Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = oligodendroglial cell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 14167 KiB  
Article
Evaluating the Antitumor Potential of Cannabichromene, Cannabigerol, and Related Compounds from Cannabis sativa and Piper nigrum Against Malignant Glioma: An In Silico to In Vitro Approach
by Andrés David Turizo Smith, Nicolás Montoya Moreno, Josefa Antonia Rodríguez-García, Juan Camilo Marín-Loaiza and Gonzalo Arboleda Bustos
Int. J. Mol. Sci. 2025, 26(12), 5688; https://doi.org/10.3390/ijms26125688 - 13 Jun 2025
Viewed by 1318
Abstract
Malignant gliomas, including glioblastoma multiforme (GBM), are highly aggressive brain tumors with a poor prognosis and limited treatment options. This study investigates the antitumor potential of bioactive compounds derived from Cannabis sativa and Piper nigrum using molecular docking, cell viability assays, and transcriptomic [...] Read more.
Malignant gliomas, including glioblastoma multiforme (GBM), are highly aggressive brain tumors with a poor prognosis and limited treatment options. This study investigates the antitumor potential of bioactive compounds derived from Cannabis sativa and Piper nigrum using molecular docking, cell viability assays, and transcriptomic and expression analyses from public databases in humans and cell lines. Cannabichromene (CBC), cannabigerol (CBG), cannabidiol (CBD), and Piper nigrum derivates exhibited strong binding affinities relative to glioblastoma-associated targets GPR55 and PINK1. In vitro analyses demonstrated their cytotoxic effects on glioblastoma cell lines (U87MG, T98G, and CCF-STTG1), as well as on neuroblastoma (SH-SY5Y) and oligodendroglial (MO3.13) cell lines, revealing interactions among these compounds. The differential expression of GPR55 and PINK1 in tumor versus normal tissues further supports their potential as biomarkers and therapeutic targets. These findings provide a basis for the development of novel therapies and suggest unexplored molecular pathways for the treatment of malignant glioma. Full article
(This article belongs to the Special Issue Medicinal Plants for Tumor Treatments)
Show Figures

Graphical abstract

20 pages, 7081 KiB  
Article
The Influence of Pathological Extracellular Matrix on the Biological Properties of Stem Cells: Possible Hints for Cell Transplantation Therapies in Spinal Cord Injury
by Giuseppe Alastra, Corinne Quadalti, Vito Antonio Baldassarro, Alessandro Giuliani, Luciana Giardino and Laura Calzà
Int. J. Mol. Sci. 2025, 26(9), 3969; https://doi.org/10.3390/ijms26093969 - 23 Apr 2025
Viewed by 547
Abstract
Traumatic spinal cord injury (SCI) initiates a cascade of events, including persistent inflammation, which contributes to secondary injury. At a molecular level, the lesion is characterized by an altered microenvironment with changes in extracellular matrix (ECM) composition and organization, identified as a potential [...] Read more.
Traumatic spinal cord injury (SCI) initiates a cascade of events, including persistent inflammation, which contributes to secondary injury. At a molecular level, the lesion is characterized by an altered microenvironment with changes in extracellular matrix (ECM) composition and organization, identified as a potential obstacle for effective stem cell-based cell therapies. We investigated the interactions between decellularized intact and injured rat spinal cords and rat embryonic (RESCs) and neural stem cells (NSCs) at 2 and 47 days post-lesion (dpl). Decellularized ECM was used to generate 2D coating and 3D gel in vitro platforms for cell seeding. Results showed that the 2dpl 2D coating exerted a significant negative effect on the viability of both cell types, while the 47dpl 2D coating maintained RESC pluripotency. NSCs cultured on the 2dpl 2D coating for seven days showed a severe impairment in cell growth, while maintaining a cluster formation potential and differentiation marker expression comparable to normal ECM for astrocytic and oligodendroglial lineages. Notably, when NSCs are grown in 47dpl 3D gel, the lineage turns dramatically toward an astroglial lineage. These results clearly show the detrimental effects of the SCI ECM microenvironment on stem cells, advancing the understanding of potential timings suitable for effective SCI cell-based therapies. Full article
Show Figures

Graphical abstract

15 pages, 7436 KiB  
Article
Notch-1 Immunopositivity in Brain Lesions Associated with Pharmacoresistant Epilepsy
by Dimitar Metodiev, Petia Dimova, Margarita Ruseva, Dimitar Parvanov, Rumiana Ganeva, Georgi Stamenov, Sevdalin Nachev, Vesela Ivanova, Rumen Marinov and Krassimir Minkin
Neuroglia 2025, 6(1), 7; https://doi.org/10.3390/neuroglia6010007 - 8 Feb 2025
Viewed by 803
Abstract
Background: The Notch signaling pathway is an important regulator of stem cell activity in various tissues, including the central nervous system. It has been implicated in neurodevelopmental processes, including neuronal differentiation and synaptic plasticity. Research suggests that its expression may be associated with [...] Read more.
Background: The Notch signaling pathway is an important regulator of stem cell activity in various tissues, including the central nervous system. It has been implicated in neurodevelopmental processes, including neuronal differentiation and synaptic plasticity. Research suggests that its expression may be associated with certain epileptogenic lesions, particularly those with neurodevelopmental origin. The aim of this study was to investigate the expression of Notch-1 in brain biopsies from various cases of pharmacoresistant epilepsy. Methods: Here, we used immunohistochemistry staining to retrospectively analyze 128 developmental lesions associated with pharmacoresistant epilepsy, including 13 cases with focal cortical dysplasia (FCD) type I, 39 with FCD type II, 37 with hippocampal sclerosis (HS), 23 with FCD IIIc, 9 with mild malformations of cortical development (MCD), 4 cases with mild malformation of cortical development with oligodendroglial hyperplasia and epilepsy (MOGHE), and 3 with tuberous sclerosis (TS). The tissues were stained for Neurofilament protein, Vimentin, S-100 protein, NeuN, and GFAP, as well as the stem cell marker Notch-1. Tissue that stained positively for Notch-1 was further characterized. Results: A positive Notch-1 reaction was found in all cases of FCD type IIb and TS, where it appeared in balloon cells but not in dysmorphic neurons, and in a single case of meningioangiomatosis (FCD IIIc), where it stained spider-like cells. Notch-1-positive cells showed a stem-like, glio-neuronal precursor immunophenotype. No staining was observed in the remaining cases with FCD type I, type III, HS, mild MCD, and MOGHE. Conclusions: Notch-1 displays a distinct pattern of expression in some epileptogenic lesions, potentially highlighting a stem cell-like origin or neurodevelopmental abnormalities contributing to pharmacoresistant epilepsy; however, it is not a general marker of such lesions. Its differential expression may prove useful in distinguishing between different types of FCD or other cortical malformations, which could assist in both their diagnosis and potentially in the development of more targeted therapeutic approaches. Further studies with different stem cell markers are needed in this direction. Full article
Show Figures

Figure 1

20 pages, 4501 KiB  
Article
Hypomyelinating Leukodystrophy 14 (HLD14)-Related UFC1 p.Arg23Gln Decreases Cell Morphogenesis: A Phenotype Reversable with Hesperetin
by Yuri Ichihara, Maho Okawa, Minori Minegishi, Hiroaki Oizumi, Masahiro Yamamoto, Katsuya Ohbuchi, Yuki Miyamoto and Junji Yamauchi
Medicines 2025, 12(1), 2; https://doi.org/10.3390/medicines12010002 - 16 Jan 2025
Viewed by 1415
Abstract
Introduction: In the central nervous system (CNS), proper interaction between neuronal and glial cells is crucial for the development of mature nervous tissue. Hypomyelinating leukodystrophies (HLDs) are a group of genetic CNS disorders characterized by hypomyelination and/or demyelination. In these conditions, genetic mutations [...] Read more.
Introduction: In the central nervous system (CNS), proper interaction between neuronal and glial cells is crucial for the development of mature nervous tissue. Hypomyelinating leukodystrophies (HLDs) are a group of genetic CNS disorders characterized by hypomyelination and/or demyelination. In these conditions, genetic mutations disrupt the biological functions of oligodendroglial cells, which are responsible for wrapping neuronal axons with myelin sheaths. Among these, an amino acid mutation of the ubiquitin-fold modifier conjugating enzyme 1 (UFC1) is associated with HLD14-related disease, characterized by hypomyelination and delayed myelination in the brain. UFC1 is a critical component of the UFMylation system, functioning similarly to E2-conjugating enzymes in the ubiquitin-dependent protein degradation system. Methodology: We describe how a missense mutation in UFC1 (p.Arg23Gln) leads to the aggregation of UFC1 primarily in lysosomes in FBD-102b cells, which are undergoing oligodendroglial cell differentiation. Results: Cells with mutated UFC1 exhibit reduced Akt kinase phosphorylation and reduced expression of differentiation and myelination marker proteins. Consistently, these cells exhibit impaired morphological differentiation with a reduced ability to extend widespread membranes. Interestingly, hesperetin, a citrus flavonoid with known neuroprotective properties, was found to restore differentiation abilities in cells with the UFC1 mutation. Conclusions: These findings indicate that the HLD14-related mutation in UFC1 causes its lysosomal aggregation, impairing its morphological differentiation. Furthermore, the study highlights potential therapeutic insights into the pathological molecular and cellular mechanisms underlying HLD14 and suggests hesperetin as a promising candidate for treatment. Full article
Show Figures

Figure 1

18 pages, 3310 KiB  
Article
Molecular Analysis of the Differential Activity of Sox8 and Sox10 in Oligodendroglial Cells
by Verena Dehm, Tim Aberle, Laura Guerrero Bladé, Jessica Aprato, Matthias Weider, Heinrich Sticht, Elisabeth Sock and Michael Wegner
Int. J. Mol. Sci. 2024, 25(24), 13395; https://doi.org/10.3390/ijms252413395 - 13 Dec 2024
Viewed by 1037
Abstract
Oligodendroglial cells generate myelin sheaths in the vertebrate central nervous system to render rapid saltatory conduction possible and express the highly related Sox8, Sox9 and Sox10 transcription factors. While Sox9 and Sox10 fulfill crucial regulatory roles, Sox8 has only a limited impact on [...] Read more.
Oligodendroglial cells generate myelin sheaths in the vertebrate central nervous system to render rapid saltatory conduction possible and express the highly related Sox8, Sox9 and Sox10 transcription factors. While Sox9 and Sox10 fulfill crucial regulatory roles, Sox8 has only a limited impact on oligodendroglial development and myelination. By replacing Sox10 with Sox8 or Sox9 in the oligodendroglial Oln93 cell line, and comparing the expression profiles, we show here that Sox8 regulates the same processes as Sox10 and Sox9, but exhibits a substantially lower transcriptional activity under standard culture conditions. Sox8 influences fewer genes in their expression and changes their expression level less drastically, despite comparable binding to relevant regulatory regions in oligodendroglial cells. Therefore, it is likely that Sox8 and Sox10 vary in their transcriptional activity because of differences in their interactions with partner proteins. Intriguingly, it is the aminoterminal one third of the Sox protein that is responsible for the differential activities of Sox8 and Sox10, rather than the carboxyterminal two thirds that contain the known transactivation domains. Our study aims to provide an understanding of the relationship of Sox8 and Sox10 as paralogous transcription factors and their degree of functional redundancy in oligodendroglial cells, along with implications for health and disease. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

24 pages, 9065 KiB  
Article
Sonic Hedgehog Is an Early Oligodendrocyte Marker During Remyelination
by Mariagiovanna Russo, Amina Zahaf, Abdelmoumen Kassoussi, Ariane Sharif, Hélène Faure, Elisabeth Traiffort and Martial Ruat
Cells 2024, 13(21), 1808; https://doi.org/10.3390/cells13211808 - 1 Nov 2024
Cited by 1 | Viewed by 1586
Abstract
Failure of myelin regeneration by oligodendrocytes contributes to progressive decline in many neurological diseases. Here, using in vitro and in vivo rodent models, functional blockade, and mouse brain demyelination, we demonstrate that Sonic hedgehog (Shh) expression in a subset of oligodendrocyte progenitor cells [...] Read more.
Failure of myelin regeneration by oligodendrocytes contributes to progressive decline in many neurological diseases. Here, using in vitro and in vivo rodent models, functional blockade, and mouse brain demyelination, we demonstrate that Sonic hedgehog (Shh) expression in a subset of oligodendrocyte progenitor cells precedes the expression of myelin basic protein (MBP), a major myelin sheath protein. Primary cultures of rodent cortical oligodendrocytes show that Shh mRNA and protein are upregulated during oligodendrocyte maturation before the upregulation of MBP expression. Importantly, almost all MBP-positive cells are Shh positive during differentiation. During remyelination, we identify a rapid induction of Shh mRNA and peptide in oligodendroglial cells present in the demyelinated corpus callosum of mice, including a population of PDGFRα-expressing cells. Shh invalidation by an adeno-associated virus strategy demonstrates that the downregulation of Shh impairs the differentiation of oligodendrocytes in vitro and decreases MBP and myelin proteolipid protein expression in the demyelinated mouse brain at late stages of remyelination. We also report a parallel expression of Shh and MBP in oligodendroglial cells during early post-natal myelination of the mouse brain. Thus, we identify a crucial Shh signal involved in oligodendroglial cell differentiation and remyelination, with potential interest in the design of better-targeted remyelinating therapeutic strategies. Full article
Show Figures

Graphical abstract

19 pages, 5980 KiB  
Article
Neuroprotective Effect of Flavonoid Agathisflavone in the Ex Vivo Cerebellar Slice Neonatal Ischemia
by Rodrigo Barreto Carreira, Cleonice Creusa dos Santos, Juciele Valeria Ribeiro de Oliveira, Victor Diogenes Amaral da Silva, Jorge Maurício David, Arthur Morgan Butt and Silvia Lima Costa
Molecules 2024, 29(17), 4159; https://doi.org/10.3390/molecules29174159 - 2 Sep 2024
Cited by 2 | Viewed by 1632
Abstract
Agathisflavone is a flavonoid that exhibits anti-inflammatory and anti-oxidative properties. Here, we investigated the neuroprotective effects of agathisflavone on central nervous system (CNS) neurons and glia in the cerebellar slice ex vivo model of neonatal ischemia. Cerebellar slices from neonatal mice, in which [...] Read more.
Agathisflavone is a flavonoid that exhibits anti-inflammatory and anti-oxidative properties. Here, we investigated the neuroprotective effects of agathisflavone on central nervous system (CNS) neurons and glia in the cerebellar slice ex vivo model of neonatal ischemia. Cerebellar slices from neonatal mice, in which glial fibrillary acidic protein (GFAP) and SOX10 drive expression of enhanced green fluorescent protein (EGFP), were used to identify astrocytes and oligodendrocytes, respectively. Agathisflavone (10 μM) was administered preventively for 60 min before inducing ischemia by oxygen and glucose deprivation (OGD) for 60 min and compared to controls maintained in normal oxygen and glucose (OGN). The density of SOX-10+ oligodendrocyte lineage cells and NG2 immunopositive oligodendrocyte progenitor cells (OPCs) were not altered in OGD, but it resulted in significant oligodendroglial cell atrophy marked by the retraction of their processes, and this was prevented by agathisflavone. OGD caused marked axonal demyelination, determined by myelin basic protein (MBP) and neurofilament (NF70) immunofluorescence, and this was blocked by agathisflavone preventative treatment. OGD also resulted in astrocyte reactivity, exhibited by increased GFAP-EGFP fluorescence and decreased expression of glutamate synthetase (GS), and this was prevented by agathisflavone pretreatment. In addition, agathisflavone protected Purkinje neurons from ischemic damage, assessed by calbindin (CB) immunofluorescence. The results demonstrate that agathisflavone protects neuronal and myelin integrity in ischemia, which is associated with the modulation of glial responses in the face of ischemic damage. Full article
Show Figures

Figure 1

16 pages, 3009 KiB  
Article
Knockdown of Rab9 Recovers Defective Morphological Differentiation Induced by Chemical ER Stress Inducer or PMD-Associated PLP1 Mutant Protein in FBD-102b Cells
by Nana Fukushima, Yuki Miyamoto and Junji Yamauchi
Pathophysiology 2024, 31(3), 420-435; https://doi.org/10.3390/pathophysiology31030032 - 26 Aug 2024
Viewed by 1717
Abstract
Small GTP-binding proteins of the Rab family regulate intracellular vesicle trafficking across many aspects of the transport system. Among these, Rab9 is recognized for its role in controlling the transport system not only around the trans-Golgi network but also around the late endosome. [...] Read more.
Small GTP-binding proteins of the Rab family regulate intracellular vesicle trafficking across many aspects of the transport system. Among these, Rab9 is recognized for its role in controlling the transport system not only around the trans-Golgi network but also around the late endosome. However, the specific functions across different cell types and tissues remain unclear. Here, for the first time, we report that Rab9 negatively regulates morphological changes in the FBD-102b cell line, an oligodendroglial precursor cell line undergoing morphological differentiation. The knockdown of Rab9 led to an increase in cell shape alterations characterized by widespread membrane extensions. These changes were accompanied by increased expression levels of oligodendroglial cell differentiation and myelination marker proteins. Notably, the knockdown of Rab9 was capable of recovering defective cell morphological changes induced by tunicamycin, an inducer of endoplasmic reticulum (ER) stress, which is one of the major causes of oligodendroglial cell diseases such as Pelizaeus–Merzbacher disease (PMD, currently known as hypomyelinating leukodystrophy type 1 [HLD1]). In addition, Rab9 knockdown recovered levels of ER stress marker proteins and differentiation markers. Similar results were obtained in the cases of dithiothreitol (DTT), another chemical ER stress inducer, as well as HLD1-associated proteolipid protein 1 (PLP1) mutant protein. These results indicate a unique role for Rab9 in oligodendroglial cell morphological changes, suggesting its potential as a therapeutic target for mitigating diseases such as HLD1 at the molecular and cellular levels. Full article
Show Figures

Figure 1

16 pages, 4106 KiB  
Article
Hypomyelination Leukodystrophy 16 (HLD16)-Associated Mutation p.Asp252Asn of TMEM106B Blunts Cell Morphological Differentiation
by Sui Sawaguchi, Miki Ishida, Yuki Miyamoto and Junji Yamauchi
Curr. Issues Mol. Biol. 2024, 46(8), 8088-8103; https://doi.org/10.3390/cimb46080478 - 27 Jul 2024
Cited by 1 | Viewed by 1348
Abstract
Transmembrane protein 106B (TMEM106B), which is a type II transmembrane protein, is believed to be involved in intracellular dynamics and morphogenesis in the lysosome. TMEM106B is known to be a risk factor for frontotemporal lobar degeneration and has been recently identified as the [...] Read more.
Transmembrane protein 106B (TMEM106B), which is a type II transmembrane protein, is believed to be involved in intracellular dynamics and morphogenesis in the lysosome. TMEM106B is known to be a risk factor for frontotemporal lobar degeneration and has been recently identified as the receptor needed for the entry of SARS-CoV-2, independently of angiotensin-converting enzyme 2 (ACE2). A missense mutation, p.Asp252Asn, of TMEM106B is associated with hypomyelinating leukodystrophy 16 (HLD16), which is an oligodendroglial cell-related white matter disorder causing thin myelin sheaths or myelin deficiency in the central nervous system (CNS). However, it remains to be elucidated how the mutated TMEM106B affects oligodendroglial cells. Here, we show that the TMEM106B mutant protein fails to exhibit lysosome distribution in the FBD-102b cell line, an oligodendroglial precursor cell line undergoing differentiation. In contrast, wild-type TMEM106B was indeed localized in the lysosome. Cells harboring wild-type TMEM106B differentiated into ones with widespread membranes, whereas cells harboring mutated TMEM106B failed to differentiate. It is of note that the output of signaling through the lysosome-resident mechanistic target of rapamycin (mTOR) was greatly decreased in cells harboring mutated TMEM106B. Furthermore, treatment with hesperetin, a citrus flavonoid known as an activator of mTOR signaling, restored the molecular and cellular phenotypes induced by the TMEM106B mutant protein. These findings suggest the potential pathological mechanisms underlying HLD16 and their amelioration. Full article
(This article belongs to the Special Issue Molecules at Play in Neurological Diseases)
Show Figures

Figure 1

14 pages, 4037 KiB  
Article
Voltage-Gated Ion Channels Are Transcriptional Targets of Sox10 during Oligodendrocyte Development
by Christian Peters, Tim Aberle, Elisabeth Sock, Jessica Brunner, Melanie Küspert, Simone Hillgärtner, Hannah M. Wüst and Michael Wegner
Cells 2024, 13(13), 1159; https://doi.org/10.3390/cells13131159 - 7 Jul 2024
Cited by 1 | Viewed by 1795
Abstract
The transcription factor Sox10 is an important determinant of oligodendroglial identity and influences oligodendroglial development and characteristics at various stages. Starting from RNA-seq data, we here show that the expression of several voltage-gated ion channels with known expression and important function in oligodendroglial [...] Read more.
The transcription factor Sox10 is an important determinant of oligodendroglial identity and influences oligodendroglial development and characteristics at various stages. Starting from RNA-seq data, we here show that the expression of several voltage-gated ion channels with known expression and important function in oligodendroglial cells depends upon Sox10. These include the Nav1.1, Cav2.2, Kv1.1, and Kir4.1 channels. For each of the four encoding genes, we found at least one regulatory region that is activated by Sox10 in vitro and at the same time bound by Sox10 in vivo. Cell-specific deletion of Sox10 in oligodendroglial cells furthermore led to a strong downregulation of all four ion channels in a mouse model and thus in vivo. Our study provides a clear functional link between voltage-gated ion channels and the transcriptional regulatory network in oligodendroglial cells. Furthermore, our study argues that Sox10 exerts at least some of its functions in oligodendrocyte progenitor cells, in myelinating oligodendrocytes, or throughout lineage development via these ion channels. By doing so, we present one way in which oligodendroglial development and properties can be linked to neuronal activity to ensure crosstalk between cell types during the development and function of the central nervous system. Full article
(This article belongs to the Collection Oligodendrocyte Physiology and Pathology Function)
Show Figures

Graphical abstract

24 pages, 7199 KiB  
Article
2-Methoxyestradiol, an Endogenous 17β-Estradiol Metabolite, Induces Antimitogenic and Apoptotic Actions in Oligodendroglial Precursor Cells and Triggers Endoreduplication via the p53 Pathway
by Sara. A. Schaufelberger, Martina Schaettin, Giovanna Azzarito, Marinella Rosselli, Brigitte Leeners and Raghvendra K. Dubey
Cells 2024, 13(13), 1086; https://doi.org/10.3390/cells13131086 - 22 Jun 2024
Cited by 2 | Viewed by 1869
Abstract
The abnormal growth of oligodendrocyte precursor cells (OPCs) significantly contributes to the progression of glioblastoma tumors. Hence, molecules that block OPC growth may be of therapeutic importance in treating gliomas. 2-Methoxyestradiol (2ME), an endogenous tubulin-interacting metabolite of estradiol, is effective against multiple proliferative [...] Read more.
The abnormal growth of oligodendrocyte precursor cells (OPCs) significantly contributes to the progression of glioblastoma tumors. Hence, molecules that block OPC growth may be of therapeutic importance in treating gliomas. 2-Methoxyestradiol (2ME), an endogenous tubulin-interacting metabolite of estradiol, is effective against multiple proliferative disorders. Based on its anti-carcinogenic and anti-angiogenic actions, it is undergoing phase II clinical trials. We hypothesize that 2ME may prevent glioma growth by targeting OPC growth. Here, we tested this hypothesis by assessing the impact of 2ME on the growth of an OPC line, “Oli-neu”, and dissected the underlying mechanism(s). Treatment with 2ME inhibited OPC growth in a concentration-dependent manner, accompanied by significant upregulation in the expression of p21 and p27, which are negative cell-cycle regulators. Moreover, treatment with 2ME altered OPC morphology from multi-arm processes to rounded cells. At concentrations of 1uM and greater, 2ME induced apoptosis, with increased expressions of caspase 3, PARP, and caspase-7 fragments, externalized phosphatidylserine staining/APOPercentage, and increased mitochondrial activity. Flow cytometry and microscopic analysis demonstrated that 2ME triggers endoreduplication in a concentration-dependent fashion. Importantly, 2ME induced cyclin E, JNK1/2, and p53 expression, as well as OPC fusion, which are key mechanisms driving endoreduplication and whole-genome duplication. Importantly, the inhibition of p53 with pifithrin-α rescued 2ME-induced endoreduplication. The pro-apoptotic and endoreduplication actions of 2ME were accompanied by the upregulation of survivin, cyclin A, Cyclin B, Cyclin D2, and ppRB. Similar growth inhibitory, apoptotic, and endoreduplication effects of 2ME were observed in CG4 cells. Taken together, our findings provide evidence that 2ME not only inhibits OPC growth and triggers apoptosis, but also activates OPCs into survival (fight or flight) mode, leading to endoreduplication. This inherent survival characteristic of OPCs may, in part, be responsible for drug resistance in gliomas, as observed for many tubulin-interacting drugs. Importantly, the fate of OPCs after 2ME treatment may depend on the cell-cycle status of individual cells. Combining tubulin-interfering molecules with drugs such as pifithrin-α that inhibit endoreduplication may help inhibit OPC/glioma growth and limit drug resistance. Full article
Show Figures

Figure 1

16 pages, 2066 KiB  
Article
Transcription Factors Sox2 and Sox3 Directly Regulate the Expression of Genes Involved in the Onset of Oligodendrocyte Differentiation
by Jesse Rupprecht, Simone Reiprich, Tina Baroti, Carmen Christoph, Elisabeth Sock, Franziska Fröb and Michael Wegner
Cells 2024, 13(11), 935; https://doi.org/10.3390/cells13110935 - 29 May 2024
Cited by 3 | Viewed by 1372
Abstract
Rapid information processing in the central nervous system requires the myelination of axons by oligodendrocytes. The transcription factor Sox2 and its close relative Sox3 redundantly regulate the development of myelin-forming oligodendrocytes, but little is known about the underlying molecular mechanisms. Here, we characterized [...] Read more.
Rapid information processing in the central nervous system requires the myelination of axons by oligodendrocytes. The transcription factor Sox2 and its close relative Sox3 redundantly regulate the development of myelin-forming oligodendrocytes, but little is known about the underlying molecular mechanisms. Here, we characterized the expression profile of cultured oligodendroglial cells during early differentiation and identified Bcas1, Enpp6, Zfp488 and Nkx2.2 as major downregulated genes upon Sox2 and Sox3 deletion. An analysis of mice with oligodendrocyte-specific deletion of Sox2 and Sox3 validated all four genes as downstream targets in vivo. Additional functional assays identified regulatory regions in the vicinity of each gene that are responsive to and bind both Sox proteins. Bcas1, Enpp6, Zfp488 and Nkx2.2 therefore likely represent direct target genes and major effectors of Sox2 and Sox3. Considering the preferential expression and role of these genes in premyelinating oligodendrocytes, our findings suggest that Sox2 and Sox3 impact oligodendroglial development at the premyelinating stage with Bcas1, Enpp6, Zfp488 and Nkx2.2 as their major effectors. Full article
(This article belongs to the Collection Feature Papers in 'Cells of the Nervous System' Section)
Show Figures

Figure 1

23 pages, 1646 KiB  
Review
Glial Markers of Suicidal Behavior in the Human Brain—A Systematic Review of Postmortem Studies
by Mana Yamamoto, Mai Sakai, Zhiqian Yu, Miharu Nakanishi and Hatsumi Yoshii
Int. J. Mol. Sci. 2024, 25(11), 5750; https://doi.org/10.3390/ijms25115750 - 25 May 2024
Cited by 6 | Viewed by 2566
Abstract
Suicide is a major public health priority, and its molecular mechanisms appear to be related to glial abnormalities and specific transcriptional changes. This study aimed to identify and synthesize evidence of the relationship between glial dysfunction and suicidal behavior to understand the neurobiology [...] Read more.
Suicide is a major public health priority, and its molecular mechanisms appear to be related to glial abnormalities and specific transcriptional changes. This study aimed to identify and synthesize evidence of the relationship between glial dysfunction and suicidal behavior to understand the neurobiology of suicide. As of 26 January 2024, 46 articles that met the inclusion criteria were identified by searching PubMed and ISI Web of Science. Most postmortem studies, including 30 brain regions, have determined no density or number of total Nissl-glial cell changes in suicidal patients with major psychiatric disorders. There were 17 astrocytic, 14 microglial, and 9 oligodendroglial studies using specific markers of each glial cell and further on their specific gene expression. Those studies suggest that astrocytic and oligodendroglial cells lost but activated microglia in suicides with affective disorder, bipolar disorders, major depression disorders, or schizophrenia in comparison with non-suicided patients and non-psychiatric controls. Although the data from previous studies remain complex and cannot fully explain the effects of glial cell dysfunction related to suicidal behaviors, they provide risk directions potentially leading to suicide prevention. Full article
(This article belongs to the Special Issue The Role of Glia in Neuropsychiatric Disorders)
Show Figures

Figure 1

17 pages, 4543 KiB  
Article
Rab11a Controls Cell Shape via C9orf72 Protein: Possible Relationships to Frontotemporal Dementia/Amyotrophic Lateral Sclerosis (FTDALS) Type 1
by Shoya Fukatsu, Hinami Sashi, Remina Shirai, Norio Takagi, Hiroaki Oizumi, Masahiro Yamamoto, Katsuya Ohbuchi, Yuki Miyamoto and Junji Yamauchi
Pathophysiology 2024, 31(1), 100-116; https://doi.org/10.3390/pathophysiology31010008 - 9 Feb 2024
Cited by 2 | Viewed by 2271
Abstract
Abnormal nucleotide insertions of C9orf72, which forms a complex with Smith–Magenis syndrome chromosomal region candidate gene 8 (SMCR8) protein and WD repeat-containing protein 41 (WDR41) protein, are associated with an autosomal-dominant neurodegenerative frontotemporal dementia and/or amyotrophic lateral sclerosis type 1 (FTDALS1). The differentially [...] Read more.
Abnormal nucleotide insertions of C9orf72, which forms a complex with Smith–Magenis syndrome chromosomal region candidate gene 8 (SMCR8) protein and WD repeat-containing protein 41 (WDR41) protein, are associated with an autosomal-dominant neurodegenerative frontotemporal dementia and/or amyotrophic lateral sclerosis type 1 (FTDALS1). The differentially expressed in normal and neoplastic cells (DENN) domain-containing C9orf72 and its complex with SMCR8 and WDR41 function as a guanine-nucleotide exchange factor for Rab GTP/GDP-binding proteins (Rab GEF, also called Rab activator). Among Rab proteins serving as major effectors, there exists Rab11a. However, it remains to be established which Rab protein is related to promoting or sustaining neuronal morphogenesis or homeostasis. In this study, we describe that the knockdown of Rab11a decreases the expression levels of neuronal differentiation marker proteins, as well as the elongation of neurite-like processes, using N1E-115 cells, a well-utilized neuronal differentiation model. Similar results were obtained in primary cortical neurons. In contrast, the knockdown of Rab11b, a Rab11a homolog, did not significantly affect their cell morphological changes. It is of note that treatment with hesperetin, a citrus flavonoid (also known as Vitamin P), recovered the neuronal morphological phenotypes induced by Rab11a knockdown. Also, the knockdown of Rab11a or Rab11b led to a decrease in glial marker expression levels and in morphological changes in FBD-102b cells, which serve as the oligodendroglial differentiation model. Rab11a is specifically involved in the regulation of neuronal morphological differentiation. The knockdown effect mimicking the loss of function of C9orf72 is reversed by treatment with hesperetin. These findings may reveal a clue for identifying one of the potential molecular and cellular phenotypes underlying FTDALS1. Full article
Show Figures

Graphical abstract

29 pages, 10286 KiB  
Article
Investigating the Protective Effects of a Citrus Flavonoid on the Retardation Morphogenesis of the Oligodendroglia-like Cell Line by Rnd2 Knockdown
by Shoya Fukatsu, Yuki Miyamoto, Yu Oka, Maki Ishibashi, Remina Shirai, Yuki Ishida, Shin Endo, Hironori Katoh and Junji Yamauchi
Neurol. Int. 2024, 16(1), 33-61; https://doi.org/10.3390/neurolint16010003 - 26 Dec 2023
Cited by 4 | Viewed by 1818
Abstract
Recent discoveries suggest links between abnormalities in cell morphogenesis in the brain and the functional deficiency of molecules controlling signal transduction in glial cells such as oligodendroglia. Rnd2 is one such molecule and one of the Rho family monomeric GTP-binding proteins. Despite the [...] Read more.
Recent discoveries suggest links between abnormalities in cell morphogenesis in the brain and the functional deficiency of molecules controlling signal transduction in glial cells such as oligodendroglia. Rnd2 is one such molecule and one of the Rho family monomeric GTP-binding proteins. Despite the currently known functions of Rnd2, its precise roles as it relates to cell morphogenesis and disease state remain to be elucidated. First, we showed that signaling through the loss of function of the rnd2 gene affected the regulation of oligodendroglial cell-like morphological differentiation using the FBD-102b cell line, which is often utilized as a differentiation model. The knockdown of Rnd2 using the clustered regularly interspaced palindromic repeats (CRISPR)/CasRx system or RNA interference was shown to slow morphological differentiation. Second, the knockdown of Prag1 or Fyn kinase, a signaling molecule acting downstream of Rnd2, slowed differentiation. Rnd2 or Prag1 knockdown also decreased Fyn phosphorylation, which is critical for its activation and for oligodendroglial cell differentiation and myelination. Of note, hesperetin, a citrus flavonoid with protective effects on oligodendroglial cells and neurons, can recover differentiation states induced by the knockdown of Rnd2/Prag1/Fyn. Here, we showed that signaling through Rnd2/Prag1/Fyn is involved in the regulation of oligodendroglial cell-like morphological differentiation. The effects of knocking down the signaling cascade molecule can be recovered by hesperetin, highlighting an important molecular structure involved in morphological differentiation. Full article
Show Figures

Graphical abstract

Back to TopTop