim and Alfredo Martínez
Cancers 2024, 16(21), 3577; https://doi.org/10.3390/cancers16213577 - 23 Oct 2024
Viewed by 1304
Abstract
Background/Objectives: Cripto-1 (CR1) is a plurifunctional embryonic protein required for implantation and re-expressed in the adult during wound repair, inflammation, and tumorigenesis. CR1 and its predicted CR1 pseudogene product Cripto-3/CR3 are highly homologous proteins, and given this physical attribute, commercially available antibodies [...] Read more.
Background/Objectives: Cripto-1 (CR1) is a plurifunctional embryonic protein required for implantation and re-expressed in the adult during wound repair, inflammation, and tumorigenesis. CR1 and its predicted CR1 pseudogene product Cripto-3/CR3 are highly homologous proteins, and given this physical attribute, commercially available antibodies cannot discriminate between CR1 and CR3. Methods: A series of mouse monoclonal antibodies [MoAbs] were developed with a high-affinity binding that can differentiate human CR1/CR3 proteins and showed no measurable cross-reactivity. Results: Using these reagents, we confirm that CR3 is a bona fide translated protein found in human tumor tissue, cancer cell lysates, and in normal/cancer patient donor sera. We also reveal that CR1 and CR3 compete for binding to signal transduction protein Nodal, glucose-regulated protein 78Da (GRP78), and activin receptor-like kinase 4 (Alk4). Our discriminatory MoAbs provide new reagents to help clarify current CR1/CR3 protein expression vagaries in the Cripto field of study, challenging established CR1 conventions. In addition, our data validate CR3 involvement in human carcinogenesis and cell signaling pathways, with potential clinical relevance in determining cancer patient prognosis and disease severity. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

12 pages, 2857 KiB  
Article
Combining rVAR2 and Anti-EpCAM to Increase the Capture Efficiency of Non-Small-Cell Lung Cancer Cell Lines in the Flow Enrichment Target Capture Halbach (FETCH) Magnetic Separation System
by Sitian He, Peng Liu, Yongjun Wu, Mette Ø. Agerbæk, Ali Salanti, Leon W. M. M. Terstappen, Pascal Jonkheijm and Michiel Stevens
Int. J. Mol. Sci. 2024, 25(18), 9816; https://doi.org/10.3390/ijms25189816 - 11 Sep 2024
Cited by 4 | Viewed by 1757
Abstract
Circulating tumor cells (CTCs) are detected in approximately 30% of metastatic non-small-cell lung cancer (NSCLC) cases using the CellSearch system, which relies on EpCAM immunomagnetic enrichment and Cytokeratin detection. This study evaluated the effectiveness of immunomagnetic enrichment targeting oncofetal chondroitin sulfate (ofCS) using [...] Read more.
Circulating tumor cells (CTCs) are detected in approximately 30% of metastatic non-small-cell lung cancer (NSCLC) cases using the CellSearch system, which relies on EpCAM immunomagnetic enrichment and Cytokeratin detection. This study evaluated the effectiveness of immunomagnetic enrichment targeting oncofetal chondroitin sulfate (ofCS) using recombinant VAR2CSA proteins (rVAR2) to improve the recovery of different NSCLC cell lines spiked into lysed blood samples. Four NSCLC cell lines—NCI-H1563, A549, NCI-H1792, and NCI-H661—were used to assess capture efficiency. The results demonstrated that the combined use of anti-EpCAM antibody and rVAR2 significantly enhanced the capture efficiency to an average of 88.2% compared with 40.6% when using only anti-EpCAM and 56.6% when using only rVAR2. These findings suggest that a dual-marker approach using anti-EpCAM and rVAR2 can provide a more robust and sensitive method for CTC enrichment in NSCLC, potentially leading to better diagnostic and prognostic outcomes. Full article
(This article belongs to the Special Issue Biomarkers of Tumor Progression, Prognosis and Therapy: 2nd Edition)
Show Figures

Figure 1

22 pages, 5169 KiB  
Article
Pentagalloyl Glucose (PGG) Exhibits Anti-Cancer Activity against Aggressive Prostate Cancer by Modulating the ROR1 Mediated AKT-GSK3β Pathway
by Vignesh Sivaganesh, Tram M. Ta and Bela Peethambaran
Int. J. Mol. Sci. 2024, 25(13), 7003; https://doi.org/10.3390/ijms25137003 - 26 Jun 2024
Cited by 2 | Viewed by 3605
Abstract
Androgen-receptor-negative, androgen-independent (ARneg-AI) prostate cancer aggressively proliferates and metastasizes, which makes treatment difficult. Hence, it is necessary to continue exploring cancer-associated markers, such as oncofetal Receptor Tyrosine Kinase like Orphan Receptor 1 (ROR1), which may serve as a form of targeted [...] Read more.
Androgen-receptor-negative, androgen-independent (ARneg-AI) prostate cancer aggressively proliferates and metastasizes, which makes treatment difficult. Hence, it is necessary to continue exploring cancer-associated markers, such as oncofetal Receptor Tyrosine Kinase like Orphan Receptor 1 (ROR1), which may serve as a form of targeted prostate cancer therapy. In this study, we identify that Penta-O-galloyl-β-D-glucose (PGG), a plant-derived gallotannin small molecule inhibitor, modulates ROR1-mediated oncogenic signaling and mitigates prostate cancer phenotypes. Results indicate that ROR1 protein levels were elevated in the highly aggressive ARneg-AI PC3 cancer cell line. PGG was selectively cytotoxic to PC3 cells and induced apoptosis of PC3 (IC50 of 31.64 µM) in comparison to normal prostate epithelial RWPE-1 cells (IC50 of 74.55 µM). PGG was found to suppress ROR1 and downstream oncogenic pathways in PC3 cells. These molecular phenomena were corroborated by reduced migration, invasion, and cell cycle progression of PC3 cells. PGG minimally and moderately affected RWPE-1 and ARneg-AI DU145, respectively, which may be due to these cells having lower levels of ROR1 expression in comparison to PC3 cells. Additionally, PGG acted synergistically with the standard chemotherapeutic agent docetaxel to lower the IC50 of both compounds about five-fold (combination index = 0.402) in PC3 cells. These results suggest that ROR1 is a key oncogenic driver and a promising target in aggressive prostate cancers that lack a targetable androgen receptor. Furthermore, PGG may be a selective and potent anti-cancer agent capable of treating ROR1-expressing prostate cancers. Full article
(This article belongs to the Special Issue Molecular Mechanisms Underlying the Progression of Prostate Cancer)
Show Figures

Figure 1

15 pages, 247 KiB  
Review
The Role of Ion Channels and Chemokines in Cancer Growth and Metastasis: A Proposed Mode of Action Using Peptides in Cancer Therapy
by Gerald J. Mizejewski
Cancers 2024, 16(8), 1531; https://doi.org/10.3390/cancers16081531 - 17 Apr 2024
Cited by 1 | Viewed by 1788
Abstract
Metastasis (Met) largely contributes to the major cause of cancer deaths throughout the world, rather than the growth of the tumor mass itself. The present report brings together several of the pertinent contributors to cancer growth and metastatic processes from an activity standpoint. [...] Read more.
Metastasis (Met) largely contributes to the major cause of cancer deaths throughout the world, rather than the growth of the tumor mass itself. The present report brings together several of the pertinent contributors to cancer growth and metastatic processes from an activity standpoint. Such biological activities include the following: (1) cell adherence and detachment; (2) cell-to-cell contact; (3) contact inhibition; (4) the cell interfacing with the extracellular matrix (ECM); (5) tumor cell-to-stroma communication networks; (6) chemotaxis; and (7) cell membrane potential. Moreover, additional biochemical factors that contribute to cancer growth and metastasis have been shown to comprise the following: (a) calcium levels in the extracellular matrix and in intracellular compartments; (b) cation voltage and ATP-regulated potassium channels; (c) selective and non-selective cation channels; and (d) chemokines (cytokines) and their receptors, such as CXCL12 (SDF-1) and its receptor/binding partner, CXCR4. These latter molecular components represent a promising group of an interacting and synchronized set of candidates ideal for peptide therapeutic targeting for cancer growth and metastasis. Such peptides can be obtained from naturally occurring proteins such as alpha-fetoprotein (AFP), an onco-fetal protein and clinical biomarker. Full article
13 pages, 9683 KiB  
Article
Expression of IMP3 and LIN28A RNA-Binding Proteins in Placentas of Patients with Pre-Eclampsia with and without Severe Features
by Maja Barbaric, Katarina Vukojevic, Anita Kolobaric, Martina Orlovic Vlaho, Tanja Kresic and Violeta Soljic
Biomedicines 2024, 12(4), 879; https://doi.org/10.3390/biomedicines12040879 - 16 Apr 2024
Viewed by 1320
Abstract
Background: this study aimed to determine the expression of RNA-binding oncofetal proteins IMP3 and LIN28A in extravillous (EVT) and villous trophoblast (VT) cells of placentas from pre-eclamptic (PE) pregnancies to better understand the pathogenesis of PE. Methods: placental tissue of 10 patients with [...] Read more.
Background: this study aimed to determine the expression of RNA-binding oncofetal proteins IMP3 and LIN28A in extravillous (EVT) and villous trophoblast (VT) cells of placentas from pre-eclamptic (PE) pregnancies to better understand the pathogenesis of PE. Methods: placental tissue of 10 patients with PE with severe features, 10 patients with PE without severe features and 20 age-matched healthy pregnancy controls were analyzed by immunohistochemistry, double immunofluorescence and qPCR. Results: We found a decreased percentage of IMP3-positive EVT cells in PE with and without severe features compared to that of the healthy control (p < 0.001). IMP3 expression was significantly low in VT of PE placentas compared to that of the healthy control (p = 0.002). There was no significant difference in LIN28A expression between groups of PE and the control group. Additionally, we noticed the trend toward downregulation of IMP3 mRNA and LIN28A mRNA in severe PE compared to that of healthy controls. Conclusions: We demonstrated that IMP3 expression is decreased in EVT and VT cells of placentas from pregnancies complicated with both PE with and without severe features. However, additional functional investigations are needed to clarify the role of IMP3 as a potential therapeutic target in the management of PE. Full article
(This article belongs to the Special Issue Pathogenesis and Treatment of Preeclampsia)
Show Figures

Figure 1

14 pages, 2518 KiB  
Article
Production in Bacteria and Characterization of Engineered Humanized Fab Fragment against the Nodal Protein
by Jwala P. Sivaccumar, Emanuela Iaccarino, Angela Oliver, Maria Cantile, Pierpaolo Olimpieri, Antonio Leonardi, Menotti Ruvo and Annamaria Sandomenico
Pharmaceuticals 2023, 16(8), 1130; https://doi.org/10.3390/ph16081130 - 10 Aug 2023
Cited by 1 | Viewed by 1649
Abstract
Drug development in recent years is increasingly focused on developing personalized treatments based on blocking molecules selective for therapeutic targets specifically present in individual patients. In this perspective, the specificity of therapeutic targets and blocking agents plays a crucial role. Monoclonal antibodies (mAbs) [...] Read more.
Drug development in recent years is increasingly focused on developing personalized treatments based on blocking molecules selective for therapeutic targets specifically present in individual patients. In this perspective, the specificity of therapeutic targets and blocking agents plays a crucial role. Monoclonal antibodies (mAbs) and their surrogates are increasingly used in this context thanks to their ability to bind therapeutic targets and to inhibit their activity or to transport bioactive molecules into the compartments in which the targets are expressed. Small antibody-like molecules, such as Fabs, are often used in certain clinical settings where small size and better tissue penetration are required. In the wake of this research trend, we developed a murine mAb (3D1) neutralizing the activity of Nodal, an oncofetal protein that is attracting an ever-increasing interest as a selective therapeutic target for several cancer types. Here, we report the preparation of a recombinant Fab of 3D1 that has been humanized through a computational approach starting from the sequence of the murine antibody. The Fab has been expressed in bacterial cells (1 mg/L bacterial culture), biochemically characterized in terms of stability and binding properties by circular dichroism and bio-layer interferometry techniques and tested in vitro on Nodal-positive cancer cells. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

11 pages, 1182 KiB  
Article
High OCT4 Expression Might Be Associated with an Aggressive Phenotype in Rectal Cancer
by Lina Lambis-Anaya, Mashiel Fernández-Ruiz, Yamil Liscano and Amileth Suarez-Causado
Cancers 2023, 15(14), 3740; https://doi.org/10.3390/cancers15143740 - 23 Jul 2023
Cited by 5 | Viewed by 1930
Abstract
Rectal cancer (RC) is one of the most common malignant neoplasms, and cancer stem cells (CSCs) of the intestinal tract have been implicated in its origin. The oncofetal protein OCT4 has been linked to neoplastic processes, but its role and clinical significance in [...] Read more.
Rectal cancer (RC) is one of the most common malignant neoplasms, and cancer stem cells (CSCs) of the intestinal tract have been implicated in its origin. The oncofetal protein OCT4 has been linked to neoplastic processes, but its role and clinical significance in RC are unknown. This study investigates the expression of the stem cell marker OCT4 related to clinical-pathological characteristics and its clinical significance in RC patients. The expression level of stem cell marker OCT4 was analyzed in 22 primary rectal tumors by western blot. The association between OCT4 protein expression and the clinical-pathological features of tumors was evaluated by χ2 test and Fisher’s exact test. We demonstrated that the expression of the stem cell marker OCT4 was observed in tumor tissue but not adjacent non-tumor tissue. High expression of the stem cell marker OCT4 was significantly associated with histological differentiation grade (p = 0.039), tumor invasion level (p = 0.004), lymph node involvement (p = 0.044), tumor-node-metastasis (TNM) stage (p = 0.002), and clinical stage (p = 0.021). These findings suggest that high OCT4 expression is associated with a more aggressive RC phenotype, with a greater likelihood of progression and metastasis. These results shed light on the importance of targeting this CSC marker to attenuate RC progression. Full article
(This article belongs to the Special Issue Molecular Biology of Colorectal Cancers)
Show Figures

Figure 1

19 pages, 738 KiB  
Review
IGF2BP1—An Oncofetal RNA-Binding Protein Fuels Tumor Virus Propagation
by Markus Glaß and Stefan Hüttelmaier
Viruses 2023, 15(7), 1431; https://doi.org/10.3390/v15071431 - 24 Jun 2023
Cited by 4 | Viewed by 3238
Abstract
The oncofetal RNA-binding protein IGF2BP1 has been reported to be a driver of tumor progression in a multitude of cancer entities. Its main function is the stabilization of target transcripts by shielding these from miRNA-mediated degradation. However, there is growing evidence that several [...] Read more.
The oncofetal RNA-binding protein IGF2BP1 has been reported to be a driver of tumor progression in a multitude of cancer entities. Its main function is the stabilization of target transcripts by shielding these from miRNA-mediated degradation. However, there is growing evidence that several virus species recruit IGF2BP1 to promote their propagation. In particular, tumor-promoting viruses, such as hepatitis B/C and human papillomaviruses, benefit from IGF2BP1. Moreover, recent evidence suggests that non-oncogenic viruses, such as SARS-CoV-2, also take advantage of IGF2BP1. The only virus inhibited by IGF2BP1 reported to date is HIV-1. This review summarizes the current knowledge about the interactions between IGF2BP1 and different virus species. It further recapitulates several findings by presenting analyses from publicly available high-throughput datasets. Full article
(This article belongs to the Special Issue RNA Biology of Viral Infection)
Show Figures

Figure 1

18 pages, 4363 KiB  
Review
The Blessed Union of Glycobiology and Immunology: A Marriage That Worked
by Jhenifer Santos dos Reis, Israel Diniz-Lima, Marcos André Rodrigues da Costa Santos, Pedro Marçal Barcelos, Kelli Monteiro da Costa, Raphael do Carmo Valente, Lorrane de Souza Chaves, Luma Petel de Campos, Ariely Costa dos Santos, Rafaela Gomes Correia de Lima, Debora Decote-Ricardo, Alexandre Morrot, Jose Osvaldo Previato, Lucia Mendonça-Previato, Celio Geraldo Freire-de-Lima, Leonardo Marques da Fonseca and Leonardo Freire-de-Lima
Medicines 2023, 10(2), 15; https://doi.org/10.3390/medicines10020015 - 19 Jan 2023
Cited by 2 | Viewed by 3679
Abstract
In this article, we discuss the main aspects regarding the recognition of cell surface glycoconjugates and the immunomodulation of responses against the progression of certain pathologies, such as cancer and infectious diseases. In the first part, we talk about different aspects of glycoconjugates [...] Read more.
In this article, we discuss the main aspects regarding the recognition of cell surface glycoconjugates and the immunomodulation of responses against the progression of certain pathologies, such as cancer and infectious diseases. In the first part, we talk about different aspects of glycoconjugates and delve deeper into the importance of N-glycans in cancer immunotherapy. Then, we describe two important lectin families that have been very well studied in the last 20 years. Examples include the sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs), and galectins. Finally, we discuss a topic that needs to be better addressed in the field of glycoimmunology: the impact of oncofetal antigens on the cells of the immune system. New findings in this area are of great importance for advancement, especially in the field of oncology, since it is already known that cellular interactions mediated by carbohydrate–carbohydrate and/or carbohydrate proteins are able to modulate the progression of different types of cancer in events that compromise the functionality of the immune responses. Full article
Show Figures

Figure 1

16 pages, 2034 KiB  
Article
The Potential Utility of Circulating Oncofetal H19 Derived miR-675 Expression versus Tissue lncRNA-H19 Expression in Diagnosis and Prognosis of HCC in Egyptian Patients
by Shimaa Abdelsattar, Dina Sweed, Hala F. M. Kamel, Zeinab A. Kasemy, Abdallah M. Gameel, Hassan Elzohry, Omnia Ameen, Eman Ibrahim Elgizawy, Ahmed Sallam, Asmaa Mosbeh, Mahmoud S. Abdallah, Fatma O. Khalil, Hiba S. Al-Amodi and Sally M. El-Hefnway
Biomolecules 2023, 13(1), 3; https://doi.org/10.3390/biom13010003 - 20 Dec 2022
Cited by 3 | Viewed by 2458
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Interestingly, lncRNA-H19 acts independently in HCC and influences miR-675 expressions. We aimed to assess the potential utility of tissue lncRNA-H19 versus miR-675 expressions as a non-invasive biomarker for HCC diagnosis and prognosis [...] Read more.
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Interestingly, lncRNA-H19 acts independently in HCC and influences miR-675 expressions. We aimed to assess the potential utility of tissue lncRNA-H19 versus miR-675 expressions as a non-invasive biomarker for HCC diagnosis and prognosis in Egyptian patients. Ninety-one HCC patients and 91 controls included in this study were investigated for expression of lncRNA-H19 and miR675 using RT-qPCR. Our results showed that the expression of lncRNA-H19 and microRNA-675 were higher in patients than in controls (p < 0.001 for both). Additionally, lncRNA-H19 expression was higher in tumorous than in non-tumorous tissue (p < 0.001). Linear regression revealed that miR-675 expression was a significantly higher positive predictor than lncRNA-H19 for tumor size, pathologic grade, and AFP level; similarly, for cyclin D1 and VEGF protein expression. By using the ROC curve, the sensitivity of miR-675 was higher than lncRNA-H19 for discriminating HCC from controls (95–89%, respectively) and the sensitivity of lncRNA-H19 was higher in tumorous than in non-tumorous tissues (76%). The high expressions of both were associated with low OS (p < 0.001, 0.001, respectively). Oncofetal H19-derived miR-675 expression could be considered a potential noninvasive diagnostic and prognostic biomarker, outstanding the performance of the expression of tissue lncRNA-H19 for HCC. Full article
Show Figures

Figure 1

17 pages, 5986 KiB  
Article
FOXM1 Is a Novel Molecular Target of AFP-Positive Hepatocellular Carcinoma Abrogated by Proteasome Inhibition
by Ru Li, Hikari Okada, Taro Yamashita, Kouki Nio, Han Chen, Yingyi Li, Tetsuro Shimakami, Hajime Takatori, Kuniaki Arai, Yoshio Sakai, Tatsuya Yamashita, Eishiro Mizukoshi, Masao Honda and Shuichi Kaneko
Int. J. Mol. Sci. 2022, 23(15), 8305; https://doi.org/10.3390/ijms23158305 - 27 Jul 2022
Cited by 10 | Viewed by 2877
Abstract
Alpha-fetoprotein (AFP) is an oncofetal protein that is elevated in a subset of hepatocellular carcinoma (HCC) with poor prognosis, but the molecular target activated in AFP-positive HCC remains elusive. Here, we demonstrated that the transcription factor forkhead box M1 (FOXM1) is upregulated in [...] Read more.
Alpha-fetoprotein (AFP) is an oncofetal protein that is elevated in a subset of hepatocellular carcinoma (HCC) with poor prognosis, but the molecular target activated in AFP-positive HCC remains elusive. Here, we demonstrated that the transcription factor forkhead box M1 (FOXM1) is upregulated in AFP-positive HCC. We found that FOXM1 expression was highly elevated in approximately 40% of HCC cases, and FOXM1-high HCC was associated with high serum AFP levels, a high frequency of microscopic portal vein invasion, and poor prognosis. A transcriptome and pathway analysis revealed the activation of the mitotic cell cycle and the inactivation of mature hepatocyte metabolism function in FOXM1-high HCC. The knockdown of FOXM1 reduced AFP expression and induced G2/M cell cycle arrest. We further identified that the proteasome inhibitor carfilzomib attenuated FOXM1 protein expression and suppressed cell proliferation in AFP-positive HCC cells. Carfilzomib in combination with vascular endothelial growth factor receptor 2 (VEGFR2) blockade significantly prolonged survival by suppressing AFP-positive HCC growth in a subcutaneous tumor xenotransplantation model. These data indicated that FOXM1 plays a pivotal role in the proliferation of AFP-positive liver cancer cells. Carfilzomib can effectively inhibit FOXM1 expression to inhibit tumor growth and could be a novel therapeutic option in patients with AFP-positive HCC who receive anti-VEGFR2 antibodies. Full article
Show Figures

Figure 1

12 pages, 685 KiB  
Review
Expression and Impact of C1GalT1 in Cancer Development and Progression
by Yangu Wan and Lu-Gang Yu
Cancers 2021, 13(24), 6305; https://doi.org/10.3390/cancers13246305 - 15 Dec 2021
Cited by 18 | Viewed by 4844
Abstract
C1GalT1 (T-synthase) is one of the key glycosyltransferases in the biosynthesis of O-linked mucin-type glycans of glycoproteins. It controls the formation of Core-1 disaccharide Galβ1,3GalNAcα- (Thomsen–Friedenreich oncofetal antigen, T or TF antigen) and Core-1-associated carbohydrate structures. Recent studies have shown that C1GalT1 is [...] Read more.
C1GalT1 (T-synthase) is one of the key glycosyltransferases in the biosynthesis of O-linked mucin-type glycans of glycoproteins. It controls the formation of Core-1 disaccharide Galβ1,3GalNAcα- (Thomsen–Friedenreich oncofetal antigen, T or TF antigen) and Core-1-associated carbohydrate structures. Recent studies have shown that C1GalT1 is overexpressed in many cancers of epithelial origin including colon, breast, gastric, head and neck, pancreatic, esophageal, prostate, and hepatocellular cancer. Overexpression of C1GalT1 is often seen to also be associated with poorer prognosis and poorer patient survival. Change of C1GalT1 expression causes glycosylation changes of many cell membrane glycoproteins including mucin proteins, growth factor receptors, adhesion molecules, and death receptors. This leads to alteration of the interactions of these cell surface molecules with their binding ligands, resulting in changes of cancer cell activity and behaviors. This review summarizes our current understanding of the expression of C1GalT1 in various cancers and discusses the impact of C1GalT change on cancer cell activities in cancer development and progression. Full article
(This article belongs to the Special Issue Advances in Tumor Glycans)
Show Figures

Figure 1

Back to TopTop